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Summary. Let M = (Mt, ~t) be a continuous BMO-martingale. Then the asso- 
ciated exponential martingale g(M) satisfies the reverse H61der inequality 

(Rp) E [g(M)~ I J r ]  < Cp g(M)~. 

for some p > 1, where T is an arbitrary stopping time (see I-3, 5]). Our claim 
is, in a word, that the (Rp) condition bears upon the distance between M 
and L~ in BMO. Especially, we shall prove that M belongs to the BMO- 
closure of Loo if and only if d~ satisfies all (Rv) for every real number 
2. Some related problems are also considered. 

1. Introduction 

Throughout this paper, let (f2, 5, P) be a complete probability space with a 
filtration (~t) satisfying the usual conditions, and we suppose that any martingale 
adapted to this filtration is continuous. 

Let now M be a local martingale with M0 = 0. Then the associated exponen- 
tial local martingale g (M) is given by the formula 

(1) g(M)t=exp(M~-(M)t/2) ( O < t <  oe), 

where ( M )  denotes the continuous increasing process such that M2--(M) 
is a local martingale. Note that d~ is not always a uniformly integrable 
martingale. 

The fundamentally important result in performing our investigation is that 
the following are equivalent (see [2, 3, 12, 13]). 

(a) M~BMO. 
(b) N(M) is a uniformly integrable martingale which satisfies the reverse 

H61der inequality (Rp) for some p > 1. 
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(c) g(M) satisfies the condition 

(Ap) sup HE[{do(M)r/(Y(M)oo} 1/(p- 1~[ ~r]  ]l ~ < oo 
T 

for some p > 1, where the supremum is taken over all stopping times T. 
Originally, these three conditions were introduced in the classical analysis, 

and the duality between the space of BMO-functions and the Hardy space 
H1 is especially known (see [6]). The condition (Am) is a probabilistic version 
of the one introduced in [-19] by Muckenhoupt. The former is a necessary 
and sufficient condition for the validity of some weighted norm inequalities 
for martingales (see [10, 21] for example) as the latter plays an essential role 
in the problems of weighted norm inequalities for many operators, such as 
the Hardy-Littlewood maximal operator and the singular integral operators. 
However, the relation between BMO and the (Am) condition in the classical 
analysis does not go on smoothly as in the probability setting. In fact, for 
any function w(x) satisfying the classical (Am) condition, log w(x) is a BMO- 
function, but the converse fails. For example, the function log 1/Ix[ is in BMO, 
but 1/Ix[ satisfies no (Am). The great advantage of the investigation from the 
point of view of martingales consists in settling this trouble. 

On the other hand, there exist two important subclasses of BMO, namely, 
the class Loo of all bounded martingales and the class Hoo of all martingales 
M such that ( M ) ~  is bounded. As is easily seen, BMO is neither L~ nor 
Hoo in general, and further there is not an inclusion relation between L~ and 
H~. However, it has recently been verified in [16] that the BMO-closure of 
Loo contains H~ in general. 

We now explain the contents of this paper. Roughly speaking, our purpose 
is to establish new relationships between these classes and the conditions (Am) 
and (Rv). Section 3 contains a necessary and sufficient condition for a martingale 
M to be in the BMO-closure of L~. Furthermore, in Sect. 4 we show that 
the reverse H61der inequality for g(M) is closely connected with the distance 
in BMO between M and L~. By contrast, the (Am) condition does not bear 
upon the distance to Lo~. In Sect. 5 we give a necessary and sufficient condition 
for that both N(M) and do(-M) have all (Am). 

2. Preliminaries 

Here we collect several remarks and lemmas which are used in later sections. 
First of all, let us assume that the exponential process d~ given by (1) 

is a uniformly integrable martingale. This implies that d_O--g(M)~o dP is a proba- 
bility measure on f2. But the martingale property is not invariant under such 
a change of law. Fortunately, a nice key of settling this trouble was given in 
[-9] by Girsanov. It comes to this that under the absolutely continuous change 
in probability measure a Brownian motion is transformed into the sum of a 
Brownian motion and a second process with sample functions which are abso- 
lutely continuous with respect to the Lebesgue measure. The following lemma 
given in [22] by Van Schuppen and Wong is a natural generalization of this 
result. 
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Lemma 1. For any local martingale X,  the process )~= (X ,  M ) - X  is a local 
martingale with respect to dP, where (X ,  M )  = ( ( X  + M )  - ( X -  M))/4. Further- 
more, we have ( X ) = ( X )  under either probability measure. 

