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1. Introduction 

In this paper we extend the results of Taqqu (1975) and establish the functional 
law of the iterated logarithm for interpolated sums of non-Gaussian random 
variables G(Xi), i>l, that exhibit a long range dependence. 

G is such that G(XI) has mean zero and sufficiently high moments, and 
{Xi, i> l}  is a stationary normalized strongly correlated Gaussian sequence: 
the correlations r(k)=EX 1 XI+ k of {Xi, i> 1} decrease to zero like k -D L(k), as 
k-+ 0% where L is a slowly varying function. The exponent D>0 is chosen 

sufficiently small to ensure that V a r ( i  G(Xi) ) diverges to infinity, as N-+ o% 
i= 

at a faster rate than N times a slowly varying function. The sequence {G(X~), i> 1} 
is too strongly dependent for Strassen's functional law of the iterated logarithm 
to apply. We will show that for a large class of G's, the expansion of the function G 
in Hermite polynomials leads to the correct law. 

We also derive some properties of the self-similar processes associated with 
the Hermite polynomials; in particular we obtain explicit formulas for the 
moments of their finite-dimensional distributions. These self-similar processes 
are related to processes studied by Sinai (1976) and Dobrushin (1977). They may 
also be of interest in physics, in the context of the renormalization group approach 
to critical phenomena. See Ma (1976), Fisher (1974) and Wilson and Kogut (1974) 
for a description of that approach, and see Jona-Lasinio (1977) for example, for 
an indication of how limit theorems in probability may be relevant to the re- 
normalization group theory. 

The basic definitions and theorems are stated in the following section. 

2. Definitions and Statement of the Main Results 

Definition2.1. Let � 8 9  1. A self-similar process with parameter H is any real 
separable process {Z(t), t>0} with stationary increments, satisfying Z(0)=0, 
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and invariant (in law) under the transformations (self-similarity) 

Z ( t ) - , c - U  Z(ct), c>O. 

The sequence { W i = Z ( i ) - Z ( i - 1 ) ,  i> 1} is the self-similar increment process 
with parameter H. It is stationary and invariant (in law) under the transformations 
(block renormalization) 

( i+I)N-1 
Wi--+N -H s Wj, N =  1,2, ..., i>  1. 

j=iN 

We are interested here in self-similar processes that have finite variances 
(this restriction excludes the stable processes). 

The only Gaussian self-similar process is (up to a scale factor) the fractional 
Brownian motion (FBM) Bn(t ). (See Mandelbrot and Van Ness (1968).) Bn(t ) 
is a continuous Gaussian process with stationary increments satisfying B n (0)= 0, 
EBn(t)=O and EBb(t) = t 2I-/. Its covariance kernel is 

Fn(s, t) = EB~I(S) Bn(t) =�89 {s 2n + t 2n - [ s  - t[2n}. 

Therefore, the only self-similar Gaussian increment process is (up to a scale 
factor) { Wi = B~ ( i ) -  B ~ ( i -  1), i>  1}. Its correlations are 

r(k)=EW~ Wi+k= �89 {[k+ 112H+ [ k -  1 [2H_2 Ikl2/t}, 

and they satisfy r ( k ) ~ H ( 2 H -  1) k 2u-2 as k ~ Go. (ak~b k means ak/bk~ 1 as 
k ~ Go.) The long range dependence of { W~} is expressed through this asymptotic 
power law for r(k), and through the value of the exponent - 1 < 2 H -  2 < 0. 

Introduce now the following class (m) (D, L( '))  of random sequences. 

Definition 2.2. For any positive integer m, {Xi, i> 1}E(m)(D, L(.)) if {Xi, i> 1} 
is a mean zero, unit variance, stationary Gaussian sequence satisfying 

EX i Xi+k ~ k -D L(k) 

1 
as k ~  ~ ,  for some given 0 < D < - -  and some given slowly varying function at 
infinity L(s), s >= O. m 

Note that {Xi, i>=l } is the self-similar Oaussian increment process with 
D 

parameter H = 1 - ~-  whenever 0 < D < 1, L(s) = H(2 H - 1) and r (k) = �89 {]k + 1[ 2 n 

+]k- l12n-2[kI2~} .  
The random sequences of interest here are {G(Xi) , i>l  } where {Xi}s(m ) 

(D, L(.)) for some m>  1 and where G is a function that satisfies EG 2(X) < oo. 
(Here and throughout the paper, X denotes an N(0, 1) random variable.) Because 
EG 2 (X)< oo, the function G(x) may be expanded in terms of the Hermite poly- 
nomials 

~_L d k ~ 
Hk(X)=(--1)ke 2 ~xke - ~ ,  k = 0 , 1 , 2 , . . .  



Law of the Iterated Logari thm for Sums of Non-Linear Functions of Gaussian Variables 205 

J(k) . , ,  
and the series ~ .  ukix), with J(k)= EG(X) I-ik(X), k > O, converges to G(x) 

k=0 

e W 
in L 2 IR ~, V ~  dx . The Hermite polynomials H k (x) satisfy EH k (X) Hq (X) = k! (Skq. 

The first few are Ho(x)= 1, Hl(X)=X, H2(x)=x 2 -  1, Hs(x)=x3-3x .  Obviously 
oo 

EG2(X) = • j2(k) 
k=o k - ~ . ~ .  <~169 

The following notion plays a central role throughout the paper. 

Definition 2.3. The Hermite rank of G is 

m =  rain (J(k)+O). 
k=0,1 ,2  .... 

For example, all odd powers have Hermite rank 1. After subtracting their 
mean (J(O)-EG(X)), all even powers have Hermite rank2. H m has obviously 
Hermite rank m. 

Introduce now the following classes of functions. 

Definition 2.4. 

~={G: EG(X)=0, EG2(X)<oo}, 

~,~ = {G: Gel#, G has Hermite rank m}. 

Let fY~ ={G-~0}. Note that f#=f#~ u ~ l  wrY2 w ... with fr ~ f#;=~J if i+j. fr =lJ 
because EG(X) H o (X) = EG(X) = O. 

Let m>  1 and {Xi} e(m ) (D, L(-)). Then for any Germ 

Var G(X~) (g) 
i_ m! ( 1 - m D ) ( 2 - m D )  

as N ~ oo. This is a consequence of Lemma 3.1 and Theorem 3.1 of Taqqu (1975) 
and it provides the normalization factor d N that will be used in the theorems 
below. It also indicates that the non-Gaussian sequence {G(X~), i>  1} exhibits a 

long range dependence of a type similar to that of {Xi, i>  1}. (If D were greater 
/ 

    ))wou dbea ymptot ca. pro.tiona. to )' 
Taqqu (1975) studied the weak convergence of 

1_ [Nt] 
G(Xi), 0 < t < l ,  

\1/2 i=1 
(Var ~ G(Xi) ) 

i=1 

and showed that to determine the limit, one may replace G by Hm, the m 'h Hermite 
polynomial ((weak) reduction theorem). When r e= l ,  the limit is Bn(t) with 

D 
H =  1 - ~ - .  When m=2,  it is (up to a scale factor) the non-Gaussian Rosenblatt 

process Rv(t) defined in Taqqu (1975). These results indicate that the Hermite 
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rank of G is the only attribute of {G(Xi), i>  l } that is not lost through block re- 
normalization with N--+ oo, and it is that attribute that affects the (weak) limit. 

In this paper, we investigate first the strong (i.e.a.s.) behavior of interpolated 
sums of G(Xi), adequately normalized. The following strong reduction theorem 
is an important tool. 

Theorem 1 (Strong reduction theorem). Let m>=l, O < D <  ~1 and let p be the 
m 

smallest even integer satisfying p > 2 max ' 1 - m D ' - - 

~(m) (D, L(" )) and let d~ ~ N roD+ 2 L"(N) as N ~ oo. 
Then, for any G~f#,, satisfying EGP(X)< o% 

P { lNi~m~176 ~N l<mka<=XN i~=l (G(Xl)--~). Hm(Xi))=0}=1. 
A major part of the paper is devoted to the proof of this strong reduction 

theorem. 
Now, for any sequence { Y~, i>  1 } of random variables, define the corresponding 

sequence of polygonal interpolation functions {ZN(t), 0 < t < 1, N = 1, 2, ...} as 

ZN(0) = 0, 
�9 [ N t l  

ZN(t)= ~, Yi+ Y[Nq+I(Nt-[Nt])  , 0 < t < l .  

The strong reduction theorem implies that if a functional law of the iterated loga- 
rithm holds for the polygonal interpolation functions corresponding to 
{H,,(X~), i>  1}, then a law of the same type holds for polygonal interpolation 
functions corresponding to { G(Xi), i>  1 }, for any G e fgm that satisfies the relatively 
minor growth restriction 

+ co x 2 

GP(x) e -Z-dx  < oo. --O3 
Consider the case m=  1. In the appendix, we establish a functional law of 

the iterated logarithm for polygonal interpolation functions corresponding to 
the Gaussian sequence {Xi, i>= 1}. Since HI(Xi)= Xi, the strong reduction theorem 
may be applied to the case m = 1, with the following result. 

Let C[O, 1] be the space of continuous functions on [0, 1], let 

d(x ,y)= sup Ix(t)-y(t)L, x , y ~ C [ O , l l ,  
0_<t~l 

and let d(x, K) =  inf d(x, y) be the distance to xe  C[0, 1] of a subset K of C[0, 1]. 
yeK 

If {xN, N>_-3} is a sequence of elements of C[0, 1], let C{xN} denote the set of 
their limit points (cluster set). 

Theorem 2 (m = 1). Suppose 0 < D <  1 and let p be the smallest even integer satisfying 

(-2 ' t  p > 2 m a x  ' I - D  " Assume {Xi}~(1)(D,L( ' ) )  where L is a slowly varying 
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function that satisfies 

inf L(s)>O and supL(s)<oo 
[0, so] [0, so] 

for all s o > O. 
Fix Gefr satisfying EGP(X)< ~ .  Let J (1 )=EXG(X)  and let {Zu(t)} be the 

sequence of polygonal interpolation functions corresponding to {G(Xi) , i>_ 1}. 
Then 

lira d ({.  ZN(t) ] ) 
N~oo 232(1) N 2 H L ( N ) l o g l o g N ] I / ~ , K  H =0 a.s. 

\ \H(2 H - 1) 

( (- 2J2(1) Zu(t) 1/2]=KHa.S. C 
N2HL(N) log log N) 

( \ H(2 H - 1) 

D 
where H =  i - ~ -  and K H is the unit ball of  the reproducing kernel Hilbert space 

with the reproducing kernel Fu(s, t) of  the fractional Brownian motion. 

Refer to the appendix for an interpretation of this result and for a definition 
of the reproducing kernel Hilbert space. 

Functional laws of the iterated logarithm for the cases m > 2 have not yet been 
developed. To establish such laws, it is sufficient to consider polygonal interpola- 
tion functions corresponding to {Hm(X), i>  1} with {Xi} e(m)(D, L(')). However 
the analysis may be complicated by the fact that the normalization factor may not 
turn out to be proportional to (d~ log log N) 1/2 with d~ ~ N -m~ 2 Lm(N) as N --* oo. 

