On Prabhu's Factorization of Lévy Generators

Priscilla Greenwood

I. Introduction

Let X(t) be a Lévy process, i.e. a Hunt process with stationary, independent increments. Let A denote the infinitesimal generator of X(t), with domain taken as C^{∞} , the class of infinitely differentiable functions u(x) such that u and all its derivatives are bounded. Prabhu showed [2] that for each $\theta > 0$, $\theta I - A$ can be factored in terms of the generators of a subordinator and the negative of a subordinator, with the same domain,

$$\theta I - A = (\theta_1 I - A^{\theta_+})(\theta_2 I - A^{\theta_-}), \tag{1}$$

where $\theta = \theta_1 \theta_2$. The factorization is unique. To obtain (1) Prabhu factored the resolvent of A and inverted the resulting equation. The operators $A^{\theta+}, A^{\theta-}$ he identified in terms of processes associated with the maximum and minimum processes of X(t).

In this note a direct statement about the structure of X(t) is obtained from Eq. (1). For background, terminology, and examples we refer the reader to Fristedt's recent monograph [1] and to Prabhu's paper [2].

II. Notation and Constructions

If X(t) is a Lévy process, its infinitesimal generator A takes the form

$$A u(x) = \int [u(x+y) - u(x) - \chi(y) u'(x)] v(dy) + \gamma u'(x) + \Gamma u''(x),$$

where

$$\begin{aligned} & -1, \quad y < -1 \\ \chi(y) = & y, \quad |y| \le 1 \\ & 1, \quad y > 1. \end{aligned}$$

The measure v, called the Lévy measure, together with the constants γ and Γ determine X(t) up to equivalence. At 0, v is defined to be 0.

Let $S^{\theta}(t)$ denote the Lévy process with Lévy measure $e^{-\theta t} t^{-1} dt$, t > 0, and no drift, i.e. $\gamma = \int \chi(y) v(dy)$, for each $\theta > 0$. This family of processes has the useful property that the transition measure $F(\tau, dt)$ at $\tau = 1$ is $\theta e^{-\theta t} dt$. If the semigroup of X(t) is denoted by T_t , the resolvent at θ is $R_{\theta} = \int_{0}^{\infty} e^{-\theta t} T_t dt$, and θR_{θ} is the semigroup at t = 1 of the process $X(S^{\theta}(t))$. Prabhu used this property of the process $S^{\theta}(t)$ in his proof of (1).

The process $X(S^{\theta}(t))$ has generator A^{θ} of the form

$$A^{\theta}u(x) = \int_{-\infty}^{\infty} \left[u(x+y) - u(x) \right] v_{\theta}(dy), \qquad (2)$$

where

$$v_{\theta}(dy) = \int_{0}^{\infty} e^{-\theta t} t^{-1} F(t, dy) dt, \quad y \neq 0,$$

and F(t, dy) is the transition measure of X(t). From (2) we see that

$$X(S^{\theta}(t)) = X(S^{\theta}(t))^{+} + X(S^{\theta}(t))^{-}$$
(3)

where the processes on the right are independent with generators given by (2) with the integral restricted to $(0, \infty)$ and $(-\infty, 0)$ respectively. We note that for each of these processes, $\Gamma = 0$ and γ is $\int \chi(y) v_{\theta}(dy)$ with integral over the appropriate interval.

Two-dimensional Lévy processes $Z^+(\tau)$ and $Z^-(\tau)$ were constructed from the maximum and minimum processes of X(t) by Fristedt in [1]. Let

$$M^+(t) = \sup_{0 \le s \le t} X(s), \quad M^-(t) = \inf_{0 \le s \le t} X(s).$$

Let L(t) be the local time at zero of $M^+(t) - X(t)$, and $t^+(\tau) = \inf\{s: L(s) \ge \tau\}$. Then $Z^+(\tau) = (t^+(\tau), M^+(t^+(\tau))$ is a 2-dimensional Lévy process, and so is $Z^-(\tau) = (t^-(\tau), -M^-(t^-(\tau)))$, constructed similarly.