The mapping 4b: X--,J~ is often called the Girsanov transformation. We 
remark in passing that the generalization to the right continuous local mar- 
tingales is established by Lenglart in [17]. We deal entirely with continuous 
BMO-martingales. Recall that a uniformly integrable martingale M is said to 
be in the class BMO if 

IIMIIBMOp =sup  IlEElMoo - M r l  p ] ~T]~lPlloo < O0 
T 

O_-<p<~), 

where the supremum is taken over all stopping times T. Note that the norms 
[I ]IBMOp are all equivalent. As the case may be, we denote it by IIMIIBMop~p) 
to specify the underlying probability measure dP. 

Lemma 2. Let M ~ B M O  and d P = C ( M ) ~  dP. Then the Girsanov transformation 
cb: X---> 2~ is an isomorphism of BMO onto BMO(/~). 

For  the proof, see [14]. The first important result on BMO-functions was 
the John-Nirenberg Theorem ([11]), which we recall here in the probabilistic 
setting. It was given in [8] by Garsia for discrete parameter martingales and 
by D61eans-Dade and Meyer [2] for general martingales. 

Lemma 3. I f  IIMI[BMO1 < 1/4, then for every stopping time T we have 

(2) E[exp {[M~ - -Mr[  } [ J r ]  <(1 --4 I[MIIBMo)- 1. 

Furthermore, if I[MII~MO2 < 1, then 

(3) E [exp { ( M ) ~  - ( M ) r  } I ~ r ]  < (1 -- [IM 112MO2)- 1. 

These inequalities are the main tools to deal with various questions about  
BMO-martingales. 

Let dp(, ) be the distance on BMO deduced from the norm II IIBMOp by the 
usual procedure, and let a(M) be the supremum of the set of a for which 

sup/I E [exp {aIM~ - M r  I} I q~r] IF oo < oo. 
T 

There is a very beautiful relation between dl (M, Loo) and a(M) as follows: 

Lemma 4. For M ~ BMO we have 

1 4 
(4) 4d~ (M, L~) N a(M) N da (M, L~) " 

This result had originally been obtained by Garnett  and Jones [7] in classical 
analysis. Its probabilistic analogue was first established by Varopoulos [23] 
for Brownian martingales and then by Emery [4] for continuous martingales. 

For simplicity, we denote by T, oo the closure of L~ in BMO. Then from 
(4) if follows at once that M ~ L ~  if and only if a(M)= oo. In this connection, 
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it should be noted that L~ is neither closed nor dense in BMO whenever BMO 
~eL~ (see [1]). Quite recently, it was verified in [15] that the assumption 
"BMO :# L~o" is none other than the reasonable condition "~t  =~ ~o for some t". 

The reader is assumed to be familiar with martingale theory as expounded 
in [18]. We denote by C a positive constant and by C a a positive constant 
depending only on indexed parameter ft. Note that the letters C and C a are 
not necessarily the same from line to line. 

3. A Characterization of the BMO-Closure of L~ 

Garnett and Jones [7] proved implicitly that a locally integrable function f 
on R d belongs to the BMO-closure of L~ if and only if both e f and e - I  satisfy 
the Muckenhoupt (Ap) condition for all p > 1. We can easily establish the proba- 
bilistic analogue of this result: a uniformly integrable martingale M belongs 
to E~ if and only if both E [exp (Moo) [ ~.] and E [exp ( -  M~) [ ~.] satisfy the 
probabilistic (Ap) condition for all p > 1. But it seems to me that this equivalence 
is not so interesting for two reasons. First, it is exponential martingales which 
play an essential role in various questions concerning the absolute continuity 
of probability laws of stochastic processes, and neither E[exp(M~o)[~.] nor 
E [ e x p ( - M J ]  ~.] are exponential martingales. The aim of this section is to 
give a new characterization of L~ in the framework of exponential martingales. 

Theorem 1. MeLo~ if and only if d~ satisfies all (Rp) for every real number 2. 

Proof We first show the "only if" part. For that, suppose M~ / ,~ .  Then a(M) 
= oo by Lemma 4. On the other hand, for every 2 and every stopping time 
T 

g(2M)oo/g(AM)r<-_exp {12[ [M~o - M r [ }  

by the definition of g(2M). Therefore, recalling the definition of a(M), we find 

E [E(2M)~ I ~ r ]  = E [{6~(2M)~o/g(2M)m} p I NT] 8(2M)~. 

