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Hitting of Submanifolds by Diffusions 

S. Ramasubramanian 
Stat-Math Division, Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560059, India 

Abstract. It is proved that a ( d - 2 )  or lower dimensional C2-submanifold 
is a polar set for a nondegenerate d-dimensional diffusion process. A similar 
result is established also for diffusions in a closed half space with reflecting 
boundary conditions. 

1. Introduction 

Let W(t) be a d-dimensional Brownian motion, where d > 2. Note that its two 
dimensional projection nW(t) is a two dimensional Brownian motion. It is 
known that a two (or higher) dimensional Brownian motion does not hit any 
specified point (see p. 634 of Doob  (1984)). As nW(t) does not hit any specified 
point in IR2, it follows that W(t) does not hit any (d-2)-dimensional  subspace 
of IR e specified in advance. 

This suggests the following problem: Can a non degenerate d-dimensional 
diffusion process X(t) hit a ( d - 2 )  or lower dimensional C2-submanifold of iRa 
specified in advance ? This problem is considered in the present article. As may 
be expected in view of the preceding paragraph, the answer is in the negative. 
Indeed, it is proved in Sect. 2 below that any ( d - 2 )  or lower dimensional 
Ca-submanifold of IRa is a polar set for a non degenerate d-dimensional diffusion 
process X(t). This is done in two stages. First it is shown that a ( d - 2 )  or 
lower dimensional subspace is a polar set for X (t); and it is equivalent to showing 
that the origin is a polar set for nX(t) where n is the appropriate projection 
(see Theorems 2.3 and 2.4 below). The point here is that nX(t) is not a Markov 
process and hence the machinery of probabilistic potential theory is not  appli- 
cable. We get around this difficulty by estimating the probability of the process 
n X(t) hitting the outer shell of the annulus {c < [y I< n} before hitting the inner 
shell (such a technique has been used in studying recurrence of diffusions); and 
then shrink the inner shell to the origin. Next, let M be a k-dimensional 
C2-submanifold where k < d - 2 .  We can write M = U Mi where each Mi is diffeo- 
morphic to the k-dimensional unit ball. To prove that M is a polar set it is 
enough to prove that each Mi is a polar set. For  this the diffeomorphism between 
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M~ and the k-dimensional unit ball is extended to the whole of IRa; we look 
at the transformed diffusion under this diffeomorphism and use the first part 
(Lemma 2.6 and Theorem 2.7). 

In the case of a ( d -  1)-dimensional submanifold, the situation is quite differ- 
ent. For, a nondegenerate diffusion escapes out of a bounded set in finite time; 
consequently it hits the (d-1)-dimensional submanifold 0D with probability 
one, if it starts from inside D, where D is any sphere in IRa. Even if it starts 
from outside D, in view of the support theorem (p. 168 of Stroock and Varadhan 
(1979)), it hits 0D with positive probability. Also, for recurrent diffusions the 
probability of hitting 0D is unity, whatever be the starting point (see Bhattacha- 
ryya (1978)). 

In Sect. 3 we extend the results of Sect. 2 to diffusion processes in the closed 
half space G = {x EIRa: x 1 > 0}, where d > 2, with reflecting boundary conditions. 
Similar techniques as in Sect. 2 are employed; they work mainly because the 
extra term involved in estimating Prob. (reX(t) hits OB(O:n) before 8B(0:c)) 
vanishes under normal reflection at the boundary;  and the case of oblique reflec- 
tion at the boundary is reduced to the case of normal reflection using an earlier 
result of the author (see inequality (3.3) and the proof of Theorem 3.3). 

It would be interesting to have similar results for diffusions with boundary 
conditions in more general domains. However, for an arbitrary domain, it is 
not clear how to obtain estimates (like (3.3)) which are well behaved with respect 
to even normal reflection. Of course, for any domain which is diffeomorphic 
to the half space our results clearly hold. 

A remark is perhaps in order. Polar sets are the negligible sets of potential 
theory. For  state spaces which have nice geometric structures, it is natural to 
seek sufficient conditions in terms of the geometry of the space for a set to 
be polar. However, such a problem does not seem to have been studied even 
for the Brownian motion in IRa, where d > 3 (let alone diffusions or diffusions 
with boundary conditions). The only result known in this direction seems to 
be that any (d -2 )  or lower dimensional affine subspace is a polar set for the 
d-dimensional Brownian motion (see Doob (1984) or Bliedtner and Hansen 
(1986)). In view of the methods developed in the present article, the difficulty 
in extending such a result to submanifolds is due to the following: Under a 
diffeomorphism the Brownian motion is transformed into a diffusion process 
(with non constant coefficients) whose projections are not Markov processes. 
Thus, even for 3 or higher dimensional Brownian motion our result does not 
seem to be previously known. 

