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A Parabolic Matter-Radiation Model of the Universe

Jacques Randon®

Received June 19, 1989

A study of matter-radiation universes under certain supplementary con-
ditions specified in the introduction shows us that the only model of this
class compatible with observations is a parabolic universe which at the
present time is almost the same as an Einstein-de Sitter model. The
numerical values obtained for Hubble's constant, the age of the universe
and the matter density at the present time are quite acceptable. We can
also obtain some limits for the mass of neutrinos. The advantage of this
parabolic model is that it gives the same results as the £2/° model at the
present time and what is more could be used in studying problems of the
formation of galaxies, after the recombination epoch, where matter and
radiation have comparable importance.

1. INTRODUCTION

We are going to study some models of universes which present both matter
(density py,, pressure p,, = 0) and radiation characterised by a density p,
and a pressure p, = (c?/3)p, under the form of a cosmological radiation.
We suppose that there is no interaction between these two constituents.
Therefore, before the recombination time, when matter and radiation in-
teract, it is only a crude approximation. We use a Robertson-Walker metric
and a zero cosmological constant. We have therefore the two relationships

er4:A
pm R® = B.
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A and B are constants and R is the “radius” of the universe. With A =0,
P = Dr, P = pr + Pm, the equations of cosmologies could be written

§3’3£p,,. R® = 2kc2R+2RR? + 2R*R = SZG
§-’;—Gp, R*=—k®?R? - R*R? - 2R°R = §-7;—GA

Restricting ourselves to an expansion, the resolution of these equations

gives us
1 RdR
t=: / 1
(—]cR2 + (87G/3c?) (BR + A) )1/2

2. PARABOLIC MODEL: k=0

2.1. Parametric representation
With our notation, we obtain in this case the equation given by Jacobs in
1967 [1]:

B? 8’;Gt_—(33+A)3/2 2A(BR+A)1/2+§—A3/2.

The integration constant is determined by the condition R = 0 when ¢ = 0.
We are going to solve this equation. Let X = (BR + A)'/2, we have

X3 - 34X +2437 - B2V6rGt = 0.

This is a third degree equation whose discriminant is

4 A32
A = 1627GB* (t —— —)
i Vb6rG B?

(i) — Where
4 A8/2 )
A<0 (0<t<t) = ——=—5
( 1T VerG B?
there are three real solutions which are as follows (restricting oneself to
the case where R and t increase simultaneously and where R is positive):
1st representation:

R—B(4cos3 )

t=K(1—cos8) 6 € [2x,37)
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2nd representation:

A g T+ 0
R~§(4COS Tml>

t = K(1—cosf) 6 € [4n,57)

3rd representation:

R:—:%(tlcoszwwgwl)

3
| t = K(1—cosf) g € [0, 7]
where
X 2 A3[2
{ = e oo,
VérG B?

These three solutions are identical and differ only by the choice of the
parameter 6.

(i) ~ Where A = 0, we have a borderline case.

(iii) — Where A > 0(¢ > t;) there is only one real solution, which is:
4th representation:

A .0
R-g(é(‘.h “3-*"1)

t = K(1 + ch) 6> 0.

K has the same expression as previously. The study shows that the cos#
and the ché representations are perfectly identical at the point R = 34/B
and § = ¢;.

To sum up, the group of parametric equations which describe the total
evolution of this model is

, A 2 0
t = K(1—cos#) 6 € [2r,3n]

where R < 3A/B and t < #; and

LA, .0

t = K(1+ chf) 6> 0.
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where R > 3A/B and t > t;. The expression of the K constant is
9 A3/2

K= —=
67G B2

2.2 Asymptotic behaviour
2.2.1. Fort—0
By expanding to the first order the trigonometric functions (and
choosing the third representation), we have
K

___9 ~ g%
5B t 20

1/4
P (3271’3GA> / a2,

We can see again therefore, with the singularity vicinity, Weinberg’s model
of pure radiation.
2.2.2. Where t — o0

Then with the fourth representation,

R~

given that

A A
R~ B exp(26/3) t~ B expf

given that
R = (6xGB)'/312/3

and we come across the Einstein-de Sitter model again.