III. Relation of a Lévy Process to Its Maximum and Minimum Processes

Theorem. Let X(t) be a Lévy process and $\theta > 0$. There exist $\theta_1, \theta_2 > 0$ such that $\theta = \theta_1 \theta_2$ and

$$X(S^{\theta}(t)) = Y^{\theta+}(S^{\theta_1}(t)) + Y^{\theta-}(S^{\theta_2}(t)), \qquad (4)$$

where

(i) the terms on the right in (2) are independent processes and each $S^{\theta_i}(t)$ is independent of each Y^{θ^*} ,

(ii) $Y^{\theta}(t)$ is a Lévy process with Lévy measure $\int_{0}^{\infty} e^{-\theta t} v \cdot (dt, dx)$, and $v \cdot (dt, dx)$ is the Lévy measure of the process Z defined above; $v \cdot is + or - i$.

The processes $Y^{\theta+}(S^{\theta_1}(t))$ and $Y^{\theta-}(S^{\theta_2}(t))$ are equivalent to $X(S^{\theta}(t))^+$ and $X(S^{\theta}(t))^-$, respectively.

Proof. The Eq. (1) is equivalent to the resolvent equation

$$R_{\theta} = U_{\theta_1}^+ U_{\theta_2}^-$$

where $U_{\theta_1}^+$, $U_{\theta_2}^-$ are the resolvents at θ_1 , θ_2 of the processes with generators A^{θ_+} , A^{θ_-} . These processes are identified [2] as Y^{θ_+} , Y^{θ_-} as given in (ii). Since $\theta = \theta_1 \theta_2$,

$$\theta R_{\theta} = \theta_1 U_{\theta_1}^+ \theta_2 U_{\theta_2}^+. \tag{5}$$

As noted in Section II, θR_{θ} is the Laplace transform of the semigroup at t=1 associated with the process $X(S^{\theta}(t))$, where $S^{\theta}(t)$ is defined above. Similarly,

 $\theta_1 U_{\theta_1}^+$ and $\theta_2 U_{\theta_2}^+$ are the semigroups at t=1 associated with $Y^{\theta_+}(S^{\theta_1}(t))$ and $Y^{\theta_-}(S^{\theta_2}(t))$. A Lévy process is determined by its semigroup at one positive value of t. Using the semigroup property, commutativity, and continuity, we see that the semigroup of $X(S^{\theta}(t))$ is the product of those of $Y^{\theta_+}(S^{\theta_1}(t))$ and $Y^{\theta_-}(S^{\theta_2}(t))$. Relation (4) follows.

From the known properties of subordinated processes (see [1]) it is easily seen that the constant γ for each process on the right in (4), as was noted above for each process on the right in (3), is $\int \chi(y) v(dy)$ where v(dy) is the Lévy measure of the process in question. In each case $\Gamma = 0$. The two independent processes on the right in (4) have Lévy measures with support in $(0, \infty)$, $(-\infty, 0)$ respectively, and these measures are the restrictions to $(0, \infty)$, $(-\infty, 0)$ of v_{θ} . The processes $X(S^{\theta}(t))^+$ and $X(S^{\theta}(t))^-$, have, respectively, the same identifying v, γ, Γ as $Y^{\theta+}(S^{\theta_1}(t))$ and $Y^{\theta-}(S^{\theta_2}(t))$, and so are equivalent processes.

References

- 1. Fristedt, B.: Sample functions of stochastic processes with stationary, independent increments. Advances in Probability 3, to appear
- Prabhu, N.U.: Wiener-Hopf factorization for convolution semi-groups. Z. Wahrscheinlichkeitstheorie verw. Gebiete 23, 103-113 (1972)

Priscilla Greenwood University of British Columbia Department of Mathematics Vancouver 8, B.C. Canada

(Received April 24, 1973)