In the last section of the paper, we develop some properties of the self-similar 
processes associated with the Hermite polynomials. In particular, we specify their 
finite-dimensional moments. Assign the Skorokhod topology to D[0, 1], the 
space of function on [0, 1] that are right-continuous and have left limits. The 
main result is 

1 
Theorem 3. Let m > 1, 0 < D < - - ,  p > 2, (t~ . . . .  , tp) e(O, Go) p, {Xi} ~(m) (D, L(" )) 

m 

and d2~  N-mO+ 2 Lm(N) as N-~oo.  
Then 

[Nt~] [Ntp] 

a) lim 1 ~ ... ~ EHm(Zul)... Hm(Zuv) 
N~ ~~ dry u1=1 up=l 

exists and is equal to 

ti tp 

(m!)P E ~ dxl ... ~ dxplx, , -xj~l  - D  ... ]xl -xj~] -D (2.1) 
2 o o 

mp . . 
where q = ~ -  and ~ is a sum over all indices i 1 ,ix, -.., lq,jq such that 
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i) il ,Jt ,  . . . ,  iq , jqe{1,  2 , . . . ,  p}, 
ii) il 4 j l  , . . . ,  iq=~ jq, 

iii) each number 1, 2, . . . ,  p appears exact ly  m times in (i 1 ,Jl ,  . . . ,  iq,ja). 

2 \p/2 
max t:-m~ l EHP(X) .  b) (~i_<pmin t 2 t_<~_<pmaX tft-mD) p/2 E H P m ( X ) ~ # p ~  -1 - m D  t<=~<=p ~ ] 

ct converges or diver ,es according to whether converges t*2p 
p = l  p ~ l  

or diverges. 
m D  

d) There exists  a process Z~(t),  0 <-_ t <-_ 1, self-similar with parameter  H = 1 2 ' 

a.s. continuous, whose f ini te-dimensional  moments  E Z ~ ( t t ) . . .  Z,,(tp), p = 1, 2, . . . ,  are 
#l(tl) =0  and #p(q  , . . . ,  tp), p = 2, 3 , . . . .  

1 tNl 

in D[0, 1], as N ~ o% when m = 1 or 2. The weak convergence holds for  a subsequence 
of  N when m > 3. 

To normalize the self-similar process Zm(t), divide it by 

(2(m!))1/2 
(#2(1' 1))1/2= ( 1 - - m D ) ( 2 - - m D )  " 

1 1 m D  
Note that 0 < D <--m ~ 2 < H = 1 - ~ -  < 1. Note also that #p = 0 when m p is odd 

(no indices satisfy the requirements (i), (ii) and (iii) when m p is odd). The 

#v ( t l , . . . , t v ) ' s  are the moments of the Gaussian process 7~-;-vBu(t) with 

K - ( 1 -  D~(2-D)  and H = 1 -  when m = 1, and they are the moments of the 

non-Gaussian Rosenblatt process when m = 2  (Taqqu (1975)). When m>3,  

Carleman's condition #2p2-p =oo is not satisfied and the moments #p, p >  1, 
=1 

may be those of more than one distribution. Some #p's are evaluated at the end 
of Section 6. 

In Section 3, we establish conditions for E G ( X t )  ... G(Xp) to admit an expansion 
in terms of the correlations of the X~'s, and in Section 4 we develop graph theoretic 
arguments to obtain adequate bounds on the moments. The results of these 
sections are summarized in Propositions 3.1 and 4 .2-proposi t ions  which may 
be of interest in other contexts as well. 

Theorems 1 and 2 are proved in Section 5 and Theorem 3 is proved in Section 6) 

A note on the terminology. The term self-similar was introduced by Kolmogorov in the context 
of turbulence. In our context, self-affine would be more adequate since the time and space scales are 
not transformed in the same way. The self-similar increment processes are called automodel by Sinai. 
Some authors use also stable or semi-stable by analogy with the stable distributions. Kolmogorov 
(1940) first introduced BH(t). Mandelbrot  and Van Ness (1968) coined the term fractional Brownian 
motion and referred to the increments of BH(t) as the discrete fractional Gaussian noise. Taqqu (1975) 
introduced the term Rosenblatt process because it is Murray Rosenblatt  who characterized, in 1961, 
the corresponding one-dimensional distribution. For other interpretations of self-similarity, see 
Mandelbrot  (1977) 
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3. Expansion of the Moments EGI(XO... Gp(Xp) 

We will expand the multivariate normal density function f (x l ,  ..., x,) in Hermite 
polynomials and express the moments EGI(X1) ... Gp(Xp) in terms of those of the 
Hermite polynomials, or directly, in terms of the correlations of the Xi's. Formal 
results in this direction can be found in Kibble (1945) or Isserlis (1919) respectively. 
See also Slepian (1972). Our goal here is to specify conditions for absolute and 
uniform convergence of the expansion of f (xl ,  ...,xp) and to determine the 
validity of the expansion of EGI(xl)... Gp(x,) in cases where the functions G j, 
j= 1, ..., p are not polynomial. 

Definition 3.1. Let p__>2 and 0_<e_< 1. (X1, ..., X,) is said to be e-standard Gaussian 
if it possesses a (possibly singular) p-variate normal distribution and if it satisfies 
EXj=O, EXf.=I and JEXiXjI<e for all i , j=l ,  ...,p with i:t:j. (XI, ...,Xv) is 
standard Gaussian if it is 1-standard Gaussian. Finally, (X1,322, ...) is e-standard 
Gaussian if (X1, ..., Xv) is e-standard Gaussian for all p>2 .  Let rij=EX iXJ, 
i,j= 1, ..., p, be the correlations, and as usual, let X denote any N(0, 1) random 
variable. 

Definition 3.2. Let p>2, 0 < e < l  and let G1, . . . ,  ap be functions satisfying 
EG~(X) < o% j= 1,..., p. Let Jj(k)= EGj(X) Hk(X ) (k >= 0; j= 1,..., p) be the corre- 
sponding Hermite coefficients. 

Then (G1,... , Gp)e#p(e) if and only if 

(a) For any e-standard Gaussian (X1, ... , Xp), 

EGI(X1) "'" Gp(Xp) -'= ~ 2 J1 (kl)... Jpk(kTp)EHkI(X1) Hkp(Xp ) 
q~0 k l+- , -+kp=2q k l !  p" "'" 

O < k l ,  ...,kp<:q 

(b) ~ ~ J~.k,1 ) dp(kp) EHkl(X ) Hkp(X) eq< O(3. 
q=0 kl+...+kp=2q r~l" kp! "'" 

0 ~ k l  . . . . .  kp~q 

Note. GEtUp(e) means (G1, ..., Gp)~p(e)  with G 1 _= G 2 - - - -  _= Gp - G. 

When p = 2 and G 1 = G2 -- G, the expansion in (a) reduces to 

oo 

EG(X1) G(X2)=q--~o= \~ .  ! (d(q)t2 EHq(X~) Hq(X2) , 

and an application of Schwarz inequality proves that EG2(X) < ~ is equivalent 
to Ge~2(1 ). When p > 2  however, EGP(X)<~ does not guarantee Ge~p(1). 
Consider for example the function G(x)=�89 sgn(x) (sgn(x) is the sign function; it 
takes the value 1 when x is positive and - 1 otherwise). G(X) is bounded and all 
its moments are finite. For that G, J(k)= 0 when k is even and 

J(k) = (2 u)- 1/2(_ 1) (k-  1)/2(k __ 1)[! 

when k is odd. A direct computation shows that neither (a) nor (b) above are 
satisfied (take for example p =4  and X1 =)(2 = X3 = X4). Hence that G does not 
belong to ~p(1) for any even p>2 .  

Given p>2 ,  for what values of e does EG2(X)<o% j = l , . . . , p  entail 
(G1,...  , Gp)~p(e)? Proposition 3.1 below provides an answer. We first need a 
few lemmas. 
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Lemma 3.1. Let  p > 2 and suppose (X1, ..., Xv) standard Gaussian. Then 

p 

E[Ha(XO. . .  Hk,(Xp)I----< l~ (P - 1) kj/2 ]/~jv.. 
j = l  

d 2 d 
Proof. Let N=-dx-~-t-X-~x. Then for all integers k > 0  and any real t>0 ,  

N H k = k H  k and e-*NHa=e-*kHk. Let N'llv denote the LP(IRI,#) norm, with 
X 2 

d#(x)=(2rc) -1/2 exp ( - ~ - )  dx. On one hand, 

Ile-'NHkllv= ][e-tkHkli~=e tkII/4k]lv. 

On the other hand, view e - t N  as an operator from L2(]W, #) to/d(IW, #) and let 
Ile-tN/12, v be its norm. Choose t such that e - t=(p  - 1) -1/2. Then ]le-tNH2,v< 1 
(Gross (1975), Corollary 4,1). For such a t, 

I[e-'~ Hkll~ [le-*N[12,pl[Hk[12 ~ IIG[12 = ~ . .  

Hence, 

lhSkllp<=e 'k ~.=~- 1)u/z lf~.. 

Use now the multidimensional H/Slder's inequality to obtain 

p p 

EIG,(X0 ... Gp(Xp)l ~ [ I  (Eln~(X)lV) 1Iv <: F[ (P-  1) k~/2 l ~ J  ~.. 
j = l  j = l  

The bound in Lemma 3.1 is sharp. In fact, when p = 3  and k 1 = k 2 = k  (even), 

theboundbecomes23k/2(k!)3/2,whereasEH3k(X)=(k!)3 ! ~Ck-3/423k/2(k!)3/2 

as k--,oo for some constant C. The bound therefore includes the exponential 
trend. If, on the other hand, k 1 . . . . .  kp = k stays fixed, but p tends to infinity 
through even values of kp, then EHP(X)~EXkp~Ck-p/4(p-1)kp/2(k! )p /2  for 
some other constant C, and in this case again, the bound includes the exponential 
trend. 

Lemma 3.2. Let p > 2 and (X1 . . . .  , Xp) be standard Gaussian. Then 

fkj ! ,.. kp! 

E H k ' ( X I ) ' H k p ( X P ) =  I i f k ~ + . . . + k p = 2 q  and O<=kl,...,kp<= q 

l0 otherwise 

where ~1 is a sum over all indices i I , J l ,  i 2 , J 2 ,  " " ,  iq,jq that satisfy 

i) i 1 ,Jr, i2,J2, ..., iq,jq~{1, 2, . . . ,  p}, 
ii) il=~ j l ,  i 2 ~ J 2  , . . . ,  i q@jq ,  

iii) there are k 1 indices 1, k 2 indices 2 . . . .  , k p  indices p. 
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P r o o f  The moment generating function of (Xs, ..., Xp) is 

P 
Eexp(j2=stjXj)=exp(~j=~t2)exp(~i~lj=S ~ rijtitj) 

i,j 
and therefore 

1 2 titj ) E ( I  e x p @ X j - ~ t j ) = e x p  (~i= ~ ~ rij �9 
j=l i,Jj- 1 

Since e tx-t2/2 is the generating function of the Hermite polynomials Hq(x), q >= O, 

we get 

~1 2 0 ~  ----~0 (-~S )q 
(t.iqj o~ 1 P ~ rlj t i tj . (1) 

E H q j ( X j ) = q  ~ j=l 
"= qj= i i+j 

But 

r i j t i t j  = E "'" r i l j  1 Yiqjq 
i= j= i1=1 jl~S iq=S jq=l 

i* j  il t j l  iq*jq 

where ks is the number of indices of the r's that are equal to 1, ..., and kp is the 
number of those indices equal to p. Note that k s + ... + kp = 2 q and 0 < k 1 , ..., kp < q. 
In fact, 

rlj t i tj = ~ {21 ril j l- ' '  riqJq } t~l "" ~kpp 
i= j=l kl+...+kp=2q 

i@j O<=kl ..... kp <=q 

Set It] =max(]h[, ..., [tp[) and use Lemma 3.1, to show that 

q~=O qp=0qs! qp! q 

We may therefore take the expectation under the summation signs in (1) and 

qa ! "'" qp" J tp 

q=O kl+...+kp=2q 0_-<kl, ...,kp<=q 

An identification of the coefficients of the t's concludes the proof. 
We shall now obtain an expansion for the multivariate normal density function. 

