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Summary. It  is known that the exceedance points of a high level by a station- 
ary sequence are asymptotically Poisson as the level increases, under appro-  
priate long range and local dependence conditions. When the local depen- 
dence conditions are relaxed, clustering of exceedances may occur, based 
on Poisson positions for the clusters. In this paper  a detailed analysis of 
the exceedance point process is given, and shows that, under wide conditions, 
any limiting point process for exceedances is necessarily compound  Poisson. 
More generally the possible r andom measure limits for normalized excee- 
dance point processes are characterized. Sufficient conditions are also given 
for the existence of a point process limit. The limiting distributions of extreme 
order statistics are derived as corollaries. 

1. Introduction 

Many problems in extremal theory may  be most  naturally and profitably dis- 
cussed in terms of certain underlying point processes. Typically one is interested 
in the limit of a sequence of point processes obtained from extremal considera- 
tions, and it is often the case that a Poisson convergence result can be derived. 
For  example, Pickands [13], Resnick [14] and Shorrock [17] all consider point 
processes involving "record t imes" in i.i.d, settings - a research direction which 
was initiated by the works of Dwass [2] and Lampert i  [6] on extremal processes. 
Resnick [15] further noted that many  results in this setting can be derived 
from a "Comple te  Poisson Convergence Theo rem"  in two dimensions. 

It is known that the i.i.d, assumption can often be relaxed. For  example 
Leadbetter  [-8] considers the point process of exceedances of a high level u, 
by a stat ionary sequence ~i (i.e,, points where ~ > u,), obtaining Poisson limits 
under quite weak dependence restrictions. These involve a long range depen- 
dence condition "D(u,)"  of mixing type, but much weaker than strong mixing, 
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and a local dependence condition "D'(un)". Adler [1] generalizes Resnick's two 
dimensional result in [15] by assuming the conditions D and D'. In results 
of this kind, the long range dependence condition (e.g., D(un)) is used to give 
asymptotic independence of exceedances whereas the local restriction (e.g., D' (u,,)) 
avoids clustering of exceedances. As a result in the limit, the point process 
under consideration behaves just like one obtained from an i.i.d, sequence. If 
the local condition is weakened or omitted, then clustering of exceedances may 
occur. This clustering does not materially affect the asymptotic distribution of 
the maximum, but more significantly changes those of all other extreme order 
statistics. Some such situations have been considered. For example, Rootz~n 
[16] studies the exceedance point process for a class of stable process. Leadbetter 
[-9] considers Poisson results for cluster centers which yield the asymptotic distri- 
bution of the sequence maxima but not of other order statistics. Mori [12] 
characterizes the limit of a sequence of point processes in two dimensions under 
strong-mixing. 

Our aim in this work is to study the detailed structure of the limiting forms 
of exceedance point processes under broad assumptions - especially when clus- 
tering may occur. The results yield, in particular, the asymptotic distributions 
of extreme order statistics in the more general form required by the presence 
of high local dependence. 

Section 2 of this paper summarizes the notation used regarding random 
measures and point processes, along with a discussion and some basic results 
on the dependence condition A (u,) under which the theory of this paper is 
developed. 

In Sect. 3, the possible distributional limits are characterized, under A (u~), 
for normalized point processes of exceedances of arbitrary levels u~. These limits 
form a class of infinitely divisible random measures, whereas the limits of non- 
normalized point processes of exceedances must be compound Poisson. 

Section 4 studies the connection between the exceedance point process and 
a cluster distribution, thereby obtaining a sufficient condition for the conver- 
gence of the point process. The case where the levels u~ are normalized (i.e., 
coordinated with sample size in such a way that the exceedance rate is approxi- 
mately constant) is considered in Sect. 5. 

As noted above (cf. also [9]) the presence of exceedance clustering does 
not affect the asymptotic distribution of the maximum. It does, however, alter 
the asymptotic distributions of other order statistics by virtue of the fact that, 
e.g., the second largest value may now occur in the same cluster as the largest. 
In Sect. 6 we apply the results of earlier sections to obtain specific forms for 
the asymptotic distributions of extreme order statistics in terms of the relevant 
extreme value distributions for the maximum, and the cluster size distribution. 

Several suggestions from the editors have led to improved results in this 
paper, including the use of random measure rather than purely point process 
limits and a more detailed treatment of non normalized levels. As the Editors 
have also pointed out, it would be possible to cast a number of the results 
in terms of sequences of point processes which are not necessarily exceedances, 
but satisfy appropriate dependence restrictions. While not explicitly stated for 
clarity of exposition, such generalizations will be evident to the reader. 
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Finally we note that corresponding multi-level theorems and generalizations 
of the two-dimensional point process result of [123 may be found in the thesis 
[31, a separate paper (by T. Hsing) also being planned on this topic. 

2. Preliminaries and Framework 

Throughout we shall be concerned with point processes and random measures 
on the space [0, 11, i.e., random elements/7 of the space M of Borel measures 
on [0, 11 with the vague topology and Borel a-field (t/ being integer valued 
in the point process case). The notation L , ( f )  will be used for the Laplace 
Transform of tT, i.e., L , ( f ) =  g exp (-- ~ fd~l), defined for non-negative measur- 

[o, II 

able f on [0, 1]. The basic properties of random measures and point processes 
needed here will be stated as used and may be found in detail in [51 . 

