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A Parabolic Matter-Radiation Model of the Universe 

Jacques Randon 1 

Received Ju~e i9, 1989 

A s tudy of mat ter-radiat ion universes under  certain supplementary con- 
ditions specified in the introduction shows us that  the only model of this 
class compatible with observations is a parabolic universe which at the 
present t ime is almost  the same as an  Einstein-de Sitter model. The 
numerical  values obtained for Hubble's constant,  the age of the universe 
and  the ma t t e r  density at  the present t ime are quite acceptable. We can 
also obtain some limits for the mass  of neutrinos. The advantage of this 
parabolic model is tha t  it gives the same results as the t 2/3 model at the 
present t ime and what  is more could be used in s tudying problems of the 
formation of galaxies, alger the recombination epoch, where ma t t e r  and 
radiat ion have comparable importance.  

1. INTRODUCTION 

We are going to s tudy some models of universes which present both  mat te r  
(density Pro, pressure p m =  0) and radiation characterised by a density Pr 
and a pressure Pr = (c2 /3)Pr  under the form of a cosmological radiation. 
We suppose tha t  there is no interaction between these two constituents. 
Therefore, before the recombination time, when mat te r  and radiation in- 
teract,  it is only a crude approximation.  We use a Robertson-Walker metric 
and a zero cosmological constant. We have therefore the two relationships 

Pr R 4 = A 

pm R a = B .  
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A and B are constants and R is the "radius" of the universe. With A = 0, 
P = P r ,  P ---- Pr "{- Pro, the equations of cosmologies could be written 

{8~rG ---~--p,,~ R a - 2kc2R.{_ 2RR 2 -4- 2R2R = 83G B 

--~--Pr8rG R4 = _kc2 R2 _ R2 ]~ 2 _ 2Ra ~ = __83G A. 

Restricting ourselves to an expansion, the resolution of these equations 
gives us 

1 f RdR (1) ' =  

2. PARABOZIC MODEZ: k = 0 

2.1. P a r a m e t r i c  r e p r e s e n t a t i o n  
With our notation, we obtain in this case the equation given by Jacobs in 
1967 [1]: 

B 2 1 ~ _ _ t = 2 ( B R +  A)Zl2_2A(BR+ A)ll2 + 4  3/2 3 A �9 

The integration constant is determined by the condition R = 0 when t = 0. 
We are going to solve this equation. Let X = (BR+ A) 112, we have 

X 3 - 3AX + 2A 312 - B2Vr~--~t = O. 

This is a third degree equation whose discriminant is 

A=1627rGB4~ t ~ B~ . 

(i) - Where 

A<O O < t < t l - v o ~ t  ~ B 2 ) 

there are three real solutions which are as follows (restricting oneself to 
the case where R and t increase simultaneously and where R is positive): 
1st representation: 

= -~ g - i) 

t = i<(1 - ~ o s  o) o ~ [2,~, a,~] 
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2 n d  r e p r e s e n t a t i o n :  

R = ~  4cos 2 3 1 

t = K(1 - c o s  0) O E [4z, 5z] 

3 r d  r e p r e s e n t a t i o n :  

R = - g  4cos 2 3 

t = K(1 - cos O) 0 E [0, ~r] 

where 
2 A 3/2 

K =  
B 2" 

These three solutions are identical and differ only by the choice of the 
parameter 0. 

(ii) - Where A = 0, we have a borderline case. 

(iii) - Where A > 0 (t > t l )  there is only one real solution, which is: 
4 t h  r e p r e s e n t a t i o n :  

4ch 20 - 1 

t = K(1 + oh0) 0 > 0. 

K has the same expression as previously. The s tudy shows that  the cos 0 
and the ch0 representations are perfectly identical at  the point R = 3A/B 
and t = t l .  