2.3. Bonds with observations

2.3.1. Calculation of matter density at the present time (p,,0)
~ The density of actual radiation (where Ty, >~ 2.7K) is

0—-34 -3

pro~bx1 g cm

The hinge instant where we can go from a parametric representation for
cos @ to the one for chd is

i = 4 A3/2 _ 4 (proR3)3/2 . 4 Pr03/2
o VorG Bz V6rG (PmoRg)z - VorG Pmo2 ’

Choosing 10~2°g cm™3 > pm, > 1073lg cm~3 we have 1.3 x 10* years
< t; < 1.3 x 10® years. The present time must therefore be studied with
the aid of the fourth representation in chf. Now

A B

pr=tg  ad =T
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Therefore

pmo _ B p o ach?0,/5-1
Pro A

and
to = K(1+ chd,).

Table I thus shows that if we want 1.7 x 1010 years < ¢, < 2.5 x 10'? years,
plausible values for the age of the universe, we could have

mo ~ (1 to 3) x 1073% cm™3.

2.3.2. Study of the critical point
If we choose the extreme values 10! years < ¢, < 2.7 x 10'® years,
we find with the pp,, values of Table I

t1 ~ 10% years to 108 years.

In order to study the critical point (index c), that is to say the point where
matter and radiation densities are equal, it is therefore necessary to use
the first representation and we obtain

Pme

Pre

=4cos?8./3-1=1=08,= 495°,

a unique value included in the interval [27, 37).
With 10 years < ¢, < 2.7 x 10'° years we have, using Table I

2 x 10* years < t, < 10° years
8x 107 g em™3 < p. <3 x 10717g em™3

9500K < T, < 44,000K.

This shows that the recombination of the matter (at a temperature ap-
proximating to 3000K) will definitely happen but only in the dominant
matter phase.
2.3.3. Expression of Hubble’s constant.

At the present time, we find (fourth representation)

hé/3
H== «—-Vf’“” e
A3f2(4ch39/3-1)2
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We give the corresponding numerical values of H, in Table 1.
2.3.4. Deceleration parameter
After simplifying, we obtain

R 1 1
g=- =z

REZ -2 snt)3

Whatever value of £, is chosen in acceptable limits one thus finds

g0 #1/2.

First remark:
The equations of cosmologies written in the form

G R R

——— :2——- — 21"’

T Pm R.2+2Ri 2H*(1 - ¢) >0
87G R* R

e = 9. = g? —
= gz~ 27 = B (24— 1) >0

show us that ¢ €]1/2, 1].
Second remark:

777

With the previous expressions of H and ¢, we can obtain the following

relationship:

H = 19)1“ B (3~ 1)
6 A2 (1= g)?

2.3.5. Mattig’s relationship
In Robertson Walker models with £ = 0 [2], we have

o edi
te R(i)

r =

In our case, with the fourth representation, we obtain

\/%'Alfz
r=c .?E B (Ch90/3*-€h88/3).

However, we can write

R= %(4(:}129/3 -1 =2

(2)



T8 Randon

and, with R, = Ro/(1 + 2), we arrive at

b 3 A 1 Qe ~Dz+1 1z
T~ V2rG B (2¢, —1)!/2 1+2 '

With the expression (2) we have

Ll
rR, = ¢ 1 14 (2¢, — 1)z ’
Ho(l - QO) 1+2

which is a generalization of Mattig’s relationships [3] for this model of the
universe.
Particular case: ¢, = 1/2

Then 0 )
C
= — |l - ———
'I"Ro Ho [ (1+Z)1/2],

an expression identical to Mattig’s relationship in the Einstein-de Sitter
model.
2.3.6. Limits for the mass of neutrinos

If it is true that 1.7 x 10'° years < t, < 2.7 x 10'° years then it is
necessary that (see Table I):

1073 em™3 < o < 3 x 10730 cm™3.

But the present baryonic density is

Pso <H X 10"31g cm™3.

There is a missing mass. Let us suppose that this mass is made up entirely
of neutrinos. We have

Pmo = Pso t+ Pro
where p,, is the present density of the neutrinos. We have [4]
Pro = 140%(m,)
with ¥(m,) = my, + my, + m,,.
We suppose that there are three kinds of neutrinos, ve, v, and v;. If

we choose the upper limit pso = 5 x 1073!g cm™3 we get, with the above
values of pp,,

5x 107gem 3 < p,, < 2.5x 1073 cm™2

and 2eV.<X(m,) <10eV.
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If we consider then that pgo = 1073'g cm™3 we have

9x107g em™3 < p,, < 2.9 x 107%0g cm~3
and  3.6e.V.<X(m,) < 11.5e.V.

Let us now suppose that these three kinds of neutrinos have the same mass,
7, included in the interval 0.6e.V. < 72, < 4e.V.. We can therefore only
have neuntrinos of small mass.