Suppose that (Xs, ..., Xp), p > 2, is standard Gaussian. Let x' = (xl, ..., xp) denote 
a row vector, let I be the p • p identity matrix, R, the p x p variance-eovariance 
matrix of (X1, ..., Xp), [R[ the determinant of R, and finally let #J, J =  1, . . . ,p  
be the eigenvalues ofR - I. When #j > - 1,j = 1, ..., p the distribution of(Xi, ..., Xp) 
is non-singular and is characterized by the multivariate density function 

f ( x s , . . . ,  xp) = (2 n)- p/2 JR]- 1/z exp { - �89 x' R-1 x}. 

express (1) as 

s=O ql--'"+qp=S 
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Lemma 3.3. Suppose I#jl < 1 , j=  1, ..., p. Then 

f (xD . . . , Xp) 

- ~ ( 2 ~ )  - ' : ~  . 
q=o k,+.--+k~=2q [ kl! 

0=<kl . . . . .  kp <=q 

1 ; 
" exp ( - ~  j~_IX2 ) EHkl(Xi) ... Hkv(Xp). 

The series converges absolutely and uniformly in IRL 

Proof. Let Fq(xx, ..., xv) denote the q-th term of the expansion, and let 

Pq(tl, ... , tp )=~ ei" X Fq(xl . . . .  , xv) dV x 
p 

be its p-dimensional Fourier transform. The integration is over IR p, and t 'x = ~ tjxj. 
j=l 

Since the Fourier transform in 11( 1 of (2re)-1/2 Hk(X ) exp(--�89 2) is (it) g exp(--�89 

Vq(tl, ... , tp) 
i p 2 t ~ V ) e x p (  "-J=~ . Hkv(Xv) 2+ . 

O_-<kl, ...,kp <=q 

= 2 ( -  1J (t~* ... t~p) exp - ~  tj 
k,+...+kv=2q 2qq! 
O<=kl . . . . .  kp <q 

where ~'a is defined as in Lemma 3.2. Hence 

t' (-1)q (i~ ~riJtitj)qexp -xl P 2~t~ Pq(q' " "  P)=2~qT. = j=l , ( z j=l  )" 
i*j 

Therefore, 

f (xl, ..., xp) =(2 rc)- P ~ e -ic x e x p ( -  �89 t' R t) dV t 

=(2rc)_pSe_ ~o2_~qT. ( t ( R _ i ) t ) q e x p  1 p 2 

0o 
=(2u)-v  ~ e-'t'~ E Pq(t:, ..., tp)d;t 

q=O 

= ~ fq(X1, ... , Xp) 

f Y ~  

q=0 

provided term by term integration is legitimate. To see that it is, note that 

1 ( - 2  j~l J) ~]pq(t l , . . . , tp) ldPt= ~ 2~qy.~l t , (R_i) t lqexp 1 P t2 dV t 
q=O q=O = 

~ 2@q.T j* _~ 1 q ( 1 p ) = #is~ exp - ~  E s 2 dPs 
q=O j \ ~ j = l  t 

m ] ]v i + 

< E E [ I I P ,  I-" f.sg~,exp(�89 
q=o ~+...+%~q j=l 2~Jv~ ! -~  J 

Vl,...,Vp=O 
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P 

= 2 II1#,r' 
q=O vi +...+vp>=q j = i  

Vl , . . . ,vp=O 

j = l  v= 

(2 V j) [ 

2 2 V,(Vj !)2 

1 
Lemma 3.4. Let p>= 2, O<e < and suppose that (X1, . . . ,  Xp) is e-standard 

- p - l '  

Gaussian. Then the eigenvalues pj, j =  1, ... , p of R - I satisfy [#j[ < 1. 

Proof Let ( R - I )  + be ( R - I )  with each element replaced by its absolute value 
and let A be the p x p matrix whose off-diagonal elements are equal to e and whose 
diagonal elements are equal to 0. Then ( R -  1) + < A in the sense that A -  ( R -  I) + 
has non-negative elements. Lemma 2, page 57 of Gantmacher  (1959) ensures 
that all [&l, J =  1, ..., p, are bounded by 2", the maximal eigenvalue of A. They 
are also bounded by 1 since 2* = ( p - 1 ) e <  1. 

Proposltion3.1. Let p> 2, X~N(0 ,1 )  and let Gi, ..., Gp be functions satisfying 
EGz(X)<oo,  j = l ,  . . . ,p. Let Jj(k)=EGj(X)Hk(X), k > 0 ,  be their Hermite co- 
efficients. Finally let (X1, . . . ,  Xp) be s-standard Gaussian. Suppose either 

Jj(k) , 
(i) e = 1 and 2., ~ ( P -  1) k/2 < ~ ,  j = 1, ..., p 

k=O V/g! 
o r  

1 
(ii) 0 ~ e < - - .  

- p - 1  

Then (G1, ..., Gp)6adp(e). 

Proof We must show that (a) and (b) of Definition 3.2 hold. First suppose (i). 

J l ( k l )  
d~p)  EIHk~(X,).. Hk,(Xp)l 

q=O ki+ . . .+kp=2q 

@ IJj(kj)l (p_  1)kd2} 

by Lemma 3.1. (b) holds because we may choose X i . . . . .  X ,  =X.  The dominated 
convergence theorem for example, ensures that (a) holds. 

Now suppose (ii). Applying Lemmas 3.4 and 3.3, we get 

§ § 

E G I ( X 1 )  "'" G p ( X p  ) =  S "'" ~ G I ( X 1 ) " "  G p ( x p ) f ( x l ,  "" ,  Xp) d x  i ... dxp 
- o:) -oo 

q = O k l + . . . + k p = 2 q  j = l  k j !  "'" 
O--<kl, . . . ,kp <=q 

kj! aj(k) EI4~I(X,) ... I-I#Xp) 
O <=kl, ..., kp <=q 
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proving (a). The term by term integration was legitimate because by Schwarz 
inequality, 

q=O k , + . - . + k ~ = 2 q k j = l  k j !  "'" 
O<kl . . . . .  kp<=q 

< c (k,!... G!) IEH ,(XO... H  (G)I 
q=O k l + . . . + k p = 2 q  

O<kl . . . . .  kp<q 

with C =(EG~(X)... EGE(X))~/2< ~.  To show that K < ~ ,  we apply Lemmas 3.2 
and 3.1. They yield 

IEHkl(X~) ... Hk,(Xp)l <--_ ~/2(kl +... +k,) EHkl(X)... Hk,(X) 
p 

__< ~[ (e(p _ 1))k,/2 ] ~ j  T.. 
j=l 

(i ; Hence, K < C ( e (p -  1)) k/2 < oQ. The preceding computation also establishes 
k = 0  

that (b) holds. This concludes the proof. 
k 

The condition k ~ n ~ t p - - 1 ) k / 2 < O 0  is automatically satisfied when G is 

a polynomial, When p > 2, it is also satisfied for some special functions G, e.g., 

G(x)=e  ax (a real) or G(x)=exP{�89 2} where 0 < a <  -1. In the latter case for 
P 

example, d(k)=0 if k is odd and J(2k)=(1-a)-1/2(22kk)ki( a 1 ~ ~ - a  ' so that 

Y(2k) , 1)k= O(k-1/4C~ k) as k--+oo for some ~ < 1. The condition -tP - 

J(k)(p_ < 

may not be satisfied even when G is bounded, for example when G(x)=�89 sgn(x). 
For  that example, even (a) and (b) of Definition 3.2 fail, as we have seen earlier. 
These facts are apparently related to certain properties of the solutions of the 
heat equation (see Rosenbloom and Widder (1959) for a characterization of 
these solutions). 

Condition (ii) of Proposition 3.1 replaces the restrictions on the functions 
Gj, j = 1 . . . .  , p stated in condition (i), by restrictions on the size of the correlations. 
This second approach is more suited to our purposes. 

4. Graph-Theoretic Arguments 

We shall characterize the expansion of the moments of (G1 . . . .  , Gp)~p(~) in 
terms of multigraphs and use graph-theoretic arguments to obtain adequate 
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(N ), 
bounds on E ~ G(Xi) . Since there is no universally accepted graph-theoretic 

i=1 
terminology, we shall start with a series of definitions, some of them non-standard. 
(For a general reference, see Busacker and Saaty (1965) or Harary (1969).) 

A multigraph A = ( K  E, ~b) consists of a non-empty set of points (Vertices) K 
a (possibly empty) set of lines (edges) E, and a mapping �9 of E into V x V The 
mapping ~ is usually implicit and therefore we merely denote the multigraph by 
A =(V, E). p = I VI > 1 denotes the number of points of A and q = IN I >0  denotes 
its number of lines. A labeled (point-labeled) multigraph has its points distinguished 
from one another by names. Its lines are not labeled. Hence for us, two labeled 
multigraphs are identical if for all i and j, the number of lines joining the points 
labeled i and j is the same in both multigraphs. 

For each p > 1, let @ be the set of all labeled multigraphs with p points, and 
whose lines do not form loops. (A loop is a line that starts and ends at the same 
point.) However, a multigraph in dp may possess multiple lines: more than one 
line may join any two points. A ~ ~'p may also be described through its pair sequence 
{(il,jl),(i2,jz),...,(iq,jq)}, where for each s = l ,  . . . ,q, we have i s , j se{1, . . . ,p  } 
with is=t=js; a pair (i~,j~) symbolizes the existence of a line that joins point i s to 
point js. Identical pairs indicate the presence of multiple lines. The requirement 
is#:j~ for all s = 1, ..., p indicates the absence of loops. A line and a point labeled i 
are incident if one of the endpoints of the line is i. Two lines are adjacent if they have 
a point in common. A path is a sequence of adjacent lines. 

With each multigraph A ~ @ ,  associate a multiplicity number g(A) defined as 

follows. Number each of the (~)possible  pairs of points by u = l , 2  . . . .  , "'__(~). 

Let v u be the number of lines in A joining the pair of points numbered u. If A has q 
lines, then obviously v 1 + . . .  + v(~) = q. Define then 

(~) 1 
g(A)= l ]  - - -  

u=l Yu ! 

The degree of a point is the number of lines incident to that point. Let k~ denote 
the degree of the point i. Obviouslyl k l + . . - + k p = 2 q .  