To sum up, the group of parametric equations which describe the total  
evolution of this model is 

t = K(1 - cos 0) 0 E [2~r, 37r] 

where R < 3A/B and t < t l  and 

ch~ 3 - 1 

t = K(1 + chO) 0 >__ O. 
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where R >_ 3A /B  and t >_ t l .  The expression of the K constant is 

g - -  m 

2.2 A s y m p t o t i c  b e h a v i o u r  
2.2.1. For t --* 0 

2 A 312 

B 2" 

By expanding to the first order the trigonometric functions (and 
choosing the third representation), we have 

2 A 0 t K02  

given that  

. _ t l l  2. 

We can see again therefore, with the singularity vicinity, Weinberg's model 
of pure radiation. 
2.2.2. Where t --+ oo 

Then with the fourth representation, 

given that  

A exp(20/3) t ,,, A R ~ -~ -~ exp 0 

R = (6~rGB)l/3t 2/3 

and we come across the Einstein-de Sitter model again. 
2.3. B o n d s  w i t h  o b s e r v a t i o n s  
2.3.1. Calculation of mat ter  density at the present time (pmo) 

The density of actual radiation (where :Fro ~ 2.7K) is 

pro -- 5 x 10-34g cm -3. 

The hinge instant where we ca~ go from a parametric representation for 
cos 0 to the one for ch 0 is 

4 A 312 4 (ProR4) 3/2 4 pr ill2 

t l -  v~6-Ud B2 - ~ (pmoR~)2 - ~ pmo ~ 

Choosing 10-29g cm -3 > prno >_ 10-31g cm -3 we have 1.3 x 104 years 
< t l  < 1.3 x 10 s years. The present time must therefore be studied with 
the aid of the fourth representation in ch0. Now 

A B 
p ,  = ~ -~  and  p ~  = ~-~. 



Parabolic Matter-Radiation Model of the Universe 775 

Therefore 

and 

Pmo B 
P,o = -~ Ro = 4ch20o/3 - 1 

to = K(1 + ch0o). 

Table I thus shows that  if we want 1.7 • 101~ years _< to < 2.5 x 10 I~ years, 
plausible values for the age of the universe, we could have 

Pmo " (I to 3) x lO-3~ em -a. 

2.3.2. Study of the critical point 
If  we choose the extreme values 101~ years < to < 2.7 x 101~ years, 

we :find with the Pmo values of Table I 

t l  -'~ 10 4 years to 10 6 years. 

In order to study the critical point (index c), that  is to say the point where 
matter  and radiation densities are equal, it is therefore necessary to use 
the first representation and we obtain 

Pm----2r = 4 cos 2 0r - 1 = 1 =~ 0~ = 495 ~ 
Pro 

a unique value included in the interval [2~-, 3r]. 
With 101~ years < to < 2.7 • 101~ years we have, using Table I 

2 x  104 years < t o <  106 years 

8 x 10-21g cm -a  < Pc _< 3 x 10-17g cm -3 

5500K _< Tr < 44,000K. 

This shows that  the recombination of the matter  (at a temperature ap- 
proximating to 3000K) will definitely happen but only in the dominant 
matter  phase. 
2.3.3. Expression of Hubble's constant. 

At the present time, we find (fourth representation) 

H = /~ 4 V ~ ( ~  B~ ch0/3 
-R -- 5 A3/2 ( 4 c h 3 - ~ -  1)2" 



-4
 

-4
 

T
ab

le
 1

 

0o
(r

d)
 

11
 

11
.5

 
12

 
12

.5
 

13
 

13
.5

 
14

 
14

.5
 

15
 

p,
~o

(g
cm

 -3
) 

7.
7x

10
 -3

1 
1.

1x
10

 -3
o 

1.
5x

10
 -3

o 
2.

1x
10

 -3
o 

2.
9x

10
 -3

o 
4.

1x
10

 -3
o 

5.
7x

10
 -3

o 
7.

9x
10

 -3
o 

1.
1x

10
 -2

9 

to
(y

rs
.)

 
3.

4x
10

1~
 

2.
7x

10
1~

 
2.

3x
10

1~
 

2.
0x

10
1~

 
1.