2.3.7. Conclusion

The model studied here starts off with a t1/2 evolution (pure radiation
model) in order to finish with a 1*/3 model (universe of pure matter). The
calculations show that the deceleration parameter at the present time is
extremely near 1/2; the Mattig relationship is therefore identical to the
relationship which applies in the case of the Einstein-de Sitter universe
and these two models can’t therefore be distinguished from each other by
observations based in this relationship, This is understandable because at
the present time the pressure term is negligible in relation to the density
term (p, ~ 10™%p,c?).

On the other hand, this model could be useful in studies after the
critical point where matter and radiation are almost equally important and
particularly in the study of the phenomenon of increase of perturbations
of densities and of the problem of the formation of galaxies. What is more,
we can set limits for the mass of possible neutrinos.

3. ELLIPTIC MODEL k = +1

3.1. Parametric representation
The resolution of the equations of cosmologies gives here

ct = —\/nRZ’ + 8—ﬂz(BRf+ A)

3c2
47G . 1—(3¢*/47GB)R
B
BAvein| (32/2%G) (A]BE) T2

302 ] + ct,

which is exactly the same expression as that obtained by Cohen [5]. When
R =0 and ¢t =0, we can say

ot —1,) = ~\ﬁRz + %—?(BR +A)

_4nG { (3¢2/4rGB)R — 1
(1+(3¢%/27G) (A/B?) )1/2}
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where
1 /8xG
t=z\34
47G 3c2 A \Y?
+—3-C?BAI‘CCOS[—~(1+-2?§§§> ]

Under this form we can find again Friedmann’s elliptic model if we take
A = p,R* = 0 (absence of radiation). By comparing with the equations of
Friedmann’s model we can take as our parametric representation

R=a(l- Ylj—cosw)

et = a(w — %sinw) + %\/1 — D? — a ArccosD

where w € [ArccosD, 7}, both R and t increase simultaneously, and R is
positive. The constant D satisfies the relationship

32 A\"Y?
D-(l-}-m—'j) < 1.

We have also
.= 4G
T 3¢?
which is the scale factor of Friedmann’s elliptic and hyperbolic models,
and

1-D* 3 A
D? " 2xG B?’
3.2. Asymptotic behaviour
With the new variable ¢ = w — ArccosD, we will have (when ¢ — 0)

R~%\/1—D2¢
ct~§%\/1—D2¢2

given that
B 3

which is the t/2 Weinberg model expression.
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3.3. Calculation of the constant A/B?

In the parabolic case we have shown (2.2.1 above) that the expansions
restricted to the first order when one approaches the singularity are

2 A

R= —-—8
V3 B
3/2
t:—ISé?; K=—2 A-—z-—.
2 VérG B

They allow Weinberg’s model to be rediscovered. In the elliptical case, we
have a
R= ) v1i-D2%¢

a 1-D? 32 A
t=——\1-D2¢%; =
2¢D ¢ D? 2rG B2
They can equally be said to allow the same model of Weinberg in t1/2 to
be seen again, The parametric representations in these two cases must
therefore be identical, and so we have

2 A a A 272G

— e = — N2 —_—

BE- DV TP ET
and . M

K a 2rG

e —_ D2 =

s Vi DT

Thus, the k = 0 and k£ = +1 models converge to the same Weinberg’s
model if we have

A 2xG - -
—g;:——;—:&?)(lﬂ Bem g,

But
i - pro]%r:»4 - Pro
B? (PmoR03)2 (PmoRo)*

With pro > 5 x 1073* g em™3 and pp, ~ 10731 g cm™3, this leads us to
derive R, ~ 10%cm, which is plausible.
3.4. New study of this model

With the value above

A 2nd

B2~ c2
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we can continue our study of the parametric representation. We obtain

3¢2 A\"Y? 1
14— ==
2rG B? 2

and
R= 3 IR B(1—2cosw)
4G .
ct:—.-a-z—B(w—(‘lr/3)+\/§—2smw) ; w € [x/3, 7).

So we obtain subsequently

dR _dR dw _ sinw

R:.Et_ do @t~ “T-2cosw
= _IE _ 3c3 sin w
R 27GB (1 —2cosw)?
j%:d_R_:_d_Rid_c_u_: 3ct cosw — 2
dt dw dt 27GB (1-2cosw)?
R 2 — cosw
1=7"RH? T 25’ 7 €]t ool

3.5. Conclusion
The following relationships hold true:

prR*=A and p,R3=B.