Let d ( k l ,  ..., kp) denote the set of all the multigraphs of dp whose p points 
have degrees kl, ..., kp respectively. 

Proposition4.1. Let p>2,  0_<e_<l, and suppose EG~(X)<oo, j = l , . . . , p .  Let 
J j (k)=EGj(X)Hk(X ) ( k > O ; j = l , . . . , p )  be the Hermite coefficients. Then 
(G1, ..., @)ecfi%(e) if and only if 

(a) for any e-standard Gaussian (X1, ..., Xp), 

EGI(X1)  ... G p ( X p ) =  ~ E Jl(/r ... Jp(kp) ~ g(A) R(A) 
q= 0 kl + . . .+kp  = 2q A ~ d ( k l ,  ..., kp) 

O <=kl, . . . , kp  <q 

with R(A)=riljlraj ~ . . .  riqjq , where ( i l , j i ) ,  ( i2 ,  i 2 )  , . . . ,  ( iq,  jq) is the pair sequence of 
the multigraph A. (R(A)=I if A has q = 0  lines.) 
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(b) Z JJl(kl)... J,(k,tt Z g(At q< . 
q = 0 k l  4-. . .  4- k~ = 2 q A ~ ( k l  . . . . .  kp)  

O<=kl . . . . .  kp<=q 

Proof. Let p => 2, q => 1, k 1 + . . .  + kp = 2q, 0 < kl, ..., kv-<_ q, and let ~1 be the summa- 
tion defined as in Lemma 3.2. 

Orderings (i 1,jl, ..-, iq,jq) that differ by a permutation of the indices within 
a pair (i,j) are covered by the summation ~1. Their number is 2 q. Orderings 
that differ by a permutation between different pairs (i, fi are also covered by ~1. 

Their number is q! where vl, vz,.. ,  are the numbers of identical pairs 
/A 1 ! I) 2 ! . . .  

in these orderings. We now interpret (il,Jl), ...,(iq,jq) as the pair sequence of 
a multigraph A with p points, q lines, and kl , . . .  , kp, as the respective degrees 
of the p points of A. Therefore 

1 
2"(q!) ~1 rilji . . - r , .~= Z g(A)R(A). 

A e ~ ( k l  . . . . .  kp)  

Use Lemma 3.2 to obtain 

EHkl(Xx) ... Hk~(Xp)=k 1 !... kv! ~ g(A) R(A). 
A e ~ ( k l  . . . . .  kp)  

Use the definition 3.2 of ~p(e) to conclude. 

The following corollaries follow from the proof of the proposition. 

Corollary4.1. Let Aed(k  ~ ..... k~) and let (il,Jl), ...,(iq,jq) be its pair sequence. 
Set F(A)=f(i~,j~ ; ... ; iq,jq). Then 

1 
2q(q !) ~1 f(il,Jl ; . .-;iq,jq)= ~ g(A) F(A). 

A ~ 4 ( k l ,  . . . ,  kp)  

Corollary 4.2. EHkI(X~) ... Hk~(Xv)= k~ ! ... kp! ~ g(A) R(A). 
A e J d ( k l  . . . . .  kp)  

The following notions play a central role in the sequel. A subgraph of A = (V, E) 
is a multigraph (V', E') with V ' c  V, E'~E, and whose pair sequence is a subset 
of that of A. A multigraph is connected if every pair of points is joined by a path. 
A component is a maximal connected subgraph. The rank of A, r(A), is the number 
of points of A minus its number of components and the cycle number of A is 
IE] "r(A). 

A forest F=(VF, Ev) is a graph with cycle number zero, hence r(F)=]EF]. 
A connected forest is a tree. Hence, if T=(VT, ET) is a tree, r(T)=[ETI=IVv[-1. 
F =(VF, EF) is a spanning forest ofA =(V, E) if it is a subgraph of A and if, by adding 
to E F a line of E not already contained in Er, one increases the cycle number of F. 
Thus r(A)= r(F)= IEFI because A and F have the same number of points and the 
same number of components. 

The following lemma is a reformulation in terms of multigraphs of a theorem 
on matroids (Theorem2b, p. 150) established by Edmonds and Fulkerson 
(1965). 
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Lemma 4.1 (Edmonds-Fulkerson). Let A = (V, E) 6 @ for some p >_ 1. Then E 
contains the lines of m line-disjoint forests F/=(V, Ei) , i= 1, ..., m, with prescribed 
sizes Igel <r(A), if and only if, for every subgraph D =(V, ED) with E D c E  as line set, 

m 

IEDI = ~ {lEvi- min(IEil, r(D))} 
i = l  

(E o denotes the complement of E u in E). 

Lemma 4.2. Let A = ( V , E ) ~ @  be a multigraph with [VI =-p> 2 points such that 
points (O<e<p) have a degree at least equal to m> 1. 

Then there are m forests F i =(V, El) , i= 1, ..., m, with E i c~ Ej =fJ (i,j = 1, ..., m; 

i sej), U E~ c E, such that 
i = 1  

~] ijr 1 ~ i ~  

Remark. As a consequence, the multigraph B-- E~ is a subgraph of A 
that has p points and 

i i=llEil -=mO~- ~ -  

lines. Formally, B = ~ F/. The structure of the forests F~ is quite simple. When 
i = 1  

is even for example, each forest F~ has p points, c(2 lines and thus exactly p - ~ / 2  
components. 

Proof of Lemma 4.2. Let E o ~ E be arbitrary and let VD = V be the set of points 
that the lines in E o are incident to. D=(VD, ED) is then a subgraph of A=(V, E). 

Since m > l ,  A has at most P - ~ + ] 2 [  components, thus r ( A ) > e - [ ~ ] .  

Therefore ]E~]<r(A) for i=1  . . . .  ,m, and Lemma4.1 applies. It is then sufficient 
to prove that 

m 

[c~] since I/~D[ > 0. Suppose r (D) < e -  [e]  The inequality holds trivially ifr(D) > c~ - ~ = ~ . 
It is then sufficient to establish that 

We shall evaluate separately r(D) and [/~DI. Since each point of D has a line 
in E D incident to it, D can have at most [�89 ] components. Therefore 

r (D) = [VDI -- ~ of components of O > I mo l  - [�89 I]. (1) 
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Note that (1)and the assumption r ( D ) < ~ - t 2  ] imply e -  ]VD] >0. 

Now consider IEDI. Let ~ be the complementary set to V D in V 17 D contains 
at least c~-[VDI points that have degrees in A greater or equal to m. The sum of 
the degrees in A of all the points of 17u is at least m(~--IVDI). Only lines in /~D 
are incident to the points of 17 D. But some lines in/~D may connect a point in 17 D 
to a point in VD. Therefore 

m(~--[VD[)<~ degrees in A of points in I7 D 

= 2 (lines with both ends in 17D) + 1 (lines from V D to 17D) 

<2IEDI. 

suppose that m~ is even. (1) yields r(D)>= I~_ and therefore (2) becomes First 

mc~ [mc~] 
]ED]>~--mr(D)=mc~- ~ -  -mr(D). 

(2) 

Suppose now that me is odd, that is both m and c~ odd. If (2) holds with a strict 
IvDI 1 

equality, then IV D[ must be odd. In that case (1) yields r ( D ) > - ~  +~  and therefore 

fEDf=- m~2 m[VD[>2 2 + ~ - m r ( D ) = m e -  -mr(D). 

If (2) holds with a strict inequality, then we may use r ( D ) > l ~  to get 

- rnc~ m[VD, 1 met 1 [m~]  
]ED]>= 2 2 +~>=-~-+~-mr(D)=rnc~- ~ -  -mr(D).  

This completes the proof. 

Definition 4.1. Let {r(k), k = 0, _+ 1, _+ 2, ...} be a sequence of real numbers satisfying 
r(k)=r(-k).  Fix p >  1, and let u 1, u2, ..., up be positive integers. For each multi- 
graph A e dp  that has p points labeled { 1, ..., p}, q > 0 lines, and the pair sequence 
(il ,J0, (i2 ,J2), .-., (iq,jq), define 

R~,  1 . . . . . . . . .  p ) (A)  = r(u~, - u j , )  r(u~2 - uj2) . . .  r (u~,  - ujo) .  

By convention, R( ........... p)(A) = 1 if q = 0. Each r (u) will be identified with EX i X~+, 
whenever a stationary standard Gaussian process {X~,i>I} is introduced. 
In that case, R(A) defined in proposition 4.1 is R( ........ p}(A) with (ul, ...,up) 
=(1, ...,p). 

Definition 4.2. Let @ be the set of all trees in alp. 

Lemma 4.3. For all m > 1, p > 1, N > 1, 

{ sup Z "'- IR~m~ ......... p)(T)[ < N  
T ~ p  Ul=l u2=l up=]. u 
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Proof Since Te  N is a tree, it has 1 component, p points (labeled 1 . . . . .  p), p - 1  
lines, a cycle number zero, and hence no loops. To each of the p - 1 lines we can 
associate a different point in such a way that the line is incident to the point 
with which it is associated. The root of the tree is the point with which no line is 
associated and any point may be chosen as the root. We may suppose, without 
loss of generality, that the root is the point labeled i = 1 and that the other points 
are labeled in such a way that 

N N N 

Z Z ... Z IR7, .......... ,>(T)I 
ul--I u2--1 Up--1 

N N N N 

= 2 2 Irm(U2--Ujz)[ 2 Irm(u3-uj3)l ... 2 [rm(Up--ujp)] 
Ul--1 u2=1 u 3 = l  up--I 

where (i, ji) , for i=  2, ..., p and Ji < i, represents the endpoints of the line associated 
with the point i (another labeling would lead to a different ordering of the summa- 
tion signs in the right hand side of the expression). But for any integer 1 < v_< N, 

N N 

? , l r m ( u - v ) l _ - <  ?, /rm(u)l. 
u = l  u= - N  

Hence 

R ~ < ~ r'~(ui) �9 - '  I <  . . . . . . . .  ~>(T)I  
u l = l  u ? = l  u1=1 i = 2  k u i = - N  ) 

,,}" = N  lrm(u . 
u N 

Definition 4.3. Let J@,q(cq m) denote the set of those multigraphs of sdp that have q 
lines and for which a number 0 < e < p  of their p points have a degree at least 
equal to m. 

