ERRATUM

Catalysis Letters 5 (1990) 67-72

PARTIAL HYDROGENATION OF PHENYLACETYLENE ON COPPER-PROMOTED IRON CATALYST

Yuriko NITTA, Shin MATSUGI and Toshinobu IMANAKA

Department of Chemical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Unfortunately both tables 1 and 2 were omitted in the original version.

The openation of productory of the openation of the opena							
D _c ^c (nm)	$\frac{R_0^{d}}{(\mathrm{mmol}\cdot\mathrm{min}^{-1}\mathrm{g}^{-1})}$	S ₅₀ (%)					
16	1.1×10^{-2}	95.7					
12	5.5×10^{-2}	95.1					
16	1.2×10^{-2}	96.0					
17	4.9×10^{-2}	97.6					
17	1.0×10^{-3}	91.0 ^f					
18	2.1×10^{-3}	94.0					
20	2.7×10^{-3}	92.0					
32	1.1×10^{-3}	91.5 ^f					
	D _c ^c (nm) 16 12 16 17 17 17 18 20 32	$\begin{array}{c c} D_{\rm c}^{\rm c} & R_0^{\rm d} \\ \hline ({\rm nm}) & ({\rm mmol} \cdot {\rm min}^{-1} {\rm g}^{-1}) \\ \hline 16 & 1.1 \times 10^{-2} \\ 12 & 5.5 \times 10^{-2} \\ 16 & 1.2 \times 10^{-2} \\ 16 & 1.2 \times 10^{-2} \\ 17 & 4.9 \times 10^{-2} \\ 17 & 1.0 \times 10^{-3} \\ 18 & 2.1 \times 10^{-3} \\ 20 & 2.7 \times 10^{-3} \\ 32 & 1.1 \times 10^{-3} \end{array}$					

Table 1 Hydrogenation of phenylacetylene^a on various Fe-M/SiO₂ catalysts^b

^a Carried out in ethanol at 60 °C under 1 MPa of hydrogen.

^b Fe: M = 9:1 in atomic ratio.

^c Mean crystallite size of Fe measured by X-ray line broadening.

^d Initial reaction rate.

Table 2

^e Selectivity in styrene at 50% conversion.

^f Measured at 20% conversion.

ruore 2					
Effects of reduction	conditions on	the	properties	of	$Fe-Cu(7:3)/SiO_2$ catalyst

No.	Heating rate ^a (°C \cdot min ⁻¹)	H_2 flow rate $(1 \cdot h^{-1})$	D _c (nm)	$\frac{R_0}{(\text{mmol} \cdot \text{min}^{-1}\text{g}^{-1})}$	S ₅₀ (%)	-
 1	10		12	1.9×10 ⁻¹	99.5	-
2	5	8	11	3.1×10^{-1}	99.5	
3	10	16	11	2.9×10^{-1}	99.5	
4	5	16	10	3.7×10^{-1}	99.5	
5 ^b	10	16	12	2.0×10^{-1}	99.6	

^a Heated up to 500 °C and held as such for 1 h.

^b Reduced after heating at 300 °C for 1 h in a flow of nitrogen.

© J.C. Baltzer A.G. Scientific Publishing Company