7x
10

1~
 

1.
4x

10
1~

 
1-

2x
10

1~
 

1.
0x

l0
1~

 
8-

5x
10

9 

H
o 

20
 

24
 

28
.5

 
34

 
39

 
48

 
56

 
65

 
76

 
(k

m
s-

 1M
pc

 -1
 ) 

N
ot

e 
to

 T
ab

le
 I

: 
W

e 
ca

n 
w

ri
te

, 
us

in
g 

th
e 

fo
ur

th
 r

ep
re

se
nt

at
io

n,
 t

he
 p

re
se

nt
 v

al
ue

s 
of

 t
he

 m
at

te
r 

de
ns

it
y,

 t
he

 
ag

e 
of

 t
he

 u
ni

ve
rs

e 
an

d 
H

ub
bl

e'
s 

co
ns

ta
nt

 a
s 

a 
fu

nc
ti

on
 o

f 
th

e 
pa

ra
m

et
er

 0
0.

 T
he

se
 v

al
ue

s 
ar

e 
ve

ry
 c

lo
se

 t
o 

th
e 

va
lu

es
 o

f 
th

e 
E

in
st

ei
n-

de
 S

it
te

r 
m

od
el

. 
W

e 
se

e 
in

 p
ar

ti
cu

la
r 

th
at

 i
f 

1.
7x

10
 l~

 y
ea

rs
 <

 t
o 

< 
2.

7x
10

1~
 y

ea
rs

, 
th

en
 P

m
o

 
"~

 (
1 

to
 3

)1
0-

S
~

 
cm

 -3
. 

H
en

ce
 t

he
 p

re
se

nc
e 

of
 a

 m
is

si
ng

 m
as

s 
is

 o
f 

li
tt

le
 i

m
po

rt
an

ce
. 



P a r a b o l i c  M a t t e r - R a d i a t i o n  M o d e l  of  t h e  U n i v e r s e  777 

We give the corresponding numerical values of Ho in Table I. 
2.3.4. Deceleration parameter 

After simplifying, we obtain 

q - 
1 1 

RH ~ - 2 ~- 8ch20/3 

Whatever value of to is chosen in acceptable limits one thus finds 

qo # 1/2. 

F i r s t  r e m a r k :  

The equations of cosmologies written in the form 

2 ~ = 2 H 2 ( 1 - q ) > O  
R 

2 ~ = H~(2q - 1) > 0 
R 

{8~G R2 ---U p~ = 2 ~ +  

87rG /~2 
- ~ - -  p, R 2 

show us that q 611/2, 1[. 
S e c o n d  r e m a r k :  
With the previous expressions of H and q, we can obtain the following 
relationship: 

H =  A3I 2 ( l - q ) 2  (2) 

2.3.5. Mattig's relationship 
In Robertson Walker models with k = 0 [2], we have 

~ i  ~ cdt 
: n (~)  

In our case, with the fourth representation, we obtain 

A 112 
r = c V 7-d ~ (oh Co/3 - ch 0J3).  

However, we can write 

A(4ch20/3  1) A 1 - q  R = ~  - : 2 ~  ~-__~ 
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and, with Re = Ro/(1 + z), we arrive at 

f - - ~  Al/~ l ( l _  [ (2qo-1)z  + l]l /2 
(2qo z j" 

With the expression (2) we have 

f r o  Ho(1-- qo) 1 -  l q- z ' 

which is a generalization of Mattig's relationships [3] for this model of the 
universe. 
P a r t l e u l a r  ease:  qo = 1/2 
Then  1] 

f r o  = ~ o  1 (l_l_z)l/2 , 

an expression identical to Mattig's relationship in the Einstein-de Sitter 
model. 
2.3.6. Limits for the mass of neutrinos 

If it is true that  1.7 x 10 l~ years < to <_ 2.7 x 101~ years then it is 
necessary that  (see Table I): 

10-3~ cm -3 <__ Pmo _< 3 x 10-3~ cm -3. 

But the present baryonic density is 

Pso <_ 5 x 10-31g cm -s .  