Lemma 4.4. Let m> l, p> 2, O<e<=p and q > m e - I ~  I . Then 
N N N 

sup Z Z "" Z JR( ........... p>(A)l 
AE~p,q(O~,m) u l = l  u 2 = l  u p = l  

a 1 (me Frn~l~ 

< { s u p  N p 2 
u > 0  u N u  " 

Proof Let A =(V, E)EJ~p,q(e, rn). There are m forests F/=(V, El), i=  1, ..., m with 

Ei c~ Ej=fi (i,j= 1, ..., rn; i4:j), ~) Eic  E, and ~ , E i [ = m ~ : - [ ~ ]  (Lemma 4.2). 
i=1  i = 1  

Let cl be the number of components of F/. ~ c i = m p - m e + [ ~ ]  because 
i = 1  

ci=p-r(Fi) and ~ r ( F i ) =  ~lEiI.  
i = l  i = 1  

L e t B =  F~= V, E i .Since EicEandlE I -  E i = q -  m e -  , 
i = 1  i-- i = l  i 
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IR( ........ ~)(A)I _-< {sup R( ........ ,) Fi 
u > O  i =  

for all 1 < ul, . . . ,  up _< N. Using a generalized H N d e r  inequality, 

u l = l  i = 1  i = l  up=l 

Each of the m forests F~ has p points and ci components  T~j, j =  1, ..., % The 
c, 

T/j's are trees. Let  p i j > l  be the number  of points of T~j. Obviously ~ p i j = p  
j = l  

for all i =  1, ..., m. The Tij, j =  1, ..., % have disjoint point  sets and line sets. 
Therefore  

U l = I  up=l j = l  U I = I  Upij=l 

after an obvious relabeling of the points. Note  that  each T~j belongs to the set 
@~j defined earlier. Using the previous inequalities in conjunct ion with Lemma 5.3, 
we obtain 

ul = 1 up = 1 i - 

--< I~ sup ~ .-. ~, JR( ........ v)(T)[j 
k i = l  j = l  TeYplj U l = l  Upij=l 

j = e  lu=~-N ]rm(u)] ) ) I 

rtlc~ 

= X rnp-m~ (u~N Irm('u)l e-[~-]  

because ~ Pij = P and ci -- m p -  m cz + . This concludes the proof. 
j = l  i = 1  

N 

When p > 2, let ~ '  denote the summat ion  over all (u~ . . . .  , up), 1 < u~ < N, 
ul, . . . ,Up= 1 

i =  1, . . . ,  p, with the restriction that no two u~'s assume identical values. 

Lemm a  4.5. Let  m > 1, p > 2, 0 < e < 1, and let (X1, ..., XN), N > 1 be stationary 
e-standard Gaussian with r (u) = EX~ X~ +,. Let  G j, j = 1, ..., p be functions satisfying 
EG~.(X)< oo and (Gt, ..., Gp)e~p(e). Assume also that for  some O N e < p ,  the func- 
tions G1, ..., G~ have a Hermite rank at least equal to m. Then there is a finite 
constant K =  K(p, e, G 1 . . . .  , Gp) such that, for all N >  1, 
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N 
y '  [EG~(X.) ... G~(X~){ 

u l , . . . , u p ~ l  

1 ~'ms Fms]~ 

u=l 

Proof Let Jj(_k)=EGj(X) Hk(X), k>__O, j= I, ...,p. Proposition 4.1 holds since 
(GI,... , Gp)e~p(e). Using part (a) of that proposition with the fact that G~, ..., G s 
have a Hermite rank greater or equal to m, we obtain 

N 

2' IEO~(x,,). ov(x,,)l 
Ul, . . . ,Up=l  

q . . . .  [ ~ ]  kl + ' " +  kp= 2q Aed(k ...... kp) 
m<-kt ..... k~ <_q 

0 = < k ~ + l ,  . . . , kp  <=q 

�9 sup 2 '  [R(. ....... p)(A)l . 
~Aed4v, q(a, m) ul ..... up= 1 

(X1, ..., XN) is e-standard Gaussian and therefore sup jr(u)[<e. R(,~ ...... p)(A) is 
u__>l 

a product of terms of the form r (u i -u j )  with ui, uje{Ul, ...,up}. The term r(0) 
never appears, since under ~' ,  no two u 1, ..., up are ever equal. For convenience, 
set temporarily r(0)=0. Then 

N N N 

sup 2 '  [R( ........ p~(A)l= sup Z "'" }~ [R( ......... p)(A)[ 
A~f~p ,q (S ,m)  ut, . . . , u p = l  AE,/Clp,q(S,m) u t = l  u p = l  

s 1(ms [ms]~ 

using Lemma 4.4. Conclude the proof by setting 

K(p, e, G1, ..., @) 

-=U ~ 2 ]Jl(k~) ... Jp(kv)[ 2 g(A) j - ( ~ s -  [~ ] )  
q = m s  -- [ m s ]  kl + . . .  + kp = 2 q A E d ( k l  . . . . .  kp) 

2 O<=kt, ...,kp<=q 

K = K ( p ,  e, GI,  . . . ,  Gp) is finite by part (b) of Proposition 4.1. 

Proposition 4.2. Let m > 1, p > 2, 0 < e < 1, and let { Xi, i> 1 } be stationary e-Gaussian 
with r (u)=EXiXi+ u. Let G be a function satisfying E(G(X))2(p-[P/Z]) < oo, G@~p(e), 
and whose Hermite rank is at least m. 

Then 

i) there is a f inite constant Kl(p, e, G) such that, for all N >  1, 

E ( N )p ( N "]P ( 1  N ) 1 { _ ~ _  [ - ~ ] }  

i t * '  u=O ) 
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ii) /f p > 2, there is a finite cons tan t  K 2 such that, for all N > 1, 

K 2 is independent of N, but may depend on p, e, G and on the joint distribution of 
the Xi' s. 

Proof 1, To establish the first part  of the proposit ion,  note that  

E ( i~  = kt +... +kN=vE kl p',...k N , EGk~(X~) "'" Gkr'(Xz~) 
kl ,  . . . ,  kiv_-> 0 

~= P! Gk.~,(Xu~.) = E E EC~"I(X.) --. 
p 1 l<=Ul<. . .<Up,~Nkul+'"+kup,=p ku l !  . . .  ~Up,. 

kul, ..., kup,>= l 

p N 
Vp, < C(p) ~, max ~_' IEG'~(X,~) ... G (X,~,)I 

p ' = l  vl +'"+VP'=P ul , . . . ,Up,~l  
v l ,  . . . ,  Vp ,  ~ 1  

where C(p) is a finite constant  independent  of N and where, under ~ ' ,  no two 
ui's in (ul , ..., up,) assume identical values. 

p ' <  [21 .  Then by HSlder 's  inequality, Suppose 

N 

, . .  "Op, X max ~'  ]Ea~'(Xui) G (~.,)I<NP'EIG(X)] p 
Vl + . . - + v p , = p  Ul 1 

Vl, . . . ,  Vp,=> 1 ' " " ' / ~ P ' =  
l r ~ n  r ~ n 1 ~  

f N ( 1 N ]~l=~-L~/t 
k u = 0  ) k u = 0  

Fix now p ' >  [P] + 1. Then  

N 
, , ,  Vp, X max ~' [EG~I(X,~) G ( ,,,)l 

" g l - - ' " + V p ' = p  
VI,  ...~ i jp t  ~ 1 Ul~ ' " ~ U P  t = l  

: max max 
r  ~ m a x  V e + l  §  

V ~ + l ,  . . .  v p , ~ 2  
N 

. . .  ~ V ~ + l  . . .  Vp ,  X ~ '  I~G(x~,I) G(x. ) G (x,,~+,) c ( ,,,.,)l 
Ul, . . . , U p , ~ l  

where 
p ' -  1 if p' < p  

~mi. = 2 p' - p and  ~max = 

p' if p'=p. 

Note  that  ~min ~-~ 1 and c~m, x < p'. 
Choose any values of c~ and of the exponents  v~+l, ..., vp, that  satisfy the 

above constraints. For  convenience set Gi(')= G(.), i =  1, . . . ,  ~ and G i ( ' )=  G~'('), 



Law of the Iterated Logari thm for Sums of Non-Linear  Functions of Gaussian Variables 223 

i = c ~ + l , . . . , p ' . N o t e t h a t m a x ( v ~ + ~ , . . . , v ~ p , ) < p - [  p] (when p>2,  this value is 

reached when p ' = [ P ]  +1 and C~=CZma~------p'--1, making vp,=p-e=p--[2]). 
The assumption E(G(X)) 2(p-Ep/21) < oo ensures that EG~(X) < oc for all i=  1, ..., p. 
The functions Gi, 1 < i <  c~, have a Hermite rank at least equal to m > 1. But the 
functions G~, ~+l<i<p', may have a Hermite rank as low as 0 since taking 
powers does not conserve the Hermite rank. Applying Lemma 4.5, we obtain 

N 

Y,' IEG~(Xu,) ... Gp,(X,p,)l 
Ul, ...,Up,-1 

i {m~ 
, _ ~ / ~  ~ci N ~-[~]} 

< K  NP 2 {Eir , , (u)i)  <{~ 21rm(u)l) 
\ u = l  / k u= l  ) 

N g I Imp_ [-mpq'~ 

because p>~>2p'-p. (To check the bound when p is odd, note that 

~>2p'-p~o'-~-<P--2, and c~=2p'-p~--  =-~- 
- 2=2  

Conclude the proof of the first part of the proposition by setting 

Kl(p, ~, G) 

=C(p){[2]EIG(X)f+ ~ max max K(p,e,G~',...,G~')}. 
v~+l, ..., Vp,>=2 

p 

2. Let p>2 ,  K' =Kx(P, e, G)+(2KI(p+ 1, e, G)) p+I, and let 

g(N)=(K')211' {Nu N=~N [r"(u)I} 

be a function of the positive integers. It is easy to check that g is nondecreasing, 
g(N) 

satisfies 2g (N) < g (2 N) and g (N + 1) + 1 as N -* ~ .  By the first part of the proposi- 
tion, 

E i~_lG(Xi) P<KI(p, 

when p is even, and 

f N ) p/2 

p 

E i=~lG(Xi)p / I NtEi~=lG(Xi)l]p+l)p+ 1 

p f :," ) pl2 
<(2Kl (p+  1,~, G))P;f ~N _~_NIrm(u)[ ~ 
< gpl2 (N) 
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when p is odd. Moreover, the sequence {G(Xi) , i> 1} is stationary. Hence 

E i2~aN1G(Xi)P~-~ gp/2(g) 

holds for all integers a > 0 and N > 1. By Serfling's maximal identity (Serfling (1970), 
Theorem B), there is a constant K" < o% independent of N such that 

.} E _ max G(X~) K"gp/2(N) 
U~ k~N ~-1 

holds for all N ~ 1. Set K 2 = K' K". This concludes the proof. 

5. Proof of  the Theorems 1 and 2 

Proof of Theorem1. Let G*(x)=G(x)-~Hm(x ) and let m* be the Hermite 
l l ~  '. 

rank of G*. There is nothing to prove if m* = m (G* - 0). Suppose m* < oo. Let 

p be the smallest even integer satisfying p > 2 max ' l - r o D  ' Thus p > 2. Fix 
1 

0 < e <  . Then by Proposition 3.1, G* e~,(e). 
p - 1  

1) We first show that the conclusion of the theorem holds when {X~} e (m) (D, L(.)) 
is such that sup Ir(u)[ < a Choose an arbitrary a > 0. By the Borel-Cantelli lemma, 

u>=l 
it is sufficient to prove 

N~=lP{~--~lmaxN i~_lG*(Xi) >a}<oo. 