2. Diffusions in IRa 

Let d >  2. We have the diffusion coefficients a, b defined on IR a satisfying the 
following conditions. 

Conditions. (1). (11) For each x EIR a, a(x)= ((al;(x)))l <=i,j<=a is a d x d real symmet- 
ric positive deinite matrix; a(.) is continuous; there exist constants 2 o and 21 
such that 0 < 2o =< 21 < oo and any eigenvalue of a (x)E [2~o, 21] for all x E IRa; 
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(I2) b( ' )=(b~( ' )  . . . .  , bd(')) is a bounded and continuous IR d valued function 
on IR d. 

Define the elliptic operator  L by 

1 ~lalj(x ) ~2f(x) , d 
L f (x)= ~ - ~  i=1 ~ bi(x) a f (X)axi (2.1) 

Let Q = C ( [ 0 ,  oo): NJ) be endowed with the topology of uniform convergence 
on compacta. Let X(t) denote the t-th coordinate map on ~2; let ~ = a { X ( s ) :  
0 < s < t}, t > 0, be the natural filtration in f2. 

Let {P~: xelR d} be the diffusion corresponding to L. That  is, for each xelR d, 
P~ is the unique probability measure on (2 such that 

( i )  = 1 

(ii) for any feC20R a) 

f (X(t ) ) -  i Lf(X(s)) ds 
0 

(2.2) 

is a P~-martingale with respect to ~ .  

a basic theorem of Stroock and Varadhan (1979) that such a diffusion It is 
exists under conditions I. Moreover  the process X(t) is strong Markov and 
strong Feller under {Px}- 

We shall denote by Bk(X : r) the open ball in IRk with centre at x and radius r. 

Lemma 2.1. Let conditions I hold. Let k <d; let ~: ]Rd---,IR d-~ be the canonical 
projection onto the first (d-k)  coordinates. Let D be a nonempty bounded open 
subset of lR d-k and t / = i n f { t > 0 :  rcX (t)(~D}. Then sup{E~(q): xeDXIR k} < oo. D 

A similar lemma is proved for diffusions with boundary conditions in the 
next section. As the proof of the above lemma is easily obtained from the proof 
of Lemma 3.1, it is omitted here. 

For  xEP, d such that ~(x)+0,  where ~ is as in the preceding lemma, set 

d - k  

A(x)= ~ aij(x) xix i 
I (x)l 2 '  

d - k  d - k  

B(x)= Y a.(x), C(x)=2 
i = l  i = l  

(2.3) 

For  r > 0, define 

fl(r)= inf B(x) -A(x)+C(x)  (2.4) 
I~J =~ A(x) 
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Let c > 0. For r > 0 define 

I(r; c ) = i  1 fl(u) du 
U r 

r 

F (r; c) = ~ exp ( -  I (u; c)) d u. 
c 

(2.5) 

Note that A( ' )  is bounded away from zero. Hence fl is well defined and bounded 
over (0, n] for every n > 0 ;  consequently the quantities in (2.5) are well defined. 

r r 

Lemma 2.2. Let  conditions ( I )  hold; let k and ~ be as in the preceding lemma. 
Let  c, n be real numbers such that 0 < c < n. Then for  x eN.  a such that c < [ z~ (x) [ < n, 

where 

and 

F ([ zc,(x) I ; c) ~ p~ (z, < zc) 

r t n ;  c) 

z.=inf{t__>0: r~(X(t))eOBe_k(O:n)} 

zc = inf { t > 0: zc (X (t)) e ~ Be- k (0 : C)}. 

(2.6) 

Proof. Follows from the preceding lemma and Lemma 2.1 of Ramasubramanian 
(1983) (see also Lemma 3.2 below). D 

The next two results state that the diffusion does not hit a ( d - 2 )  dimensional 
subspace. 

Theorem 2.3. Let  conditions ( I )  hold and let k < d - 2 .  Le t  M = { x ~ N a :  x~=0 
for  j = 1, 2 . . . .  , d -  k}. Then 

P~({X (t) ~ M for  some t >-_ 0}) = 0 

for  all x ~ M.  