There is a missing mass. Let us suppose that  this mass is made up entirely 
of neutrinos. We have 

Pmo = PBo + Pro 

where Puo is the present density of the neutrinos. We have [4] 

Pro = 140E(mv) 

with E ( mr )  = rare + m r ,  + mr, .  
We suppose that  there are three kinds of neutrinos, ue, v ,  and yr.  If 

we choose the upper limit pBo = 5 x 10-31g cm -3 we get, with the above 
values of Pmo, 

5 x 10-31g cm -3 < Pro < 2.5 x lO-3~ cm -z  

and 2e.V. < E(mv) < 10e.V. 
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If we consider then that PBo = 10-31g cm -3 we have 

9 x I0-31g cm -a < Pvo <_ 2.9 x 10-3~ cm -3 

and 3.6e.V. _< E(mv) _< ll.5e.V. 

Let us now suppose that these three kinds of neutrinos have the same mass, 
rh~, included in the interval 0.6e.V. < my < 4e.V.. We can therefore only 
have neutrinos of small mass. 
2.3.7. Conclusion 

The model studied here starts off with a t 1/2 evolution (pure radiation 
model) in order to finish with a t 2/3 model (universe of pure matter). The 
calculations show that the deceleration parameter at the present time is 
extremely near 1/2; the Mattig relationship is therefore identical to the 
relationship which applies in the case of the Einstein-de Sitter universe 
and these two models can't therefore be distinguished from each other by 
observations based in this relationship. This is understandable because at 
the present time the pressure term is negligible in relation to the density 
term (Po "~ 10-4poc2). 

On the other hand, this model could be useful in studies after the 
critical point where matter and radiation are almost equally important and 
particularly in the study of the phenomenon of increase of perturbations 
of densities and of the problem of the formation of galaxies. What is more, 
we can set limits for the mass of possible neutrinos. 

3. ELLIPTIC MODEL k = +1  

3.1.  P a r a m e t r i c  r e p r e s e n t a t i o n  
The resolution of the equations of cosmologies gives here 

ct = 87rG 
+ --~-c2(BR + A) 

4~rG3c -'-7- [(1 t o c / z ~ t i )  ( A / ~ - ) I  -(3c2/4~rGB)R )l/2j] - B Arcsin +-7z-2 ,-72--~, ~ + cte 

which is exactly the same expression as that obtained by Cohen [5]. When 
/~ = 0 and t = O, we can say 

i 87rG "BR - t o )  = - - m  + -gj-c2 + A )  

4~rG B Arecos[ (3c2/4rrGB) R - 1  ] 
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where 

[( + ~ B Arcco~ - 1 + - -  ~-~1  j 
21rG 

Under this form we can find again Friedmann's elliptic model if we take 
A - prR 4 = 0 (absence of radiation). By comparing with the equations of 
Friedmann's model we can take as our parametric representation 

1 cosw) R =  a(1- -  

ct = a(w -- -~ sin w) + ~/1 -- D 2 - a ArccosD 

where w E [ArccosD, ~r], both  R and t increase simultaneously, and /~ is 
positive. The constant D satisfies the relationship 

3c 2 A ) - 1 / 2  
D =  1 +  2r---G B 2 < 1 .  

We have also 
4~rG 

a- - -~-c2B 

which is the scale factor of Priedmann's elliptic and hyperbolic models, 
and 

1 -  D 2 3c 2 A 

D ~ 2~rG B 2" 

3.2. A s y m p t o t i c  b e h a v i o u r  
With the new variable r = w - ArccosD, we will have (when r ~ 0) 

a 
R ~  -~ V/-1- D2 r 

a 
ct .~ - ~  V ~  - 92 r 

given that  

R - -  (323GA)114tl]2 

which is the t 112 Weinberg model expression. 
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3.3. Calcu la t ion  o f  t h e  cons tant  A / B  ~ 
In the parabolic case we have shown (2.2.1 above) that the expansions 

restricted to the first order when one approaches the singularity are 

2 A 

K ~ 2 A 3/~  =yo; 

They allow Weinberg's model to be rediscovered. In the elliptical case, we 
have 

R =  -~ v ~ -  D2 r 

a 1 - D 2 3c 2 A 
t = : 2 - ~ V ~ - D  2 r  D ~ - 2 r G B  2" 

They can equally be said to allow the same model of Weinberg in t 1/~ to 
be seen again. The parametric representations in these two cases must 
therefore be identical, and so we have 

- 2~rG 2 A a x / I _ D 2 =  A=_~ 
v ~ B - D  e 2 

and 
K A 2~rG a 

V I . - D  2 =~ = 
2 - 2cD -if5 c 2 

Thus, the k -- 0 and k -- +1 models converge to the same Weinberg's 
model if we have 

A 2zrG 
B 2 -  c 2 

- -  - 4.7 x 10-2Scm g-1.  