By Cebygev's inequality, 

P J ~ l  m a x [  d s 1 <=s<=N i~=lG*(Xi)>a} <-a-vdffpE(max- \1 <s<~N i~_lG*(Xi)) p 

N K2a_P {d ~ N )p/2 
- -  2 Nu~= olrm* (u)] l 

using Proposition 4.2. K 2 a constant independent of N. We now use the fact 
1 

that r (k)~k  DL(k) as k-~oo. Suppose first 0 < D < ~ .  Then as N ~ o o  
N 

d~2 N ~ Irm*(u)l ~ d ; 2 ( 1 - m *  D) 1N-m*D+2 L'~*(N) 
u = O  ~(1 - m* D) -1  N-(m*-m)DLm*-m(N) 

= O(N-DL m*- re(N)) 

1 N 
since m*> m. When D > ~ - ,  LI(N)= ~ [rm*(u)[ is slowly varying as N--, o% and 

u = 0  
N 

d~ 2 N ~ Irm*(u)l ~ m  -(1 roD) LI(N ) L-re(N). 
u = 0  
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1 
Since 0 < D < - - ,  bo th  D and l-roD are positive. The  choice of p ensures that  

m 
bo th  Dp/2 and (1 - roD)p~2  are strictly greater  than  1, so that  

( N ") p/2 

l N=I 

Therefore,  the conclusion of the theorem holds whenever  {Xi}e(m)(D, L(.)) is 
such that  sup Ir(u)l <e.  

u> l  
2) N o w  merely  suppose  {Xi} e(m)(D, L(')), as in the s ta tement  of the theorem. 

Since r(u)=EX~X~+, tends to 0 as u ~ o o ,  there exists an integer n = n ( e ) >  1 such 
that  It(u)[ < e  for all u>n. 

l _ < s < N b e a r b i t r a r y a n d d e f i n e j *  by j .=s_[~[nwhen  s Let kn] n 
s 

integer and by j* = n when - -  is an integer. Then  
H 

~--10*(X,) ~ 2 2 O*(Xj§ -~ ~, 
i j = t  k = O  j=j §  

n s' 

__< ~ max  ~=oG*(X;+kn) 
j : l  l<s'~[@] k 

[~]-, 
Z 

k=O 

We m a y  replace the left hand  side by its m a x i m u m  over 1 _< s < N. Increasing also 
the right hand  side, we get 

----~i ----~-I S n k=~l max ~G*(Xi )<~ max  G*(Xj+(k_I),). 
l<-s<-N i l <~s'<N 

For  each j =  1, . . . ,  n, the sequence {X;+(k 1)n, k__> 1} belongs to (m)(D, Lz(.))  
with L 2(u) = n -  o L(U n) ~ n -  o L(u) as u ~ ~ .  All its correlat ions (excluding vari- 
ances) are bounded  by e in absolute  value. Therefore  

n 1 s 
llm" l s ~ l i r a - -  max  ~ G*(Xj+(k-1)n) - -  max  ~ G*(Xi) <i 

U~oo dNl <=s~N i=1 =1 N ~  dul<=~NIk=l I 
= 0  a.s. 

using the conclusion of the first pa r t  of the proof.  

Proof of Theorem 2. Let {Z*(t), 0 < t __< 1, N = 1, 2, ... } be the sequence of polygonal  

interpolationfunctionscorrespondingto{G(Xi)-~Hm(X~),i>l}.Foreach 
N> 1, Z*(t) is po lygonal  and therefore 

= m a x  L (  ) sup ]/~(t)[ a(xi) J(m) 
o<_,~1 l<-k~N i= l  - - ~ .  H m ( & )  . 

The conclusion is now a direct consequence of T h e o r e m  1 and of Corol la ry  A2 
(part  I) of  the appendix.  
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6. Proof of Theorem 3 

A multigraph A E d  v is m-regular if all the points of A have degree m. 

Given m > 0, p > 1, let d v ( m  ) denote the set of all multigraphs of d p  that 
are m-regular, alp(m) is empty when mp is odd. When mp is even, any A e d v ( m  ) 

mp 
has q = ~ -  lines. 

Now, for given A ~ d v ,  (q, ..., tp)~[0, oo) p and D>0 ,  define 
t I tp 

So(A; tl . . . . .  tp) = j dxl  ... j dxp lx i l - x j i [  - ~  ... [ x i , -  xjq[ - ~  
0 0 

where (i 1,j0, ..., (iq,jq) is the pair sequence of A. 

Lemma6.1.  Let r e> l ,  p>2 ,  mp even, (tl . . . .  ,tv)e(0, oo)P, 0 < D <  ~1 and let 
m 

L: [0, oo)~(0,  oo) be a slowly varying function at infinity. Suppose that {r(k), 
k = O, + 1, ... } satisfies [r (k) l < 1 and r (k) = r ( - k) for all values of  k, and satisfies 
r(k)~k--DL(k)  as k ~ o o .  Let  d ~ N  -my+2 Lm(N) as N ~oo .  

Then for all Asdp(m) ,  

1 [Ntl] [Ntp] 
l i r a - -  V ... ~ R(,, ...... p ) (A)=Sv(A;  tl . . . .  , tp), 

x -  oo d p u~__l , ,= 1 

and 

2 max t -  m D + l  ]p/2 (a~i~vmin t 2i_<i_<pmax t;-"~V/2<SD(A,. _ = tl . . . .  , tp)<= 1 - r o d  l<=i<=p ~ ] " 

Proof  Let x=(x l ,  . . . ,xf l~lR p. For each integer 1 < s < p ,  and real numbers a 
and b, a < b, define the indicator function 

i ~ ) ( a , b ) = f  l if a < x ~ < b  and - o o  < x i < o o ,  i +s, i= l, ..., p 

lo otherwise. 

Let A6sJp(m), mp q = ~ - ,  t = max (q ,  ..., tp) and let 5~ be the Lebesgue measure on 

IRP restricted to the hypercube C = [0, t + 1] p. 2 is thus a finite measure. For all 
N >  1 and x~[0, t +  1] p define 

J~;N(A)= I~) N'I [Nt~]N + N  d([~, H r ( [ N x i ~ ] - [ N x j ~ ] )  
[ N s = l  ) 

and 

where ( i l , j l ) , . . . ,  (iq,jq) is the pair sequence of the multigraph A. Then 

[l [Nh] [Ntpl 

Z " ' Z 1 R  ( , _  ........ ,)(At = j J,;u(A) d2(x) 
d} ,~=l = c 
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and 

S D ( A  ; t l ,  . . .  , t p ) =  ~ Jx(A) d2(x). 
C 

Now, l imoJx;N(A)=Jx(A ) for almost every x in C. Also, for any 6>0,  

1 [m~] [Ntpl 
sup ! d2(x)  1+0 Jx;N (A)<sup " 2 IR( ........ p)(A)l 
N->I N>-I ~ N  1'" 

- -  - -  t l  = up=l  
[Nt] ) p/2 

<O(3 

by Lemma 4.4. JN,~ is therefore uniformly integrable in C. Hence 

lira 5 L;u(A) d2(x )=~ J~(A) dR(x) 
N~o:3 

which establishes the first part of the lemma. To establish the second part, note 
that 

(t 1 tp ) t -Dq<SD(A; t l ,  t p )<So(A ' t ,  t < lim NdN -2 
. . . . . .  ' . . . .  ' ) - - N ~ o  u= ~Nt] ]rm(u)] 

__ (21g-mD+ l ] p/2 

\ l - m D  / " 

Proof  of  Theorem3. a) If mp is odd, EHm(X,~ ) ... Hm(X,p)=O by Lemma 3.2 and, 
in expression (2.1), no indices satisfy the requirements i), ii) and iii). Hence 
#p(q,  ..., tp) =0  when mp is odd. Now suppose mp even. Using Corollary 4.2, get 

1 [~1 [Ntp] 
... ~ EHm(X~)... Hm(Xu) 

dfr .~ = 1 Up = 1 
1 [Ntll [Ntv] 

=(m!)P 2 g(A)~-u~l""*N~- Z R( ......... )(A). 
A ~ d  p(m) = Up = 1 

As N--+ 0% this converges to 

(m!) p ~, g(A) SD(A;t 1 . . . . .  tp) 
A~dp(m) 

( m  !)P h tp 
2 ~ d x 1  . . .  ~ d x p l X i l - x j l ]  - D  . . .  I X i q - - X j q l  - D  =]~p 

o o 

using Lemma 6.1 and Corollary 4.1. 

b) To get the bounds on/~p, use the bounds on SD(A; tl . . . .  , tp) that are given 
in Lemma 6.1 and use the relation (m!) p ~ g(A)=EHPm(X) which follows from 
Corollary 4.2. A~dp(~) 

C) E H ~ ( X ) = O  if mp is odd. Suppose mp even and m>2,  and write 

H,,(X)= b~X S. Note that bm=l and bin_l=0. Expand E bsX  ~ , isolate 
s=0 s=0 / 
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the te rm EX mp and bound  the other expectat ions by EX (m- 2)p to obtain  EH~(X) 

=EX~V+B(p) where [B(p)l< [bsl EX  (m-2)p. An appl icat ion of Stirling's 
kS= 0 

formula  shows that  [B(p)[ = o (EX rap) as p - *  o9. Hence,  for m > 1, m p even, and p ~ o% 

1 m 
EH~(X)~EX , . p_  (mp)! {C(m) 2 2pp ~}-p  

2 T ! 

where C(m) is a constant  depending on m. Thus  

# 2 )  X {EH~P(X)} 2 X 2 P - T  
p ~ l  p = l  p = l  

d) and e) The  #e's are momen t s  because they are limits of moments .  The 
1 tN~ 

sequence ZN, m ( t ) = ~ ,  ~ Hm(Xi) , N >  1, is tight in D[0, 1] (Taqqu (1975), Lem-  
N i = l  

m a  2.12), thus relatively compact .  There  exists therefore a subsequence ZN, m(t ) 
that  converges weakly, to Zm(t) say, as N'  ~ oo. The  finiteness of  the #p's (part  (b)) 
ensures uni form integrabili ty of any linear combina t ion  of ZN, m(q) , ..., ZN,~(tp), 
p > 1, and therefore the momen t s  of the f ini te-dimensional  distr ibutions of  ZN,,~(t ) 
converge to those of Z~(t) as N'  ~o9 .  Use par t  (a) to conclude that  the #p's are 
the momen t s  of the f ini te-dimensional  distr ibutions of  Zm(t ). Tha t  2re(t) is self- 

mD 
similar with pa rame te r  H = 1 - - ~ -  and a.s. cont inuous  follows f rom T h e o r e m  2.1 

of Taqqu  (1975). When  m =  1 or 2, Car leman ' s  condi t ion is satisfied (part (c)) 
and the momen t s  #p determine the f ini te-dimensional  distr ibutions uniquely. 
In these cases, ZN,m(t ) ~ Zm(t) as N ~ oo. 

CoroLlary 6.1. Expression (2.1) of Theorem 3 is equivalent to 

# p ( t l ,  . . . ,  tp)=(m!) p ~ g(A) SD(A; t l ,  . . . ,  tp) .  (6.1) 
A Ed p(m) 

Evaluation of some #p' s. 
When  m = 1 and p is even, expression (2.1) yields 

F_ ., 
and one recognizes the even momen t s  of a no rma l  distribution. 