=<E [exp {b,~l plM~o--MrJ}lq~r] E(,LM)~. 
< Cz, p g(2M)} 

for every 2 and every p > 1, with a constant Cz. p > 0 independent of T. 
We are now going to prove the "if" part. By (3) in Lemma 3 there is some 

positive eo such that for every stopping time T 

E[exp {c%((M> ~ -- <M)T/2)} I ~T] ~ Co, 

where C O is independent of T. Next, let 2>0 ,  and choose e such that 0 < e  
< m i n  {22, eo/(22)}. If we set p=22/c~, then 1 <p<eo/Cd and so 

exp {22 (Moo - Mr) - C~o (<M) ~o -- ( M  > r)/2} 

= exp {22(eM~ -- eMr)/c~-- (mo/~2)(<~M> ~ - <c~M> r)/2} 

<= {~ (c~ M)~/g (c~M)r} p. 



New Aspect of L~ 117 

Combining this with the Schwarz inequality, we obtain 

E [exp {2 (M~ - Mr)} ] J r ]  = E [exp {2 (M~ -- M r ) -  % ( ( M )  ~ - (M)r)/4} 

-exp {c% ( ( M ) o o -  ( M ) r ) / 4 } l ~ r ]  

_-< E [exp {g(~M)o~/g(c~M)r}P[ J r ]  ~/2 E [exp {c% ( ( M )  oo - (M)r) /2} ] J r ]  ~/2. 

Since g(c~M) satisfies (Rp) by the assumption, the first conditional expectation 
in the last expression is dominated by some constant. Furthermore, the second 
term is smaller than C~o/2 as previously stated. Therefore, we have 
E [exp {2(M~ - Mr)} [ J r ]  < C~ for every stopping time T, with a constant C~ > 0 
depending only on 2. The same argument works if M is replaced by - M ,  
so that for every 2 > 0 

E [exp {21M~o - M r  [} I J r ]  < Ca, 

where T is an arbitrary stopping time. This implies a (M)= oo. Then M s L |  
by Lemma 4. Thus the theorem is established. 

From the above proof it follows that if g(2M) satisfies all (Rp) for sufficiently 
small 2, then M belongs to L~.  It is natural to ask if C(eM) has (Rs) for 
~ < 0  and s > l  whenever g(2M) has all (Rv) for every 2>0.  But the answer 
in general is no. We give below an example. 

Example 1. Let B = (Bt-~t) be a one dimensional Brownian motion with B 0 = 0 
defined on a probability space (O, 5, Q) and let ~=inf{t :  IB~[=I}. Then B ~ is 
clearly a bounded martingale with respect to Q, so that dP=exp(B~- z /2 )dQ 
is a probability measure on O. Consider now the process M = 2B ~ -  2 (B~), which 
is a BMO-martingale with respect to dP by Lemma 2. Noticing ( M ) t = 4 ( t  A z), 
we find that 

E [{g(2M)~/E(2M)r} p ] ~r ]  

= EQ [exp {(B~ -- Br^ ~)-- (~ -- T/x ~)/2} 

�9 exp {p 2 (Moo -- Mr) -- ( ( M )  oo - ( M )  r) P 22/2} ] JT] 

= EQ [exp {(1 + 2p 2)(Be-- Br^ 3} 

�9 exp {--(4p22 + 4 p 2 +  1)(~-- T/x ~)/2} [ ~ r  ], 

where EQ [ ] denotes expectation with respect to dQ. 

Thus, if 4p22+ 4p2 + 1 > 0 (that is, 12 + 1/2[> 1/(2 I/q) where p-1 + q-1 = 1) ,  

then we have 

E[{g(2M)~/g(2M)r}  p [~r3 <exp {2(1 + 2p 121)}. 

This implies that g(2M) has all (R;) whenever 2 > 0  or 2 < - 1 .  Particularly, 
both g(M) and N(--M) have all (Rp). 

On the other hand, if - 1 < 2 < 0 ,  then g(2M) does not satisfies (Rp) for 
p > (1 + n2/4)/{1 -- (22 + 1)2}. To verify it, recall that E e [exp (ez)] = o0 for c~ > rc2/8 
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(see Proposition 8.4 in [--20]). Since - ( 4 p 2 2 + 4 p 2 + l ) > r c 2 / 4  for such 2 and 
p, we have 

E [g  ()~M)~] > exp { - (1 + 2p)} EQ [exp { -- (4p 22 + 4p 2 + 1) z/2}] = oe, 

which implies that g(2M) has not the (Rp) property. 
We can estimate dl(M,L~o) as follows. Let 2>1/4+rc2/16. Then 22--1/2 

> ~z2/8 clearly, so that 

E [exp { -- 2Mo~ }] = EQ [-exp {B~-- z/2} exp { -- 2 2 B~ + 2 2 z}] 

= E e [exp {(1 - 2 2) B~} exp {(2 2 - 1 / 2 )  t}] 

> exp { - (1  + 2 2)} E a [exp {(2 2-- 1/2)"c}] = oe. 