But 

A ProRo  4 Pro 

B-Z = ip oR2)  ' = (p oRo)2 

With Pro ~ 5 • I0 -34 g cm -3 and P,no "" 10 -31 g c m  -3, this leads us to 
derive Ro ~ 102Scm, which is plausible. 
3.4. N e w  s t u d y  o f  th i s  m o d e l  

With the value above 
A 2~rG 

B 2 -  c 2 
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we can continue our s tudy of the parametr ic  representation. We obtain 

3c 2 A ) -1 /2  1 
D =  l + 2 ~ r G  ~ .  2 

and 

41rG B(1 - 2 cosw) 

4xG B(w - (~r/3) + v ~  - 2sinw) ; c t =  c 

So we obtain subsequently 

_ d R _  dR dW _ 2c sinw 
dt dw dt 1 - 2 cos w 

3C 3 sinw 
H -  

R 2 r G B  (1 - 2cosw) 2 

= d R _  d/~ dw _ 3c 4 cos w - 2  

dt dw dt 2 r G B  (1 - 2cosw) 3 

q -- k 2 - cos w 

R H  2 2 sin 2 w 
; q e l l ,  oo[. 

3.5. Conclusion 
The following relationships hold true: 

p r R  4 = A  and pmR 3 = B .  

Therefore 
pm B 4zcG B 2 
p - - - ~ - = ~ R -  3c 2 A ( 1 - 2 c o s w )  

and, with the above value of A / B  2, we obtain for the present time 

10-31 
p,no = (1-2cOSWo)  ~ 200, 
Pro 5 x 10 -34 - 

which is impossible. The greatest  possible value of this expression is 

p . .  _ 2(1+2)=2 
Pro 3 

which is not consistent with the observations. Thus this elliptic model 
must  be rejected. 
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4. H Y P E R B O L I C  MODEL:  k = - 1  

4 .1 .  G e n e r a l  i n f o r m a t i o n  
Cohen [5] discovered a logarithmic solution of eq. (1) where k = - 1 .  

Here we have writ ten it in another  form as (k = - 1 )  

87rG 8~rG 
X = R~+ --~-ff-c2BR+ -3-~-c~A. 

The discriminant of this second degree trinomial is 

1 2 ag2 �9 

We are going to move on to the integration of the relationship (1) by 
distinguishing between the three cases A = 0, A < 0 and A > 0. 
4.2. W h e n  A = 0; (A/B 2) = (2rG/3c2). 

We thus obtain 

4~rGB ln ( l  + 3c2 ) 
ct = R -  3e--- ~ -  4--~-~ R , 

choosing R = 0 when t = 0, which determines the constant of integration. 
4.2.1. Asymptot ic  behaviour 

The expansion of the logarithm te rm when R --~ 0 gives 

( 8 aB ll tl/2" n = 

I f  we want to find Weinberg's model again 

R (323GA)1/4 = - tl/2, 

the following must  be true: 

A 27rG 
B2 - 3c 2 , 

which is compatible with our initial hypothesis. This model is therefore 
consistent with the t 1/2 model near the singularity. 

For t ~ c~, we have the analogue of Milne's universe: R = ct. 
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4.2.2. Study of this model 
Let Y -- 1 q- (3c2/4~rGB)R >_ 1; when R --+ 0, Y --+ 1. We have 

4~rG B ( Y  ct = ~ - l n Y -  1), 

and therefore 

and 

In the same way 

R_ dR dR dY Y 
- - c _ _ - : - - - =  > 0 

dt dY dt Y - I  

i~ 3c 3 Y 
H ~ _ _ - - -  

R 4~rGB (Y - 1) 2. 

j~ dR dR dY 3c 4 Y 
- - - -  - - - < 0  

dt dY  dt 4~rGB (Y - 1) 3 

then 
/i 1 

q = -  R H  2 -- y ' 

4.2.3. Comparison with the observations 
We have 

q E]I, 0[. 