Proof. Let re: •d ~ N a - k  be the canonical projection onto the first ( d - k )  coordi- 
nates; note that re(M)= {0}. For proving the  theorem it is enough to establish 
that \ 

P~({rc(X(t)) = 0  for some t>=' 0})=0 (2.7) 

for all xq~M. 
Since k < ( d - 2 ) ,  note that for any x~lR d, 

B (x) - -A(x)  > sum of(d--  k -1 )  eigenvalues of ((ai~(x)))l __<i.~ d-k > (d -- k - 1) 20 > 0. 
(2.8) 

Consequently 

lira 1 f l(s)= co. (2.9) 
s ~ O  S 
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Let x C M  be fixed. Then r= l~ (x ) l>0 .  Let ro, n be fixed such that O<ro<r<n.  
It is simple to check that for c > 0, 

r 

S exp(--I(u;  ro)) du 
F(r; c) _c  

n 

F(n; c) Sexp(_ i (u ; ro ) )du  
C 

n 

e x p ( - I ( u ;  r0) ) du 
r 

=1 

ro exp [ r ~ l f l ( s ) d s ] d u +  s ro i' exp ( - I (u"  ' r~ 
c U 

By (2.9) the first integral in the denominator on the right side of the above 
equation tends to oo as c$0; and the other terms on the right side of the 
above equation are independent of c. Thus for any x(iM, any n>l~(x)l we 
have 

lim f(l~z(x)l; c )_  1. (2.10) 
~,o F(n; c) 

By (2.6) and (2.10) we get 

lim Px (% < z~) = 1 (2.11) 
c+O 

for any x(sM and all n>}~c(x)I. Now (2.7) is an immediate consequence of 
(2.11). This completes the proof. 

Remark. If k = d - 1 ,  then (2.8) fails to hold; consequently (2.10), (2.11) and (2.7) 
cannot be asserted. In fact, a non degenerate diffusion hits any ( d -  1) dimensional 
hyperplane with positive probability. 

Theorem 2.4. Let conditions ( I )  hold and let k <-d-2.  Let M be as in Theorem 2.3. 
Then M is a polar set for the diffusion X (t), that is, 

P~({X(t) ~ M  for some t > 0}) = 0 (2.12) 
for all x in IRa. 

Proof In view of Theorem 2.3 it is enough to prove (2.12) for x~M.  For e>0,  
let 

z~=inf{t>0:  X (t)(! mXBd_k(O : e)}. 

Then by Lemma2.1 P x ( % < ~ ) = l  for all x~M.  Now by the strong Markov 
property and Theorem 2.3 we get 

P~({X(t)~M for some t>z~})=0 (2.13) 

for all x a M and e > 0. 
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Let P (t, x, -) denote the transition probability function of the Markov process 
X (t); let 

zo= in f{ t>0 :  X(t)q~M}. 

As k < d - 2 ,  by Lemma9.2.2 (p. 234) of Stroock and Varadhan (1979) 
P(t, x, M ) = 0  for all t > 0  and x. Hence by Exercise (3.9) or (3.13) of Chap. II 
(pp. 82-83) of Blumenthal and Getoor (1968) it follows that every x in N a is 
regular for M~; that is, P~(zo = 0)= 1 for all x ~Nd. Therefore by Proposition (10.4) 
of Chap. I (p. 53) of Blumenthal and Getoor (1968) it follows that 

P~ ({lira ~ = 0 } )  = 1 ( 2 . 1 4 )  
e~O 

for all x e M .  From (2.13) and (2.14), now (2.12) follows for any x~M.  This 
completes the proof of the theorem. 

The next lemma concerns transformation of diffusions under diffeomor- 
phisms. 

Lemma 2.5. Let conditions I hold and let L be given by (2.1). Let T: IR~ ~ IR e 
be a C2-diffeomorphism given by 

(x l, x2 . . . . .  x~) ~ T ( x l ,  . . . ,  x , ) ,=  (zl (x), z2 (x), . . . ,  z ,(x)).  