This implies that a(M)<1/4+~z2/16. Thus d~(M, L~)>4/(4+zc 2) by Lemma 4. 
Further, it is easy to see that dl(M, Lo~) < 16. 

4. The Distance to L~ in BMO 

The purpose of this section is to establish a new relation between the reverse 
H61der inequality and the distance in BMO to L~.  Roughly speaking, we show 
that g(M) satisfies a stronger reverse H61der's-inequality as M approaches Loo. 
For that, we set 

(5) q)(p)=[l+p-21og{(2p--1)/2(p--1)}]t/2--1 ( l < p <  oo). 

It is clearly a continuous decreasing function such that ~b(1 + 0 ) =  oe and ~(oe) 
= 0. The reverse H61der inequality for g(M) was first obtained by Dol6ans-Dade 
and Meyer [3]. Recently, Emery [-51 has given another proof of this result. 
The following is obtained by examining carefully the proof of Emery. 

Lemma 5. Let 1 < p < oo. I f  II M II BMO2 < ~) (P), then g (M) satisfies (Rp). 

Proof. We exclude the trivial case l[ M [] BMO2 = 0, and let us set n(M)= 2 [IMIlBM01 
2 + I1M II BMO~ for convenience' sake. 

Suppose now [[MHBMO~ < ~(P). Then we have 

n(M)-<-(1[ M II BMO2 + 1) 2 -  1 < p-2 log {(2p-- 1)/2(/9-- 1)} 

and so 0 < 2 ( p -  1)(2p - i ) -  1 exp {p2 n(M)} < 1. The main point in proving Lem- 
ma 5 is to verify that 

2 
(6) E [~(M) v]  __< [1 -- 2(p -- 1)(2p -- 1) -1 exp {p2 n(M)}] " 

For  simplicity, let Kp.~r denote the right hand side. For  any stopping time 
T we have n(Mr)<__n(M) and so Kp, M~<=Kp.M. Therefore, in order to show 
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(6), we may assume that g(M) is bounded. Next, let 6=exp{- -pn(M)} ,  which 
is smaller than 1. A key to the proof of (6) is to use the following inequality: 

(7) E[N(M)~: #(M)oo >2]_-<-22pp_21 P { N ( M ) ~ > 6 2 }  (2>1). 

We are now going to prove this inequality. For that, consider the stopping 
time T=inf{t:  #(M)t>2}.  Noticing log 1/5 =pn(M), we find 

P {g(M)oo/#(M)r<61jr}  

= P { 1/6 < ~ (M)T/g(M)~ I J r}  

= P {pn(M) < M T -  M ~  + ( ( M )  ~ -- ( M )  T)/2I J r}  

1 
<= 2pn(M~ {2E[[M~ --MT[ [ JT] + E[  ( M ) ~  -- ( M )  T [JTJ} 

< n(M) 1 

= 2pn(M) - 2p '  

so that P{g(M)~/g(M)r>=6IJT}>=I-1/(2p).  In addition to it, 
# ( M ) r = 2  on { r <  oo}, we can obtain 

P {#(M)oo - 621 Jr} => 2 2 -  
1 

_ P - / { T <  ao}" 

Therefore, it follows that 

noticing 

E[E(M)~ : #(M)~ >23 < E  [#(M)oo T< oo3 

<E[g(M)T:  T< o93 

< 2P(T< oo) 

< 2p2 p{g(M)oo>=52}. 
- 2 p - 1  

Then, multiplying both sides of (7) by ( p - 1 ) 2  p-2 and integrating with respect 
to 2 on the interval [1, oo[, we find 

, . ,  < 2 ( p  - i )  
E Eg(M)~ - #(M)~ : & (M)oo > l / =  ~ E [{& (M)~/5} p -  1' #(M)~ > 63, 

that is, 

1 2(/2-1) ; EEg(M)5" # ( M ) ~ > I ] < I +  
(2p - 1)6 p) = 

2(p--l) 
2(p-- 1) 6 p 

Obviously, this yields (6). 
Secondly, let T be any fixed stopping time. For an arbitrary element A 

of J r  such that P(A)>0, we set 

dP'=IAdP/P(A) ,  J't = Jr+t,  M' t=MT+t--MT ( 0 < t <  c~). 
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Clearly dP' is a probability measure and the process M' = (M;, ~'t) is a martingale 
with respect to dP'. Note that g(M')t= g(M)r+t/g(M)T. An elementary calcula- 
tion shows that [[M'EIBMor(v,)--__ < [[MI[BMOr(p ) for every r > l .  Thus [[M'[IBMo2(p') 
< ~(p). Then, repeating the same argument as above, we get 

E' [g  (M')~] < Kv, M,, 

where E'[ ] denotes expectation over f2 with respect to dP' and Kv, u, is the 
constant corresponding to Kp, u in (6). Namely, we have 

E [{g(M)~/g(M)T}P: A] <= Kp, ~, P(A).  