When  m = 2  and p > 2 ,  

v2 . . . . .  vp>=O j = 2 ~  
2v2+, . .+pvp=p 

2 Errata. In Taqqu (1975), Theorem 2.1, replace the denominator in (i) by its square root; also each a, 
in the last four lines of the proof of Lemma 2.1 (with the exception of the a in Js(a, t2, t, q)) should 

1 
read a', where ~ <a '<  a 
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where 
1 1 

i (1 . )=  ~ dxl �9 S dxjlxl -x21-~lx2-x31-~ �9 Ix j _ l  -xjl-~lxj-xll  -D. 
0 0 

The easiest way to derive this expression is to use the fact that the cumulants are 
tq =0,  ~Ck=2k-l(k - 1)[ I(k), k > 2  when m = 2  (see Taqqu (1975)). 

When p = 2 and m > 1, expression (2.1) yields 

( m  t'12 ( tl t2 ) 

#2(tl, t2)= ~ g2m f I Ix1 - x 2 t-roD dx 1 dx 2 
2 m ! (  oo 

m! 2--roD 2--roD {t~ +t2 -It1 -t2[2-""}. 
(1 - m D ) ( 2 - m D )  

Often, it is easier to use expression (6.1). When p = 3  and m is even, d3(m ) 
contains only one multigraph, and hence (6.1) yields 

(mr)3  ~ t2ta mD mD ,riD 

Suppose now p = 4  and m> 1. Any multigraph of d4 (m)has  ( ~ ) = 6  pairs 

of points. Let vl, v2, . . . ,v  6 be the respective number of pair duplications�9 
mp 

v I + v 2 + . . .  + v 6 must be equal to the total number of lines, that is to 2 - = 2 m .  

We may define the v's such that v 1 =v4, v 2 =v5 and v 3 --v 6 since each point must 
have degree m. Using (6.1), we get 

(m[)4 tl t4 
! dxl "" i dx41(xl - x 2 ) ( x 3 - x 4 ) l  -vl~ # 4 ( t l '  t 2 '  t 3 '  t d ' ) =  2 (/)1 1 

v l ,vz ,  v3>=O �9 /02! /)3!) 2 0 
Vl -}- 122 -k i)3 = m 

�9 I ( x 2 - x , , ) ( x 3 - x l ) l - ' ~ l ( x , - x ~ ) ( x ~ - x g [ - ' ~ .  

Appendix: 

In this appendix, we extend results of Oodaira (1973a), (1973b), and establish 
functional laws of the iterated logarithm for certain Gaussian processes and for 
sums of non-Gaussian moving averages of independent and identically distributed 
random variables, whose covariance kernel, adequately normalized, converges to 
the covariance kernel of fractional Brownian motion. In particular, we establish 
the result referred to in the proof of Theorem 2 (Section 5). 

Let F(s, t), s, t~[0,1] be a continuous covariance kernel. The functions F(s, . ) ,  
sc[0,1] belong then to C[0,1]. The reproducing kernel Hilbert space (RKHS) 
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(F), with F as reproducing kernel, is the completion of the vector space spanned 
by the functions F(s, .  ), s~ [0,11, and endowed with the scalar product 

{2 c,r(s,. I, 2 c;r(s;, .)} =E E c~ c;r(s~, s;) 
i j i j 

(see Neveu (1965), page 84). Let 

K =  { h ~ ( r ) :  (h, h)l/2~ 1} 

be the unit ball of ovg (F). One may identify 4f ~(F), and hence K, with subsets of 
C[0,1]. K is then compact in the C[0,1] sup-norm topology (see for example, 
Oodaira (1972), Lemma 3, or Kuelbs (1976), Lemma 2.1 (iv)). 

The functional laws of the iterated logarithm established below state that 
certain functions z,, n > 3 of C [0,11 are contained in an e-neighborhood of K when 
n is large, and that the functions that are limit points of the sequence {zn} fill up the 
set K. This is formally expressed as lira d(zn, K ) = 0  and C{z ,}  = K ,  where d ( . , .  ) 

denotes the sup-norm distance in C [0,11, and where C {z,} represents the cluster 
set of the sequence z,, n > 3. 

Theorem A1. Let F(s, t), 0 < s, t < 1 be a strictly positive definite covariance kernel 
with F (t, t) strictly increasing to F(1,1). Let K be the unit ball of the R K H S  2/f (F), 
and finally, let 0 < H < I .  Suppose that {Z(t) , t>0} is Gaussian, has continuous 
covariance kernel, satisfies Z(O)= 0 and also 

(C-l) lim sup E Z ( r s ) Z ( r t )  t )=0 .  
r ~ 0o 0 <= s,t <= 1 r2I-IL(r) F (s, 

(C-2) There is a non-negative, strictly increasing and continuous function 4) on R + 
oo 

q~(e- ) du < oo, such that satisfying ~ 
1 

l~(Z(rs)- z (rt)) 2 __< 4, 2 (is - tt) r 2~/4r),  

for all O < s, t <  1 and r>0.  

z(ms) Z(nt) 
(C-3) l i m  EmUL1/Z(m ) n~L1/2(n)=O 

rn 
~ c o  

for all O < s, t < l. 

Then the sequence of functions { Z (n t), 0 < t < 1, n>__ 1}, belongs almost surely to 
C [0,11 and 

( Z(nt~ ) 
l im d \(2n2~/L(~ i ~  log n) 1/2' K = 0 a.s. (1) 

c f  z ( n t )  
li2n2H L ( n - ~ l o g  n),/2-;= K a.s, (2) 
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Proof (C-2) and Fernique (1964) ensure that the sequence Z, belongs to C[0,1] 
with probability 1. Introduce the lacunary sequence n, = [c"], u = 1, 2, ..., defined 
for arbitrary c > 1. 

lira EZnu (s) Z, .  (t)= lim EZ,~ (s) Z, .  (t)= 0 

n v  o(3 
nu 

follows from (C-3). {Z,. (.), u>  1} satisfies the conditions of Corollary 4.1 of 
Carmona and K6no (1976) and therefore 

Z,  u ) 
lim d (21oglognu)l/2,K =0  a.s. (1') 

t *~co  

znu } 
((2 log log nu) 1/z = K a.s. (2') 

since log log n, ~ log u as u ~ oo. However the conditions of the corollary of Theo- 
rem 1 of Oodaira (1973 a) are also satisfied. Hence for any s > 0, there is a c = c(e) > 1 
sufficiently close to 1 such that 

P fco: 3 u(s, co) such that for all u>u(s, co), 
t .  

n ~ < n < ( 2  zn(''co)loglogn) 1/2 (2loglogZn~("~!) } sup 1/2 cL~ <s  =1. 

(1) follows from (1') since e is arbitrary and K is closed in C[0,1]. (2) follows from 
(2') and (1) because 

K = C [(2 log l ~ n ~ r ~ J  c C(( 2 log ~ K a.s. 

This concludes the proof. 

Of particular interest is the covariance kernel F/~ of the fractional Brownian 
motion B u (t), 0 < H < 1. B~ (t) was defined for �89 < H < l at the beginning of Section 
2, but that definition extends to values of H satisfying 0 < H < 1 (see Mandelbrot 
and Van Ness (1968)). For example, BI/2 (t) is Brownian motion. For 0 < H < 1, 

Fu (s, t) = EBH(s) Bn (t) =�89 {s 2H + t 2H- Is - tl2n}. 

Let ~"(Fu) be the RKHS with Fr~ as reproducing kernel, and let KLr denote the 
unit ball of af(Fu). The following result is a consequence of Theorem A 1. 

Corollary A1. Let 0 < H < 1. Then the process Z(t) = Bn(t) satisfies the conclusion of 
Theorem A 1 with K = K~. 

The presence of regularly varying functions in the correlation kernel introduces 
technical difficulties. 

Lemma A1 (de Haan (1970), page 52). I f  U: 1R+--+IR + is p-varying at infinity 
( - oo <p < oo), then the relation 
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�9 U ( x t )  . 

holds uniformly on intervals of the form (to, tl) with 0 < t  o < t  1 < c~. I f  p < 0 ,  the 
restriction t: < oo can be dropped. I f  p > 0  and U is bounded on bounded intervals we 
may take t o = O. 

These properties of U are often used in the sequel but they are not  strong 
enough for our  purposes. 

Definition. Let - ~ < p  < oo. V: IR 1 --->IR 1 is smoothly p-varying if it is p-varying at 
infinity, and if, for arbitrary 0 < to, t~ < 1, there are constants x o > 0 and K = K (Xo, 
to, t l ) > 0  such that  

V(x) - < t g  

for all x > x o and to < t < tl x. 

Example. U(x)=x~ + 3 ) + x  ~ sin x) is p-varying at infinity for given 7_<0. It 
satisfies U (x) ~ x p log (x + 3) when x ~ m. When  0 < t o =< t < t 1 x < x, 

g ( x ) -  g ( x -  t) x ~§ t 2 x -  t 
x U(x) ~ t 0 ( 1 ) 4  l o g ( x + 3 )  2 s i n ~ c o s  2 

as x ~ o o .  Hence U(x) is smoothly  p-varying when 7 < -  1 but is not  smoothly 

P U(x) may be expressed as p-varying when 7 > - 1. Note  however that  for 7 _< - ~ ,  

U(x)=V(x)+O(Vt /2(x) )  for x ~ o o ,  where V(x)=x" log(x+3)  is smoothly p- 
varying. 

L e m m a  A2. Let v (x) be a (p - D-varying function at infinity with p > 0 ,  which is 
Ix] 

bounded on bounded intervals. Then V(x) = ~, v(k) is smoothly p-varying and satisfies 
1 k = l  

V ( x ) ~ x v ( x )  as x ~ m .  
P 

- i  

Proof. V(x) is p-varying at infinity since V(x )~ l - xv (x )  as x--.oo. Consider now 
P 

L g(x) - V(x - t)[ and suppose without  loss of generality that  x > 1 and Ix  - t] < [x]. 
Then  

Ix] 

IV(x)- v (x - t ) l<  Y', v(k) 
k = [ x - - t ] +  l 

< ([x] - Ix  - t]) max  v(k) 
[ x - t ] +  1 <kS[x] 

- < ( t + l )  max v([sx]) 
l _ - - t _ < s < l +  1 

x -  - x 

< ( t + l ) l  max v([sx]) 
- tl -<s-<2 

=( t  + 1) v ([sx x-I) 
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for some 1 - t, < Sx _-< 2 and 0 < ta < 1. But Sx is bounded  away  f rom zero and infinity. 
Applying L e m m a  A1, we get v([s~x])~v(sxx)~s~ -1 v(x)=O(1)v(x) as x ~ o o .  
Hence  for O<to<t<=qx and x--,ov, 

V ( x ) -  V ( x - t )  

x V(x) vtx)  \ ~ol 

Convention. The slowly varying function L(x) appear ing  in the sequel satisfies 

inf L(x) > 0 and sup L(x) < 
[0, x o] [0, Xo] 

for all Xo > 0. 

Theorem A2. Let {Xi, i> 1} be a sequence of stationary real Gaussian random vari- 
ables with mean zero. Let 0 < H< 1, and assume that as r ~  ~ ,  

/ [rl \2  
E { E x , )  = v(r) + O(r"L 

\ i=  i / 

with V(r)~ r 2H L(r) and V(r) smoothly varying. Define Z(O) = 0  and 

[t] 

Z ( t ) =  ~ Xi+X[tl+l(t-[t]) , t>O. 
i--1 

Then the process Z(t) satisfies the conclusion of Theorem A1 with K = K u. 