Let jT(X)=|[OZk(X)II// \ \  denote the Jacobian of the diffeomorphism T at x; suppose 
\ \  ~Xi  11 

there exist constants c 1 and c2 such that 0<Cl=< []jT(x)]E < c 2 <  oe, for all x e •  e. 
9 2 Z k 

Assume further that - -  are bounded and continuous functions for 1 < i, j, 
k<=d. For z ~ N  ~, let C?Xg~X~ 

8(z) = ((akin(z))) =j* ( T -  l (z)) a( T -  I (z)) jT(  T -  I (Z)), (2.15) 

~k(Z) = ~ aij(T-a(z)) (T-l(z))  
i , j = l  " j 

d C~Zk 
+ ~" bi(T-  I(Z)) ~ X / ( T -  1 (z)), 

i=1  
k =  1, 2, ..., d. (2.16) 

Define the operator L by 

k,m = 1 

~?2f(z) d 
gz k gz,, ~- ~ ~k(Z) Of(z) (2.17) 

k= 1 ~Zk 

Define T: C([-0, oe): IR d) -~ C([O, oo): I1 d) by (Tco)(t)= T(co(t)). For any g~C~(N d) 
define ~, by ~,(x)=g(T(x)). 7hen 
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(i) L~,(x)=Lg(z), where z=  T(x); 

(ii) 8 and ~ also satisfy Conditions ( I ) ;  and L is a uniformly elliptic operator 
with ellipticity constant 2 o c12; and 

(iii) {P~7"-I:xEIR a} is the diffusion corresponding to L, where {P~: xe lR  a} 
is the diffusion corresponding to L. 

Proof An elementary differentiation yields 

�89 ~ [ ~  Oz.,(x) Oz~(x)] ~g(z(x)) 
k,.,= 1 ,. 1 aij(x) 

[ 1  d ~ 2 Z k ( X  ) a ~zk(x)] c~ g(z(x)) 
+ ~ aij(x) + ~. bi(x) k=l ,,j=l ~x,~xj ,=1 ~2~-x~ ] ~zk 

= 1  a a 2 ~ ak"(Z(X)) 02g(z(x)) ~- ~ ~k(Z(X)) 0g(z(x)) 
k,m=~ ~Z.,~Zk k=l 8Zk 

whence the first assertion of the 1emma follows. Continnity and boundedness 
of 8 and b are clear; that 8(z) is a (d x d) real symmetric matrix for each z 
is also easy to see. For z, y~lR a, note that 

( 8(z) y, y )  > 2o [[jr( T -  l (z)) y[[ 2. 

As jT(T-I(z))  is nonsingular it now follows that a(z) is positive definite for 
each z. Next, any z61R d note that 

H a (z)- 1 ][ = [IJ'fl (T - 1  (Z)) a - i  (T-a  (z)) j* -1 (T-  1 (Z)) ]l 

~ , o  t C12 < o0, 

from which the second assertion of the lemma follows. 
To establish the third assertion, let / ~ = p ~ - i  where z=T(x) .  Let 0 < t l  

< t 2 <  oe and let E~Ntl.  Note  that 7~-l(E)eNn.  Let fEC2(IRd). Using the first 
assertion of the lemma and (2.2) it is easy to see that 

t2 ] 
= ~ (x(t~, o~))-f(x(o, ~))- ~ Lf(X(~, o~))ds dPAo)) 

T -  ~ (E) 0 

= f ( x ( t l ,  o~))-f(x(o, co))- f Lf(X(s, ~o))as dPx(~o) 
7c - ~ (E) 0 

[y 7, ] =~ (X(t 1, co))-f(X(O, co))- o ~ L,f(X(s, co))ds d~(o)) 

whence the third assertion of the lemma follows. This completes the proof. 



156 S. Ramasubramanian 

Lemma 2.6. Let K be a compact subset of lR" such that there is a C 2 - d i f f e o  - 

morphism q): K~Bm(O: 1). Then there exist a C2-diffeomorphism T of lR" and 
a compact set _~ of lR" such that 

(i) T(y)=q)(y) for all yeK;  

(ii) T(y)=y for all y ~ g ;  

(iii) there exist constants cl and c2 such that 

O<Cl < [[jT(y)[[ <=C2 < O0 for all yelR", 

where j r  is the dacobian of the transformation T; and 

(iv) all the second order partial derivatives of the transformation T are bounded 
and continuous functions on lR". 