However, since I]M'I[BMOr(p,)_~ <- ][M[[BMO.(p), we have n(M')<n(M) and so Kp, M, 
<= Kp, M. Thus the inequality 

E [g(M)~:  A] < Kp, M E(M)~ P(A) 

is valid for every Ae ~r .  This yields the reverse H61der inequality (Rp) for E(M). 
Hence the lemma is established. 

In the following theorem, L~ denotes the class of all martingales bounded 
by a positive constant K. 

Theorem 2. Let 1 < p < oo. I f  d 2 (M, L~) < e- K r (p), then ~ (M) has (Rp). 

Proof. By the assumption, HM--N[]BMO~<e-Kq~(p) for some N e L l .  Let now 
d/~=exp(N~o- <N)~/2)dP,  which is obviously a probability measure. We set 
X = N - M .  According to Lemma 1, X = M - N - ( M - N ,  N)  is a martingale 
with respect to dP such that ( ) ( )  = <X), and by the definition of the conditional 
expectation we have 

~[<~>oo-<x>~l ~ ]  
= E [ ( ( X )  ~o - ( X ) r )  e x p  {(N~o - NT)-- ( ( N )  oo - -  ( N ) T ) / 2 }  I N T ]  

=< eZK 11X IIBZMO~ < ~(p)2. 

That is, tlXIIBMo~(p)< ~(P). Then, according to Lemma 5, the exponential mar- 
tingale o~(Jf) satisfies the reverse H61der inequality 

/~ [N(Jf)~ I ~T] ----< Kp, :? E(X)~. 

On the other hand, since <M) = ( M  - N )  + 2 ( M -  N, N)  + (N) ,  we have 

g(M) = exp { ( M -  N -  ( M -  N, N))- -  < M -  N)/2} exp ( N -  <N>/2) 

= g ()?) exp (N - (N)/2).  

Therefore, for every stopping time T, we find 

E [N (M)~ I ~T] = E [{g(M)o~/g(M)T} p I q~T] g(M)~. 

_--< exp {2(p-- 1) K}/~ [{g(X)o~/g(X)T} p [~T] g(M)~. 

< exp {2(p -- 1) K} Kp, ~: g(M)er, 

which completes the proof. 
Example 1 shows that the converse statement in the Theorem 2 fails. Now 

we give a variant of Theorem 2. 

Theorem 3. Let l < p < o o .  I f  there is N e L ~  such that <M--N,N>=O and 
I I M -  Nil BMo~ < ~ (P), then g (M) satisfies (Rp). 
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Proof. The function ~b being continuous, [IM--N[IBMO2<~(u) for some u>p. 
Then the exponential martingale g (M- -N)  has (R,) by Lemma 5, and the 
another exponential martingale g(N) satisfies (R~) for all r >  1 by Theorem 1. 
Furthermore, we have g ( M ) = g ( M - - N ) g ( N )  since ( M - - N , N ) = O .  Hence, 
applying the H61der inequality with the exponents c~=u/p and fl = e / (e -1 ) ,  we 
find 

E [-g(M)~ [ ~ r ]  = E [{~(M)~/o~(M)r} p [~r ]  g(M)~ 

< E [{g ( M -  N)~o/e ( M -  N)T}" I ~T] 1/~ 

�9 E [{E(N)o~/g(N)T}Pr ~/p g(M)~ 

< C~, M, N ~ ( M ) ~ .  

This completes the proof. 
As is well known, MTr for some stopping time T. Let Y ( M )  be the 

class of these kind of martingales. Then we get the following. 

Corollary. Let 1 <p < oo. I f  d:(M, J ( M ) ) <  ~(p), then g(M) has (Rv). 

Proof. Since ( M - M  T, M T) = 0 for any stopping time T, the conclusion follows 
at once from Theorem 3. 

5. A Subclass of BMO Related to the (Av) Condition 

Unlike the (Rp) condition, the (Ap) condition is remotely related to the distance 
between M and L~o. We first give an example which substantiates this view. 

Example 2. Let M = B  ~ where z=inf{ t :  IBt[= 1}. Then MeLo~ clearly, and so, 
according to Theorem 1, the exponential martingale F(M) satisfies (Rp) for all 
p > 1. However, it does not satisfy (Ap) for p with 1 < p  < 1 + 4/re 2. In fact, since 
E[exp(~z)] = oe for ~ > rc2/8 and 1 /{2(p-  1)} >7r2/8 for 1 < p <  i +4 /~  2, we find 

E [{ 1/F(M)} ~(v-1)] > exp { - 1 / (p -  1)} E [exp (z/{2 (p-- 1)})] = oo. 