Therefore
pm _ B 4nG B?

pr A —32/1(

and, with the above value of A/B?, we obtain for the present time

— 2cosw)

Pmo 2 1031
— =—(1-= ~———
oo =3 (1 =2cosw,) 5% 10-54 200,

which is impossible. The greatest possible value of this expression is

pmo__2_ _
= 3(1-1-2)_

Pro

which is not consistent with the observations. Thus this elliptic model
must be rejected.
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4. HYPERBOLIC MODEL: k = ~1

4.1. General information
Cohen [5] discovered a logarithmic solution of eq. (1) where k = —1.

Here we have written it in another form as (k = —1)
8rG 8rG
- P2 ; —_—

X =R+ 352 BR+ ¥ A.

The discriminant of this second degree trinomial is

87G \* 32 A
2=(572) (- se )
We are going to move on to the integration of the relationship (1) by
distinguishing between the three cases A =0, A < 0 and A > 0.
4.2. When A = 0; (A/B?) = (2nG/3c?).
We thus obtain

4GB 3c?
Ct—R——gca—'ln (1+mR),

choosing R = 0 when ¢ = 0, which determines the constant of integration.
4.2.1. Asymptotic behaviour
The expansion of the logarithm term when R — 0 gives

1
T\ 3¢ )

If we want to find Weinberg’s model again

b}

the following must be true:

A 227G

BZ T 3c2°

which is compatible with our initial hypothesis. This model is therefore
consistent with the t1/2 model near the singularity.
For t — oo, we have the analogue of Milne’s universe: R = ct.
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4.2.2. Study of this model
Let Y =14 (3¢?/4xrGB)R > 1; when R — 0, Y — 1. We have

147G
ct= 55 B(Y ~lnY ~ 1),

and therefore

_dR _dRdY Y _,
@ T dy @ ‘v-a

and
o= R _ 3c3 Y
" R 47GB (Y - 1)?’
In the same way
_dR _dRdY _  3* Y <0
T dt dY d¢  4rGB (Y —1)3
then B
R 1
q_—R.Hz_?’ qE]l,O[.
4.2.3. Comparison with the observations
We have

A Pro _ 2nG -8,
— = ~1.6x 10
B~ 2R, 3¢ me

with pr, ~ 5 x 1073%g cm™3 and p,o =~ 1073'g cm™3, and we obtain
R, ~ 10% c¢m, which is suitable. As one must admit that H, < 100km s~!
Mpc™, the calculation shows us that we should get py,, < 2x10~31g cm™3
which is incompatible with observational data and the universally admitted
existence of dark matter (if we impose ¢, > 1.7 x 1010 years, we should
have p;o < 10731g cm™3). The case A = 0 must therefore be rejected.
4.3.When A < 0; (A/B?) > (2rG/3c?).
4.3.1. General considerations

When we integrate (1) we get

c(t—1,) = \/R2+ﬁ—c—;(BR+A)

_ 4G 1+ (3¢?/4xGB)R
= ((3¢*/2xG) (A/B?) — 1)1/2]

— BArg h[
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and
1 /8xG G

to = ~—\[55 A+ 5 BArg h(
c

32 A 12
ut 1) .

27G B?

4.3.2.Parametric representation
This time

R= a(-é—Shw — 1)

of = a(-}j-chw - w) +aArgsh D~ /D7 +1

with w € [Argsh D, oof so that R and ¢ increase simultaneously.

constant D is written thus:
32 A -1/2
B (27«; B 1)

472G
iy B
1+D? 32 A
D? 7 2zxG B?’
4.3.3. Asymptotic behaviour
4.3.3.1. Whent — 0

We change the variable ¢ = w —~ Argsh D; when ¢ — 0, then

R~—%\/D2+1¢
ct~§%vD2+1¢2

and also

80

R= (327&'3GA) 1/4)51;2’

which is the expression for Weinberg’s model.
43.3.2. Fort — oo
Then

785

The
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so R = ct, which is identical to the expression valid for a Milne universe.
4.3.4. Calculation of the constant A/B?