Proof. Define the functions 0o and 01 from B"(0 : 1) into lR" by @o(y)=y and 
01(y)--~,0-1(y) respectively. Note that 01(B"(0" 1))=K. Since K is the diffeo- 
morphic image of Bin(0 : 1), K is orientable, and hence we may assume without 
loss of generality that both 0o and 01 preserve orientation. Then by Theo- 
rem 8.3.1 of Hirsch ((1976), p. 185) 0o and 01 are isotopic. As 0o extends to 
the identity map on the whole of lR", by Theorem 8.1.3 (p. 180) and Exercise 4 
on p. 182 of Hirsch (1976), there exists a C2-diffeomorphism ~t :  lRm _.lR" and 
a compact set /~ of lR" such that ~l(y)=O1(y) for yeB"(0 :  1) and ~ l ( y ) = y  
for yr It is now clear that y~-~j(y) is a Cl-map, that 0<~1 _-< [[j(y)[[ <~2 < ~ ,  
and that all the second order partial derivatives of ~1 are bounded continuous 
functions, wherej  is the Jacobian of the transformation ~1 and ~1, Oz are suitable 
constants. Take T -  ~i- 1 ; then T has the desired properties. 0 

Let M be a CZ-submanifold of lRe of dimension k. That is, M is a subset 
of lRd with the induced topology, and for each x e M  there is an open set U__lRd 
and a C2-diffeomorphism q0: U--,IR d such that xeU,  ~0(x)---0 and Mc~U 
= q~- 1 (Nk), where lRk={yelR d" y~=0, 1 <_i<_d-k}. 

We can now state the main theorem of this section. 

Theorem 2.7. Let Conditions I hold and let L be given by (2.1); let {Px" XelRd} 
be the diffusion corresponding to L. Let M be a C2-submanifold of lR d of dimension 
k, where k < d -  2. Then 

P~({X(t)eM for some t > 0}) = 0 (2.18) 

for all x in lRd; that is M is a polar set for the diffusion. 

Proof. Note that M is separable; let {xl, x2, ...} be a countable dense set in 
M. Then there exist Ki, ~o~ such that 

(i) K i is a compact neighbourhood of x i in N d; 

(ii) qh:K i --* Bd(0 : 1 ) is a C2-diffeomorphism with q)i(xi)=0; 

(iii) K~c~M=q~I(Bk(O:I)); that is, yeK~c~M if and only if rc(~oi(y))=0 and 
II ~o~(y)H < 1, where re: lRd--* IR d- k is the canonical projection onto the first ( d - k )  
coordinates. 
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Note that M=U(K~caM); therefore to prove the theorem it is enough to 

prove that 

Px({X(t)~Ki~ m for some t > 0 } ) = 0  (2.19) 

for i=  1, 2, ... and any x. 
Let i be fixed. Set K = K  i. Then by Lemma 2.6, there exists a C2-diffeo - 

morphism T of IR e (which is an extension of cpi ) such that 

T(Kc~M)=B~(O'I)={zelRd: zj=0,  l<j<=d-k, Ilzll ~ 1} 

and satisfying the hypothesis of Lemma 2.5. Let 5, 5, L, T be as in Lemma 2.5. 
Now by Theorem 2.4 and Lemma 2.5, for any xelR e, we get 

Px({co: X(t, co)eKc~M for some t>0}) 

= P~({co: X(t, 7"co)eBk(0 : 1) for some t>0}) 

=P~ ~-1({o0': X(t, co')eBk(O" 1) for some t>0}) 

=0 .  

Since i is arbitrary, (2.19) is thus established. Hence the theorem is proved. D 

Remark 2.8. Let M be a C2-submanifold with boundary; let k be the dimension 
of M where k < ( d - 2 ) .  Note that the boundary OM is a ( k - l )  dimensional 
C;-submanifold, and that M\OM is a k-dimensional CZ-submanifotd. Therefore 
(2.18) holds also for k dimensional C2-submanifolds with boundary, where 
k < d - 2 .  In fact it is now easily seen that (2.18) holds for any subset M of 
IR e which is contained in a countable union of (d -2 )  or lower dimensional 
C2-submanifolds; consequently any such set M is a polar set for the diffusion 

3. Diffusions with Reflecting Boundary Conditions 

Let G =  {x=(xl ,  x2, ..., xe): xl >0}, ~?G={xelRd: x I =0} and G=Gw~?G, where 
d >  2. We now consider diffusions in the closed half space G with reflecting 
boundary conditions. We have the coefficients a, b defined on G, and y defined 
on ~ G satisfying the following conditions. 