A pro 27rG 
~_ 1.6 • 10-2Scm g - '  

B 2 pmo2Ro 2 -  3c 2 

with Pro -- 5 x 10-34g cm -3 and pmo ~- 10-31g cm -3,  and we obtain 
Ro ,,~ 102s, cm, which is suitable. As one must  admit  tha t  Ho < 100km s -1 
M p c -  1, the calculation shows us tha t  we should get Pmo < 2 x 10-31g cm -3 
which is incompatible with observational da ta  and the universally admit ted  
existence of dark mat te r  (if we impose to > 1.7 x 101~ years, we should 
have p,,o <_ 10-31g cm-3) .  The  case A = 0 must  therefore be rejected. 
4 . 3 . W h e n  A < 0; ( A / B  2) > (2~rG/3c2). 
4.3.1. General  considerations 

When we integrate (1) we get 

i 8~rG (BR  c (~ - to )  = R 2 + ~ + A) 

4.G BArgsh [ 1+ (3c~/4~GB)R ] 
3c2 i ( ( 3 ~ 2 - ] ~  (~--7~ :'~)1 / ] 
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and 
1 /87rG"' 47rG , , ( 3 c  ~ A "~ ' /~ 

to = --c V ~ A + ~ BArgsn \ 2 a - a  B 2 1 ] 

4,3.2.Parametric representation 
This t ime 

with w E [Argsh D, cr so that  R and t increase simultaneously. 
constant D is written thus: 

( 3c 2_ A ) - ' / ~  
D = \27rG B 2 1 

and also 
4zG 

a=-5-~c2B 
1 + D 2 3c 2 A 

D 2 2~rG B 2" 

4.3.3. Asymptotic behaviour 
4.3.3.1. When t ~ 0 

We change the variable r = w - Argsh D; when r -~ 0, then 

a 

a r 
c t  ~ + I 

SO 

which is the expression for Weinberg's model. 
4,3.3.2. For t -+ c~ 
Then 

{ 
g ew 

The 
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so R = ct, which is identical to the expression valid for a Milne universe. 
4.3.4. Calculation of the constant A / B  2 

We proceed in the same way as for the elliptic model (3.3 above). 
For the limited developments near the singularity, the constants of the 
parametric representations must be equal when k = 0 and k = -1 .  This 
time 

A 2~rG 
B 2 c 2 

So in order to make sure that  the parabolic and hyperbolic models (where 
A < 0) converge as they approach the same Weinbrg model, it is necessary 
that  

A 2~G 
B 2 c 2 

which agrees with our initial hypothesis. 
4.3.5. New study of this model 

With the above value of A / B  2, we get 

( .3c 2 A ~ - 1 / 2  1 
D = \ 2 ~ G  B 2 1] = ~ .  

Then 
R = 4 ~  B(y~Shw - 1) 

3c 

ct = 4 3 ~  B[ (v~Chw - w + Argsh(1/v~) - vr3] 

with w e Argsh[ (1/yr2), oo[. Subsequently we have 

I t  = d R  _ d R  d~ = c V ~  Ch w 
dt dw dt v~Shw - 1 

k 3c3v~ Ch 
H -  

R - 4~rGB (Vr2Shw- 1) 2 

/ =dk_dRd  3V c 4 Sh +v  
dt dw dt 4 r G B  ( V ~ S h w -  1) a 

/~ 1 Shw + ~/2 
R H  2 = ~ C h2 w , q E]t, 0[. 

q _ 

4.3.6. Comparison with the observations 
We have 

Pm B 4 r G  B 2 
= ~ R = ~ - -  ( x / 2 S h  w - 1) .  