This implies that for 1 <p__< 1 +4/re 2 the (Ap) condition fails. 
To discuss the (Ap) condition, we shall consider the class 

H ~ = { M e B M O :  E [-(M}~ I ~.] eL~o} 

in place of Lo~. It is easy to see that HE[(M)o~ I ~.]IrBMO1----<2 IrM/12MO2. Clearly, 
M~H~ if and only if E[(M)o~Iq~.]~L~, so that H ~ c H * .  The aim of this 
section is to claim that H*  is closely connected with the (Ap) condition. To 
verify it, we need the following elementary result. 

Lemma 6. I f  M ~ B M O ,  then for every 2 > 0 and every stopping time T we have 

(i) E [exp {2 ( (M)  co - -  (M)T)} I ~T-] 

_--< exp (2 ][ M rl2M02) E [exp {2 [ ( M )  ~o -- E [-(M) o01 ~r ]  1} [ ~T] 

(ii) E [exp {2 [ ( M ) ~ o -  E [(M)oo I~T] l} [ ~T] 
__< exp (2 II M II 2Mo2) E [exp { 2 ( ( M ) ~  -- (M)T)} ] ~T]. 
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Proof This lemma follows immediately from the definition of the norm II M I I~MO2. 
In fact, for every 2 > 0 we have 

E [exp {2((M}~o -- <M}r)} ] J r ]  

=< E [exp {2t<M}o~- E [(M>o~ l J r ] l}  exp {2E [<M}~o-  ( M } r l  J r ] }  l ~ r ]  

_-< exp (2 II M l[ ~mo2) E [exp {2 [ ( M )  0o -- E [<M} co [ J r ]  }ll ~r] .  

Thus (i) holds. The proof of (ii) is similar, and so we omit it. 

Theorem 4. For 1 < p < ov we have the following: 

(i) If  dl (E [-(M} o~ ] j . ] ,  Lo~) < ([//p-- 1)2/2, then both g(M) and g ( -  M) satisfy 
(Ap). 

(ii) Conversely, if both ~(M) and #(-- M) satisfy (Ap), then 
dl(E[(M}~o I J . ] ,  L~o) < 8(p-- 1). 

Proof We first show (i). Suppose dl(E[(M}~Ij.],L~)<(]//-p--1)2/2. Then, 
according to the left-hand side inequality in Lemma 4, we have 

1 
<a(E[(M)o~ I J.]), 

2([//p-- 1) 2 

SO that by (i) in Lemma 6 

E[exP{2(~l_l)~ ((M)~o--(M}T)} jr]<C.. 

Let now r = ] ~ + l .  The exponent conjugate to r is s= (~ -p+ l ) /Vp .  Since 
{s (~ /~-  1) 2} -1 _ r(p-  1) -2 = (p - 1)- 1, we have 

1 
{• (M) r/g (M)~ } 1/(p- 1)  = exp -- ~ - - 1  (Moo - Mr)  

~ 
2s(Vp-- 1) 

We apply H61der's inequality with the exponents r and s: 

r } 
2(p-- 1) z ((M}o~ -- ( M ) r )  

o~ r r \I P/" 

The first conditional expectation on the right hand side equals i, since 
g(--rM/(p--1)) is a uniformly integrable martingale. The second term is domi- 
nated by some constant Cp as stated above. In the same way we can verify 
that g ( - M )  satisfies the (Ap) condition. 
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To show (ii), we use the inequality 

E [ e x P { 2 @ _ l )  ( ( M ) o ~ - ( M ) r ) }  3rJ< E[{ g(M)r/g(M)~} ~/(P-1) [ 3r] ~/z 

�9 E[{g(--M)r 1/2, 

which follows from the Schwarz inequality. This inequality implies that 

E[exP{2@_l )  ( ( M ) o ~ - ( M ) r ) }  3r]<Cp 

whenever both g(M) and g ( - M )  have (Av). Then a(E [ ( M ) ~  13.3)_-> i /{2(p-  1)} 
by (ii) in Lemma 6. On the other hand, if g(M) has (Ap), then it satisfies (Av_~) 
for some e with 0 < e < p -  1 (see [3, p. 3231). Thus a(E[(M)~ 13.1)> 1/{2(p- 1)} 
in fact, and just then we have dl(E [(M)~o 13.], L~)< 8 (p-1)  by the right-hand 
side inequality in Lemma 4. This completes the proof. 

As a corollary, we can obtain the following. 

Theorem 5. In order that both g(M) and g ( - M )  satisfy all (Ap), a necessary 
and sufficient condition is that M belongs to the class H ~. 