Conditions. (II). (II 1): Same as (I 1) with IRe replaced by G; 

(II2): b ( ' )=(b l ( ' ) ,  ..., be(')) is a bounded and continuous IR<valued function 
on G; 

(II3): Y(')=(72('),---, ?d(')) is an IRe-l-valued function on ~G; 7jeC~(~G) for 
j = 2  . . . .  ,d. 
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Let the elliptic operator L be given by (2.1). Define the boundary operator 
J by 

J f (x )  = Of(x) + ~ 7dx) 8f(x)) (3.1) 
8 X 1  i = 2  8Xi 

Let f2, Nt, X(t) be as in Sect. 2. Under  conditions less restrictive than the set 
of Conditions (II), Stroock and Varadhan (1971) have established the existence 
of a unique solution to the submartingale problem corresponding to the coeffi- 
cients a, b, 7- Thus, when Conditions (II) hold, for each xEG there exists a 
unique probability measure Px on f2 such that 

(i) Px({X(t)eG for all t_>0 and X ( 0 ) = x } ) =  1; 
t 

(ii) f (X (t)) - ~ [la" (Lf)]  (X (s)) d s 
0 

is a Px-submartingale for any f~  C2o (IR e) satisfying J f>= 0 on • G. Also the process 
X(t) is strong Markov and Feller continuous, under {Px}. Moreover, there exists 
a continuous, non-decreasing, non anticipating process ~(t) on ~2 such that 

t 

(i) ~(t)= ~ Io~(X(s)) d~(s), 
0 

(ii) i IoG(X(s)) ds--O, a.s. P~ (3.2) 
0 

t t 

(iii) f ( X ( t ) ) -  ~ L f (X ( s ) )d s -  ~ Jf(X(s))d~(s) 
0 0 

is a P~-martingale for every f e  C~ (IRe). 

We shall call the family {/3: x~G} the diffusion corresponding to (L, J). 

Lemma 3.1. Let Conditions (II)  hold. Let k < d; let re: IRd ~ IRa-k be the canonical 
projection onto the first (d -k )  coordinates. Let D be a nonempty bounded open 
subset of IRd-k and 

11 = inf{t => 0: ~zX(t)~D}. 
Then 

sup {/~ (t/): x s G c~ n -  1 (/))} < 0% 
and 

sup {/~x (4 (r/)): x s G c~ n-1 (D)} < oo. 

Proof Without loss of generality we may take D = B e_ k(0 : N). Choose h ~ C~ OR a) 
such that h(x)=e q~' for x e n - l ( b ) ,  where q is a positive constant so chosen 
that Lh(x)> 1 for xE~z- ~ (/)). For  xE(SG)~r-I(D),  note that Jh(x)=q>O. Now 
by (3.2) and the optional sampling theorem we get 

E:,(r 1 A T)+qE~(~(r I ix T))<=2e qu 

for x~Gc~rc- ~ (/5) and T>0.  Letting TToe we obtain the lemma. 
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For x ~ d  such that re(x):#0 (where rc is as in the preceding Lemma) let 
A(x), B(x), C(x) be defined as in (2.3). For r>0 ,  let fl(r) be defined as in (2.4) 
with infimum taken over x ~ 6  such that ]rc(x)[=r; for c>0 ,  r > 0  let, I(r; c) 
and F(r; e) be defined as in (2.5). 

Lemma 3.2. Let Conditions ( I I )  hold; let k and 7z be as in the preceding lemma. 
Let c, n be real numbers such that 0 < c < n. Then for x ~ d such that c < ] n (x) [ < n, 

f(17~(x)l; c) l . . . . .  
F(n; c) 4-F(n~,~ ff~ ~ Jfc(X(u)) d~(u)<P~(z,<zc) (3.3) 

0 

where 

and 

z , = i n f { t > 0 :  rc(X(t))ec3B d k(0"n)}, 

zc=inf{t >0 :  n(X(t))eOBd_k(O'c)}, 

fc(Y) -= F(I ~(Y)[; c). 

Proof Write f ( - ) = f c ( ' )  and F ( ' ) =  F ( . ;  c) for the course of the proof. It is easily 
seen that 

L f ( x ) =  1 A(x) F"(Irc(x)[) § 1 F'(I ~z(x) l) (B(x)--A(x)+ C(x)) 
I~(x) l 

(3.4) 

for x + 0 ;  also for r>c  note that 

F" (r) + F' (r) fl (r) = 0. 
r 

(3.5) 

By the preceding lemma z ,<oo  a.s. Px for all x such that c<lTz(x)l<n. Now 
by (3.2), (3.4), (3.5) and the optional sampling theorem we get 

/~  [ f  (X (z, Arc A T))] >= F([ 7c (x)1) § [ 
~n A ~c A T )] 

J f (X (s)) d ~ (s 
0 

for c < l Tr (x)[ < n. As sup {f(y): c < [rc(y)[< n} < oo, we get from the above 

F(lzc(x)l)§ ~ Jf (X(s))  d~(s) <F(n)'Px(r.<~c) 
0 

which is just (3.3). 