p~ 3c 2 A 
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So when 
A P~o 2~G g-1 
B -'5 = p,~o2Ro --------~ = 7 = 4.7 x 10-2Scm 

we obtain Ro ~ 10=Scm, if Pmo "~ 10-Zig cm -3. As before, the calculation 
demonstrates that to have Ho < 100kin s- lMpc -1, it is necessary that 
Pmo < 10-alg cm -a, which contradicts the observations (if we impose 
~o > 1.7 x 1010 years we should have pmo < 6 x 10-3~g cm-a), The case 

A < 0  > --~-= ] 

must therefore be rejected as well. 
4.4. W h e n  A > 0; (A /B  2) < (2~rG/3c 2) 
4.4.1o General information 

By integrating eq. (1), we get 

~(* - to) = 2 +  

1 + (3c2/4rcGB)R ] 
4rrGac 2 BArgch (1 - ( 3 c 2 ~ ) v 2 j  

with 

1 A ( A 
to = - e  V -3-7g-c2 + --~-ca BArgch, \1 2~rG B 2 J " 

which with A = prR 4 "- 0 amounts to Friedmann's hyperbolic model. 
4.3.2.Parametric representation 

By comparison with Friedmann's hyperbolic model, we choose 

c t = a ( 1 S h w - W )  - D ~ - 2 - 1 + a A r g c h D  

with w E [Argch D, c~[ so that R _> 0 and R and t cross simultaneously. 
The constant D must satisfy the relationship: 

3c 2 A t -1 /2  
D =  1 2~rGB-~ 



7 8 8  R a n d o n  

We can jus t  as well have 

4a-G B 
a = ---~-c2 

D 2 - 1 3c 2 A 

D 2 - 27rG B 2" 

4.3.3. Asymptot ic  behaviour 
We choose r - w - Argch D and, when r ~ 0 

a { R~ 5 vrbz- 1r 
a 

~ 1 r  

s o  

We arrive at Weinberg's model again. For the same reasons as in 4.3.3.2. 
above, when t --* ~x~, we have the analogue of Milne's universe. 
4.4.4. Calculation of the constant A / B  2 
As in 4.3.4. above, we must  have A ] B  2 = 27rG/c 2. But here, by hypothesis 

A 27rG 
B-- 5 < 3c--- T- (A > 0). 

There  is therefore a contradiction and the case A > 0 is to be rejected. 
4.4.5. Conclusion 

In this s tudy of the hyperbolic model, we have shown tha t  the cases 
A = 0 and A < 0 are to be rejected, because they are incompatible with 
the observational data.  The  case A > 0 isn' t  acceptable because we find 
a value of the constant A / B  2 which is in contradiction with the initial 
hypothesis.  We can therefore conclude tha t  the hyperbolic model has to 
be eliminated. 

5. OVERALL CONCLUSION 

In this article we have studied homogeneous and isotropic universes 
which satisfy the Robertson-Walker metric with the supplementary con- 
dition of a zero cosmological constant.  These are models where mat te r  
with zero pressure and radiation are present but  don ' t  interact with each 
other. We have shown tha t  the elliptic and hyperbolic models aren ' t  ac- 
ceptable. We can deduce therefore that ,  with our hypothesis, the universe 
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is parabolic and infinite. The study of this parabolic model has shown 
that  at the present time we are very close to an Einstein-de Sitter model 
and at this time can't  distinguish between the two. Several years ago, 
Dabrowski and Stelmach [6] studied open models similar to ours but  with 
a cosmological constant (the closed case was studied by Coquereaux and 
Grossmann in Ref. 7). For the particular case studied here (A -- 0), we 
can confirm their conclusion that  the radiation pressure introduces no es- 
sential distrinction with the Friedmann-Lemaitre models (where p~ -- 0). 
These differences have a solely quantitative character. So we obtain here, 
with A --- 0, open infinite models without inflection point, as in Fried- 
mann's universe. But the quantitative differences seem essential if we t ry  
to establish the curvature of the universe, which is indeterminate in the 
Friedmann models  It is fixed here because the parabolic case is the best 
choice, among these models, allowed by the observational data. 
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