We now remark that there exists a relation between H * and L~. An applica- 
tion of the Schwartz inequality yields that for every 2 > 0 

E [exp {2(Mo~- Mr)} ] 3r]  

= E [{g(22M)oo/g(22M)r} ~/2 exp {22 ((M)~o -- (M)r)} [ 3r ]  

< E [g(22M)oo/g(2)~M)r 13r] ~/z E [exp {22Z((M)~ -- (M)r)} 13r] t/2 

< E [exp {222 ( (M)  ~ - ( M )  r)} 13r] ~/z. 

The same argument works if M is replaced by - M. Then for all 2 > 0 

E[exp {2 [M~o - M r l }  1 3r]  < 2E [exp {222 ( (M)~  - ( M ) T ) } [ 3 T ]  1 / 2  . 

Therefore, from Lemmas 4 and 6 it follows that H e c L ~ .  
Finally, we give a remark on H~o. 

Theorem 6. Let l < p < o e  and p - l + q - ~ = l .  I f  d2(M,H~)<q~(p), then N(M) 
satisfies both (Rv) and (Aq). 

Proof By the assumption, I[M-N[IBMO2<~(P) for some N~H~o. Consider now 
the new probability measure dQ = g ( M -  N) ~ dP and set IV-- N - ( M -  N, N). 
Then NeBMO(Q) and ( N ) =  ( N )  by Lemma 2. Further we have 

(8) E(M) = E ( M -  N) g(N), 

where g(/V) is the exponential martingale under dQ. 
We first verify that g(M) satisfies (Rp). By the definition of Hoo, ( N )  is 

bounded, so that N~Ho~(dQ)cLoo(dQ). Therefore, it follows from Theorem 1 
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that o~(N) satisfies all (Rr) under dQ. Then, noticing (8) and applying H61der's 
inequality with exponents r and s = r / ( r - i ) ,  we find 

E [{E (M)co/& (M)T} P l ~T] = E [{& (M--  N)o~/& (M - N)T} p-1/r 

�9 {&(M-- N)~/&(M- N)y} 1/. {# (N)ojg(~)y}p I ~y] 
=< E [{g(M - N)~o/g (M - X)y} (p- 1/")s 1 8r]  1/5 

<= Cp.r E[{&(M--  N ) ~ / g ( M -  N)T} tp- x/~)~[ ~y]l/~, 

where Er ] denotes expectation with respect to dQ. 
Since p < ( p -  i/r) s = (p r - 1)/(r - 1) ~ p as r ~ ~o, there is some r > 1 such that 

IIM--NI]BMO~<q~((p--1/r)s). Then, according to Lemma 5, & ( M - N )  satisfies 
the (R(v_ 1/,)~) condition. Thus &(M) has (Rp). 

We are now going to prove that g(M) satisfies (Aq). An elementary calcula- 
tion shows that ~b(p)<[/q-1, so that [IM--/l[SUO~<l/q--1 for some n ~ u ~ .  
Note that ( M ) t - - ( M ) ~ < = 2 { ( ( M - N ) t - - ( M - - N ) s ) + ( ( N ) t - ( N ) ~ ) }  for s<t.  
Recalling the boundedness of ( N )  and applying (3) in Lemma 3 we find 

 c. Iexp  112 / . 

{ __<Cq 1 (~/q--1) 2 IIM 

Let now r = ~ / q + l  and s=(~/q+ 1)/~//q. Then, an application of the H61der 
inequality yields 

E I-{a (M)T/a(M)~ } t/tq- ,)l ~T] 

=E[exp { _  q ~  1 (Mo _ M r )  r )} 2(q-- 1) 2 ( (M)~ - (M>T 

�9 exp~ 1 ( (M) _ ( M ) y ) }  ~r  l 
k 2 s ( l / q -  1) z 

)l i l l s  
- E [ e x P ( 2 ( ~ _ l ) 2  ((M~>oo--(M)y)]> "T] �9 

The first conditional expectation in the last expression equals to l, and the 
second one is bounded by some constant as remarked above�9 Thus the proof 
is complete. 
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Combining Theorems 5 and 6, it follows immediately that/-/~o cH*~. How- 
ever, it is probable that the class H A is nothing but /~o.  A key to verify it 
is to establish the following inequality: 

C 
b(M)< 

= d2(M, Ho~) 

where b(M) denotes the supremum of the set of b for which 

sup lie [exp {b 2 ( { M ) ~  - {M}T) I Jr ]  II 0o < oo. 
T 

But this remains to be proved. We remark in passing that the inequality 

1 
< b (M) 

]//2d2(M, H~) 

is valid for every MEBMO (see [16]). 