The next result is an analogue of Theorem 2.3. 

Theorem 3.3. Let Conditions ( I I )  hold and let k <= (d-- 2). Let 

T h e n  

for all x r  

M =  {x~?G" x j = 0 , j =  1, 2 . . . .  , d--k}. 

Px({X(t)~M for some t=>O})=O 
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Proof Let re: N~ a ~ a - k  be the canonical projection onto the first ( d - k )  coordi- 
nates; note that ~z(M)=0. For  proving the theorem it is enough to establish 
that 

P~({~X(t) = 0 for some t > 0}) = 0 (3.6) 

for all x(~M. In view of Theorem 1 of Ramasubramanian (1986) it is sufficient 

j = ~  to consider the case Oxt" In that case, for any c > 0  note that Jfc=-O on 

0 G where fc is as in (3.3). Hence (3.6) can be established in the same manner 
as (2.7) was established in Theorem 2.3. This completes the proof. D 

The following is an analogue of Theorem 2.4. 

Theorem 3.4. Let Conditions ( I I )  hold and let k<_d-2;  let M be as in Theo- 
rem 3.3. Then 

i0~({X (t)EM for some t > 0}) = 0 (3.7) 

for all x in G. 

Proof Let P(t, x, ") denote the transition probability function of the Markov 
process X(t). Let x ~ G  and t > 0  be fixed. Then by (3.2(ii)), 

0 = ~ i IoG(X(u, co)) du dPx(co) 
0 0 

= i P(u, x, OG) du. 
0 

Consequently 
P(u, x, OG)=0 for a.a. ue[0,  t]. (3.8) 

Since t and x are arbitrary it follows from (3.8) that O G is a set of potential 
zero. Consequently M is of potential zero. Now, in view of Exercise (3.9) of 
Chap. II (p. 82) of Blumenthal and Getoor  (I968), Lemma 3.1 and Theorem 3.3, 
one can derive (3.7) in a manner analogous to the proof  of Theorem 2.4. This 
completes the proof  of the theorem. D 

Our goal is to extend the above results to submanifolds. First, we need 
a lemma. 

Lemma 3.5. Let Conditions ( I I )  hold. Let S: 0 G(=IR a- 1)~ ~ G be a C2-diffeo - 
morphism given by 

(x2, ..., x~)~  S(x2, ..., xd),:  (z2 (x), ..., zd(x)). 

Let there exist constants c 1 and cz such that 0 < c 1 <  []js(x)[[ <c2<oe for all 
xEOG, where Js is the Jacobian of the transformation S; also, let all the partial 
derivatives of second order be bounded continuous functions. Define T: N~a ~ ~d 
by 

T(xl ,  x2 . . . .  , Xd) = (Zl (X), Zz(X), ..., Zd(X)) = (Xl, S(x2, ..., xa)). 



Hitting of Submanifolds by Diffusions 161 

Then T is a C2-diffeomorphism on R d with T(G)= 6, T(# G)= 0 G and satisfying 
the hypothesis of Lemma 2.5. Let L, gl, ~, L, ~F be as in Lemma 2.5; let J be 
given by (3.1). For ze~G, let 

d 63zk 
'~Tk(Z) "-= E 'y i (T-I(Z))  ~ x / ( T -  1 (z)), k=2 ,  ..., d (3.9) 

i=2 

and define the operator Y by 

Of(z) , ~ . "z" af(z) 
Y f ( z ) = ~ - - +  2_, Ykt ) ~z~ 

OZl k=2 
(3.~o) 

For any g~C~(~  d) define ~, by ~,(x)=g(T(x)). 
Then 

(i) L~ (x) = Lg (z), J ~ (x) = Jg  (z) where z = T(x); 

(ii) 8, ~, y also satisfy Conditions (II);  and i, is a uniformly elliptic operator 
with ellipticity constant 2 o c~2; 

(iii) { p ~ - l :  xsG} is the diffusion corresponding to (L, J), where {P~: xEG} 
is the diffusion corresponding to (L, J); and 

(iv) if the (L, J)-diffusion has the strong Feller property then so does the (L, J)- 
diffusion. 