Proof It is sufficient to prove  that  condi t ions (C-1), (C-2) and ( C - 3 ) o f T h e o r e m A  1 
are satisfied. Let U(r)= rZL'L(r). Calculat ions show that  

E(Z(s ) -Z( t ) )  2 = V([s-tl)+O(UX/2Is-t]) as I s - t [ ~ ,  (1) 

E ( Z ( s ) - Z ( O )  2~  U(Is- t l )  as Is-tl--,~, (2) 

E(Z(s) - Z(t)) 2 <= C U(Is- tl) (3) 

for some cons tant  C > 0  and all s, t=>0. 

1) To  establish (C-I),  it is enough to p rove  that  

lira sup E(Z(rs ) -Z(r t ) )2  I s - t l 2 u = 0 .  
~ o _ _ < s , , ~ l  U(r) 

Let O < s , t ~ l  and suppose  without  loss of general i ty  that  s+t. As r ~ ,  
U (rls-  tl) 

tends to Is - tl zH uniformly for all 0 < s, t < l, since H > 0 and L is bounded  
m(r) 

on bounded  intervals ( L e m m a  A 1). Hence  for arbi t rary  ~ > 0, there is an R(~) such 

U(r[s-tD Is - t l  2~ <e,  for all r > R ( ~ )  and  O<_s, t<_l. Now, decompose  the that  U( r )~  - - 
f ~ ' x  

S = {0~S, t ~ l }  into two disjoint subsets $1 (r) ~-,,~[s- t[ ~ / ' ~ ) ~  and square  
( r )  
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S 2 ( r ) = { l s - t l < ~ } w h e r e  T(e)is such that, for any Irs-r t l>T(8) ,  

�9 E(Z(rs ) -Z(r t ) )2  1 
U ( r l s - t )  <8. 

(2) ensures that  such a T(8) exists. The  triangle inequali ty yields 

E(Z( r  s) - Z( r  0) 2 _ Is - tl2H 

E(Z(r s) - Z(r  0) 2 

=< m 1 
_-<8(1 +8)+8 ,  

U(rls-tl) .U(rlsz_!l) is_tl2 n 
U(r) + U(r) 

for all r > R (e) and (s, t)e $1 (r). When (s, t)~ S 2 (r), (3) yields 

E(Z(r s ) -  Z(r 0) 2 _tl2 H CU(rls-tl) tl2H Is ----< U(r) ~ls- 
< c(T(8))2nL(rls_tl ~- (~)an 

= < C ~  o =<~P(~,L(O + (-Tr(--~O Y ~' 
which tends to zero as r tends to infinity since L is bounded  on bounded  intervals. 

2) To  prove ( 0 2 ) ,  choose 0 < 3 < 2 H ,  and set W(r)=rOL(r). By (3), 

W(r s - t  ) s tl2It-~ r2H L(r) E(Z(rs ) -Z(r t ) )  2 < C  ~ ( ~  I - 

for all 0 _< s, t _< 1 and r >_ 0. Since lira ~Ww((r @ )  = u ~ uniformly in 0 _< u _< 1 (Lemrna A1), 
- - - , ~ o o  () 

there exists for arbi t rary 8 > 0, an R(8) such that  W(rls - tl) < Ls - tl ~ + e <= 1 + 8, for 
w ( r )  

all r > R (~) and 0 < s, t =< 1. On the other  hand, for all 0 < r < R (e) and 0 =< s, t __ 1 

W(rls- tl) I s -  t[ a L ( r i s -  tD < 
W(r) = L(r) = CI (e), 

where 

L(u))( inf L(u))- l<oo.  c ' (8)  o_<,,_<.<o, 

Hence (C-2) holds with q52 (s)= {C max(1 + 8, C 1 (e)} s :~-~. 

3) To  prove (C-3), we set m = na and show that  for all 0 < s, t < 1, 

EZ(nas)  Z(nt) 
l i ~  u'i~(n.) u~/~(,O=~ 
a ~ o o  
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Tha t  relat ion holds trivially when either s or t is equal  to zero since Z ( 0 ) = 0 .  
Suppose now s > 0  and t > 0  and without  loss of  generality, suppose also 

a >  a o - 2  -t . But 
s 

2 E Z(n a s) Z (n t) = E Z 2 (n t) + {E Z 2 (n a s) - E [ Z  (n a s) - Z (n t)] 2 }, 

and, because of (1), 

2 EZ(nas) Z(nt) 
U1/2(n,=F1) (n, a)+F2(n, a)+V3(n, a)F~(n, a), U1/2(na) 

where 

EZ2(nt) 
El(n, a)= U~/~(na) U~/~(n ), 

F 2 (n, a) = 

F 3 (n, a) = 

O(V1/e (nas)) + O(V1/2(n a s -  nt)) 
U 1/2 (i,~ a) U 1/2 (n) 

(as )  - 1  V(nas) 

U 1/2 (n a) U 1/2 (n)' 

v(nas)- V(nas- nt) 
v(nas) 

F~(n,a)=as 

l im F 1 (n, a) = 0 holds because 
a ~ c t g ~  

U(nt) g-1/2(na) U(nt) 
Fi(n'a) gl/2(na) gl/2(n) - g-1/2(n) U(n) 

a-H t2H 

as n ~ o o ,  uniformly in a~[ao,oO ) ( L e m m a  A1). Consider  now lim F2(n , a) and 

recall that  V( r )~  U(r) as r--, ~ .  For  sufficiently large n and for all a > ao, there are 
posit ive constants  C 1 and C 2 such that  

t 

F2(n, a)< U1/2(na) ~ - f  U1/Z(nas ) UiTf(n ) . 

U1/2(has) it 
But lira U-1/Z(n)=0, lira - - = s  uniformly in a~[ao, oo), and, as n ~ o o ,  . . . . . .  U1/2(na) 

U (nas ( 1 - t )  ) 1/2 

U(nas) t e n d s t o ( 1  t ) u - - -  uni formly in a~[ao ,  c~) since 1 <  1 _ t <  1 
as 2 = as = 

( L e m m a  A1). Therefore,  lira F2(n, a)=0. Moreover ,  
n ~ o o  
a ~ o o  
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U1/2(nas) (as) -1 U~/2(nas) 
lim F3(n, a)= lim U1/2(na) lim U 1 / 2 ( n  ) 

(nas)ii- 1 L1/2 (has) 
=sil  lira 

n i t  - 1 El~2 ( n )  n ~ cx? 

a ~  ao  

= 0  7 

using Lemma A1 and H -  1 <0. 

We now exhibit a uniform upper bound for [F4(n, a)l. Since V(r) is smoothly 
2 H-varying there are constants r o > 2 and K = K (to) > 0 such that 

V(r) - v ( r -  ~) 
r i ~  - _-<~K~ 

holds for all r>r  o and l<z___ 2. But for all a > a  o and n >  r~ , we have n a s > r  o 
a o s 

and 1 <nt<�89  nas, and therefore 

1 I V ( n a s ) - V ( n a s - n t )  < n t K 1  
= - n a s  = t K  1. IF4(n, a)[ n V-(n~)s) = n 

This proves (C-3) and concludes the proof of the theorem. 

Corollary A2. Let {Xi, i>1} be a sequence of real stationary Gaussian random 
variables with mean 0 and covariances r (k) = E X~ X~+ k, k > 0. Suppose either 

or  

~1/2</ - /<  1 
(I) [r(k)~k2~r_2L(k) as k--,oo 

0 < / / < 1 / 2  

(II) [ r (k ) . .~ -k2 t t -2L(k )  as k--*oo 

~r(O)+2 E r(k)=O. 
k = l  

Define Z( t )=  ~ X i + X m +  1 ( t - [ t ] ) ,  t>0 ,  with Z(0)=0.  
/=1 

Then the process Z(t) satisfies the conclusion of Theorem A 1 with K = K n and with 
L(t) 

L(t) replaced by H ] 2 H -  1]" 

Proof. Under either assumption (I) or (II), 

L L L u(m) 
i = 1 j = 1  m = 2  

where 

,~-1 2 u(m)=r(O)+2 ~ r(k) m 2 ~ - 1  L(m) 
k=l 12/-/--1[ 
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~, 2m 2 u-  1 L(m) 
as m-*oo. For example, under assumption (II), u(m)= - 2  r(k) 

k=,~ 1 2 g - l l  
as m ~  oo (de Haan (1970), page 15). By Lemma A2, as r--* oo. E Z 2 ([r]) is smoothly 

2 r 2 n L(r) 
2H-varying and satisfies EZ2([r])~ . An application of Theorem A2 
completes the proof. 2 H I H -  11 

We now obtain a law of the iterated logarithm for non-Gaussian moving 
averages {Xj, j > 1} by using a result of Oodaira (1973 b). 

Corollary A3. Let { ~k, -- oO < k < + oo } be a sequence of independent and identically 
T o O  

distributed random variables with mean 0 and variance 1. Let X j=  ~ Ck-j ~k, 
k =  - -  o o  

j = 1, 2, with 2 ... c k < oo. Suppose in addition 
k =  - -  o o  

(a) El~kl2i < oo,for some i>2, 
k 

(b) ~, E X  1Xl+m~aZk  2H-1 as k-~oo, with a 2 > 0  a n d l < H < l ,  
m=l 1 

1 (c) Ick]=O(n~), Ickl=O(n~), with f l < H - ~ ,  
k=0 k= -n 

( -~1 )2 -n6-1 ( ~ ) 2  
(d) Ck_ j =O(n;~(a)), ~ Ck_ j =O(nX(a)), 

k=6 +1 j-  k=--ao \j=l 

with 2(6)< H-2.for,  some 6< flH1/4 . 

[tl 

Define Z (t) = ~ Xj  + X m +, (t - [t]), t > O, with Z (0) = O. 
j=l 

Then the process Z(t) satisfies the conclusion of Theorem d 1 with K = K H and 
(7 2 

C(t) =~. 

Proof. Let {B(t), t>0} and {B(t), t<0} be two independent Brownian motion 
processes satisfying B(0) = 0. Define 

X*= ~ G_; (B(k ) -B(k -1 ) ) ,  j = 1 , 2 , . . . ,  
k= --o'.> 

[t] 

and let Z*(t)= ~ X; + X m + l ( t - [ t ] )  , t > 0  with Z*(0)=0. Note that 
j=l 

E(Z* (n))2 = E Z  2 (n) for all n => 1. By Lemma A2, as r ~  Go, E(Z* ([r])) 2 is smoothly 

a2 r 2H By Theorem A2, the conclusion 2H-varying and satisfies E(Z*([r])) 2 ~ . 

of this corollary holds for Z*, and therefore it holds for Z since, under the con- 
ditions of the corollary, Skorokhod representation yields 

lim sup Z(nt) Z*(nt)n)l/2 =0 
~ o_<t_<l (n2Hloglogn) 1/2 (n2H1oglog 

(Oodaira (1973b)). 

Example. X j =  kH-3/2 ~;-k, ~ < H <  1, with E ~ i <  oo for some i > - -  
k : l  1 - H "  
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