We proceed in the same way as for the elliptic model (3.3 above).
For the limited developments near the singularity, the constants of the

parametric representations must be equal when £ = 0 and k = —1. This
time

A 227G

B e

So in order to make sure that the parabolic and hyperbolic models (where
A < 0) converge as they approach the same Weinbrg model, it is necessary

that
A 2xG
B 2
which agrees with our initial hypothesis.
4.3.5. New study of this model

With the above value of A/B?, we get
32 4\ 1
= | ——e e — 1 ——,
(QWG B? ) V2

R= 5 B(VaSho — 1)

47rG

Then

B[ (V2Chw — w + Argsh(1/v2) — V3]

with w € Argsh[(1 /\/5),00[ Subsequently we have

,_dR _dRdw _ Chw
k= =@ = o1
g B_3%2  Chu
R 4rGB (/2Shw —1)2
B dR _dRdw _3v2* Shw+2

&  dw dt 4GB (V2Shw — 1)3
_ i% 1 Shw+v2
1= -2 Chkw

4.3.6. Comparison with the observations
We have

€l of.

Pm _ B 47G B2 _
Pl v — (V28hw —1).
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So when

A po  _27G
B p.2R.?

=47%x10"2cm g}

we obtain R, ~ 10%cm, if ppo ~ 1073 g cm™3. As before, the calculation
demonstrates that to have H, < 100km s™*Mpc™?, it is necessary that
Pmo < 1073lg cm™3, which contradicts the observations (if we impose
1, > 1.7 x 1019 years we should have py, < 6 x 1073%2g em™3). The case

A 227G
A<( (-gg)*zrcz—)

must therefore be rejected as well.
4.4. When A > 0; (A4/B?) < (22G/3¢%)
4.4.1. General information

By integrating eq. (1), we get

et —t,) = \/R2+§1g(BR+A)

_ 4nG 14 (3¢?/4nGB)R }
"3 (1= (36/27C) (4] B?) )1/

—— BArg h[

with

2 -1/2
1 /SW?A 47rGBArgh( 3c A) .

=TV 32 T s 977G B?

which with A = p, R* = 0 amounts to Friedmann’s hyperbolic model.
4.3.2. Parametric representation

By comparison with Friedmann’s hyperbolic model, we choose

R= a(%Chw - 1)

ot = a(zl)-Shw - w) - %\/Dz ~1+aArgch D

with w € [Argch D, o0 so that R > 0 and R and # cross simultaneously.
The constant D must satisfy the relationship:

2 -1/2
277G B2
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We can just as well have

o 426

3c2
D’-1 3% A
D? ~ 21G B’

4.3.3. Asymptotic behaviour
We choose ¢ = w — Argch D and, when ¢ — 0

R~%\/D2-1¢
ct~§a5\/D2—1¢2

S0

We arrive at Weinberg’s model again. For the same reasons as in 4.3.3.2.
above, when ¢t — oo, we have the analogue of Milne’s universe.

4.4.4. Calculation of the constant A/B?

Asin 4.3.4. above, we must have A/B? = 2rG/c?. But here, by hypothesis

A 2nCG

-B—2<—367 (A)O)

There is therefore a contradiction and the case A > 0 is to be rejected.
4.4.5. Conclusion

In this study of the hyperbolic model, we have shown that the cases
A =0 and A < 0 are to be rejected, because they are incompatible with
the observational data. The case A > 0 isn’t acceptable because we find
a value of the constant A/B? which is in contradiction with the initial
hypothesis. We can therefore conclude that the hyperbolic model has to
be eliminated.

5. OVERALL CONCLUSION

In this article we have studied homogeneous and isotropic universes
which satisfy the Robertson-Walker metric with the supplementary con-
dition of a zero cosmological constant. These are models where matter
with zero pressure and radiation are present but don’t interact with each
other. We have shown that the elliptic and hyperbolic models aren’t ac-
ceptable. We can deduce therefore that, with our hypothesis, the universe
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is parabolic and infinite. The study of this parabolic model has shown
that at the present time we are very close to an Einstein-de Sitter model
and at this time can’t distinguish between the two. Several years ago,
Dabrowski and Stelmach [6] studied open models similar to ours but with
a cosmological constant (the closed case was studied by Coquereaux and
Grossmann in Ref. 7). For the particular case studied here (A = 0), we
can confirm their conclusion that the radiation pressure introduces no es-
sential distrinction with the Friedmann-Lemaitre models (where p, = 0).
These differences have a solely quantitative character. So we obtain here,
with A = 0, open infinite models without inflection point, as in Fried-
mann’s universe. But the quantitative differences seem essential if we try
to establish the curvature of the universe, which is indeterminate in the
Friedmann models. It is fixed here because the parabolic case is the best
choice, among these models, allowed by the observational data.
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