Proof. It is easily seen that T is a C2-diffeomorphism with the required properties. 
Assertions (i) and (ii) are established in a manner analogous to the corresponding 
assertions of Lemma 2.5. To establish (iii) let f ~ C g ( R  d) be such that J f > 0  
on 3G; then by (i) above J f > O  on 0G. Since {fix} solves the submartingale 
problem for (L, J), by a change of variables argument it is simple to check 
that 

f (X (t)) - i [16" (Lf)] (X (s)) ds 
o 

is a fix T -  1 submartingale. Thus (iii) is proved. Finally, for any bounded measur- 
able function f and t > 0, note that 

~ f (X (t, co)) d-Px T-1 (co) = ~ f ( x  (t, co)) d fix(co), 

where f ( ' )= f (T( ' ) ) ;  now the last assertion follows immediately, completing 
the proof. [] 

Theorem 3.6. Let Conditions ( I I )  hold. Let L and J be given respectively by 
(2.1) and (3.1), and let {Px: xEG} be the diffusion corresponding to (L, J). Let 
M be a C2-submanifold of 0 G of dimension k, where k <_ d -  2. Then 

I~({X(t)~M for some t > 0}) = 0 (3.11) 
for all x in 6. 

Proof. Note that there exist points x i in M, sets K i in 0G and maps qoi such 
that 
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(i) K~ is a compact neighbourhood of xl in ~ G ( = R  e- 1), 
(ii) qh: K, ~ Bd- i (0" 1) is a C2-diffeomorphism with q~i(xi) = 0; 

(iii) K, c~ M =  ~o 7 1 (Bk( 0 : 1)); that is, y~K~n M if and only if n(~oi(y))=0 and 
[I q~i(Y)I1 < 1, where ~z is the canonical projection onto the first ( d - k )  coordinates; 

(iv) M = U (Ki c~ m). 
i = l  

Therefore to prove (3.11) it is enough to prove that 

P~({X(t)EKic~M for some t > 0 } ) = 0  

for i=  1, 2, ..., and any x in G. 
Let i be fixed. Set K = K  i. Then by Lemma 2.6 there exists a C2-diffeo - 

morphism S of ~G (which is an extension of qh) satisfying the hypothesis of 
Lemma 3.5. Now by Lemma 3.5 there exists a C2-diffeomorphism T of ~d  (which 
is an extension of S) satisfying analogous properties. In view the Theorem 3.4 
and Lemma 3.5, the theorem can now be proved in a manner similar to Theo- 
rem 2.7. 

The following is the main theorem of this section. 

Theorem 3.7. Let Conditions (I1) hold; let L, J, {Px} be as in the preceding 
theorem. Let M c C, be a subset such that 

(i) (M c~ ~? G) is contained in a countable union of ( d -  2) or lower dimensional 
C2-submanifolds of 0 G, and 

(ii) M c~ G is contained in a countable union of ( d - 2 )  or lower dimensional 
ce-submanifolds of G. 

Then (3.11) holds for all x in G; that is, M is a polar set for the diffusion 
{Px}. 
Proof. By Theorem 3.6 it follows that M n 0 G is a polar set for the diffusion. 
For  r > 0 ,  let G~={xeG:xl>r} .  Now to establish the theorem it is enough 
to show that 

P~({X(t)eMc~ Gr for some t > 0 } ) = 0  (3.12) 

for any r > 0 and any x in 6. 
Let r >  0 and xe(~ be arbitrary but fixed. Set 

% =inf {t  >=O: X~ (t)=2} , 

z2. = inf{t > z2.-  1 : X1 (t) = 0}, 

z2,,+ l =inf {t  > z2.: X ,  ( t)=2} , n = l ,  2 . . . . .  



Hitting of Submanifolds by Diffusions 163 

By Lemma 3.1, note that % , + 1 < o o  a.s. on the set {T2n(OO}. It is also clear 
that/3~(lim % = oo)= 1. 

Since the diffusion in G starting from an interior point behaves like a diffusion 
in ]R e with generator L upto the time of hitting 8 G, it follows by Theorem 2.7 
and Remark 2.8 that 

Py ({X (t) c M n G, for some 0 < t < 7}) = 0 

for any yeG such that Yt =�89 where ~ is the time of hitting 8G. Now a repeated 
application of the strong Markov property yields (3.12). This completes the 
proof  of the theorem. D 

Remark. Note that Theorem 3.4 and hence Theorems 3.6 and 3.7 do not hold 
if the boundary is assumed to be sticky. 
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