References 

1. Dellacherie, C., Meyer, P.A., Yor, M.: Sur certaines propri6t6s des espaces de Banach H ~ et 
BMO. In: Dellacherie, C., Meyer, P.A., Weil, M. (eds.). S~minaire de Probabilit6s XII, Universit+ 
de Strasbourg. (Lect. Notes Math., vol. 649, pp. 98-113.) Berlin Heidelberg New York: Springer 
1978 

2. Dol6ans-Dade, C., Meyer, P.A.: Une caract6risation de BMO. In: Dellacherie, C., Meyer, P.A., 
Well, M. (eds.). S6minaire de Probabilit6s XI, Universit6 de Strasbourg. (Lect. Notes Math., 
vol. 581, pp. 383-389.) Berlin Heidelberg New York: Springer 1977 

3. Dol~ans-Dade, C., Meyer, P.A.: In6galit6s de normes avec poids. In: Dellacherie, C., Meyer, 
P.A., Weil, M. (eds.). S+minaire de Probabilit~s XIII, Universit6 de Strasbourg. (Lect. Notes Math., 
vol. 721, pp. 278-284.) Berlin Heidelberg New York: Springer 1985 

4. Emery, M.: Le th6or~me de Garnett-Jones d'apr~s Varopoulos. In: Az6ma, J., Yor, M. (eds.). 
S6minaire de Probabilitbs XV, Universit6 de Strasbourg. (Lect. Notes Math., vol. 850, pp. 278-284.) 
Berlin Heidelberg New York: Springer 1985 

5. Emery, M.: Une d6finition faible de BMO. Ann. Inst. Henri Poincar+, Nouv. Ser. Sect. B 21-1, 
59-71 (1985) 

6. Fefferman, C.: Characterization of bounded mean oscillation. Bull. Amer. Math. Soc. 77, 587-588 
(1971) 

7. Garnett, J., Jones, P.: The distance in BMO to L ~. Ann. Math. 108, 373 393 (1978) 
8. Garsia, A.M.: Martingale inequalities. Seminar notes on recent progress. New York: Benjamin 

1973 
9. Girsanov, I.V.: On transforming a certain class of stochastic processes by absolutely continuous 

substitution of measures. Theor. Probab. Appl. 5, 285-301 (1960) 
10. Izumisawa, M., Kazamaki, N.: Weighted norm inequalities for martingales. T6hoku Math. J., 

II. Ser. 29, 115-124 (1977) 
11. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 

14, 415-426 (1961) 
12. Kazamaki, N.: A characterization of BMO-martingales. In: Meyer, P.A. (ed.). S6minaire de Proba- 

bilit6s X, Universit~ de Strasbourg. (Lect. Notes Math., vol. 511, pp. 536 538.) Berlin Heidelberg 
New York: Springer 1976 

13. Kazamaki, N. : Transformation of HP-martingales by a change of law. Z. Wahrscheinlichkeitstheor. 
Verw. Geb. 46, 343-349 (1979) 



126 N. Kazamaki 

14. Kazamaki, N., Sekiguchi, T.: On the transformation of some classes of martingales by a change 
of law. T6hoku Math. J., II. Set. 31, 261-179 (1979) 

15. Kazamaki, N., Sekiguchi, T.: A remark on L~ in the space of BMO-martingales. Math. Rep. 
Toyama Univ. vol. 10, 169-173 (1987) 

16. Kazamaki, N., Shiota, Y.: Remarks on the class of continuous martingales with bounded quadratic 
variation. T6hoku Math. J., II. Ser. 37, 101-106 (1985) 

17. Lenglart, E.: Transformation des martingales locales par changement absolument continu de 
probabilit6s. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39, 65-70 (1977) 

18. Meyer, P.A.: Un cours sur les int~grales stochastiques. In: Meyer, P.A. (ed.). S~minaire de Probabi- 
lit6s X, Universit~ de Strasbourg. (Lect. Notes Math., vol. 511, pp. 245-400.) Berlin Heidelberg 
New York: Springer 1976 

19. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal functions. Trans. Amer. 
Math. Soc. 165, 207-226 (1972) 

20. Port, S.C., Stone, C.J.: Brownian motion and classical potential theory. New York: Academic 
1978 

21. Sekiguchi, T.: BMO-martingales and inequalities. T6hoku Math. J., II. Ser. 31, 355-358 (1979) 
22. Van Schuppen, J.H., Wong, E.: Transformation of local martingales under a change of law. Ann. 

Probab. 2, 879-888 (1974) 
23. Varopoulos, N.Th.: A probabilistic proof of the Garnett-Jones theorem on BMO. Pac. J. Math. 

90, 201-221 (1980) 

Received December 20, 1986; received in revised form November 20, 1987 