Throughout, 41, 42,--- will be a stationary sequence of random variables. 
Write M(I)=max(4 i :  i~I) for any set I of integers, and M,=max(4 i :  l<_i<_n). 
For a given sequence of constants {us}, let Z,, ~ be the indicator of the event 
(4j>u,), j =  1, ..., n and N, the point process on [0, 1] with points (j/n: 1 <j<=n 
for which 4j>u,). Thus, AT, is the point process (on [0,. 11) of exceedances of 
the "level" us by the random variables ~1 . . . . .  4n after "time-normalization" 
by the factor 1/n. 

The type of long range dependence condition appropriate for the present 
context is defined as follows. If {u,} is a sequence of constants, for each n, i, j 
with 1 <__i<j<n, define ~!(u,) to be the ~-field generated by the events (~__<u,) 
i_< s_< ]. Also for each n and 1 _< l_< n - 1, write 

(2.1) ~,,~ = max (IP (A c~ B ) -  P (A) P (B)]: A ~ ~k (u,), 

Be~f,+t(u,), 1 <_k<_n-l). 

{@ is said to satisfy the condition A (u,) if c~,, z. -~ 0 as n --, oo for some sequence 
{l,} with l,,=o(n). The array of constants c%t, l=  1, 2 . . . . .  n - 1 ,  will be referred 
to as the mixing coefficients of the condition A (us) whenever there is no danger 
of causing ambiguity. It is worth noting that the condition A (Un) is stronger 
than the distributional mixing condition D(u,) (cf. [101), but weaker than strong 
mixing. 

Since there are only a finite number of events involved for each n, the condi- 
tion A (Un) can be easily verified in some cases. Indeed, the strong mixing condi- 
tion is "unnecessarily strong" for most situations in the study of extreme value 
theory in that it poses restrictions not just on the extremal, but on the overall 
behavior of the underlying sequence. 

The condition A (u,,) can be expressed in terms of random variables as well. 
The following result is a special case of [18], equation (I'). 

Lemma 2.1. For each n and 1 <- 1 <_ n -  1, write fix, l = sup (I o~ Y Z -  E Y. gZI  : Y and 
Z measurable with respect to N{(u.) and ~+l (u . )  respectively, O< Y, Z <  1, 1 < j  
< n -  1). Then ~., l < ft., l <= 4 c~., 1 where c~.. t is the mixing coefficient of the condition 
A (u.). In particular, 4j satisfies the condition A (u.) if and only if ft.. l,~-+ 0 for 
some {/,,} with l.=o(n). [] 



100 T. Hsing et al. 

The following technical result, which is slightly more general than needed, 
is applied extensively throughout this paper. 

Lemma 2.2. Suppose the condition A (u,) holds for {~j}, and that {k,} is a sequence 
of integers for which there exists a sequence {I.} such that k. 1.In ~ 0 and k.c~., i. 

O, where ~., ~ is the mixing coefficient of the condition A (u.). For each n, let 

d,~, l < i < k,, be k, disjoint sets of integers in {1 . . . .  , n} such that # J,i ~n.  
i 

Then for any sequence of non-negative constants {a.} and any non-negative contin- 
uous or step function f on [0, 1], 

def [ ) 
(2.2) d , = g e x p [ - a ,  ~ f(m/n))~,,,, 

m = l  

- -  i = \ m eJni  / 

a s  n - +  o o .  

In particular, (2.2) holds for J,i= {m: ( i -  1) r ,+  1 <m<_ir,}, 1 <=i<k,, where r, 
= [ n / k . ] .  

Proof. When f is identically zero the result is trivial, and hence we assume 
otherwise throughout. For  simplicity we assume that each J,~ consists of at 

kn 

least 1, integers, and that U J,i-={ 1, ..., n}, the proof being readily extended 
1 to the more general cases. 

It is sufficient to show that for any subsequence S, there exists a further 
subsequence S' through which d, ~ 0 .  Let S be any subsequence of integers. 

( ( [ - -  \ ' )  In 
Since the s e t _  _ _ ,.. - - -  --~c"=~gexp[--a"~2'=lZ"'")~k":neS~ contains infinitely many 

numbers in [0, 1], there exists a subsequence S' of S such that c,--+some c 
through S'. We shall show that d, ~ 0 through S', from which (2.2) follows. 
In the remaining part of the proof, unless otherwise stated, limits are obtained 
by letting n ~ oo through S'. Consider separately the following two possibilities: 

(a) c = l .  For l < i < k . ,  let I*i be the set of the largest I. elements in d.i 
and I . i=J.~\I.*.  By the triangle inequality, d. is bounded in absolute value 
by 

(2.3) Nexp --a,  f (m/n)x , .  - - d e x p  - - a , , ~  ~ f (m/n)x, .  
m = i  \ i=1  melnl 

+ g e x p  --a, 2 ~. f(m/n) z., - Y [ g e x p  --a, 2 f(m/n)s 
.= t 1 m e l n i  i= i m e l n i  

) + [[gexp - a ,  Y~ f (n /m)z , ,  - y [ E e x p  - a ,  ~, f (m/n)z , , , ,  . 
i - -1  m~Ini i= 1 tn~Jni 
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By the inequality 

( 2 . 4 )  Ilqxz-l-[y~l<=~lx~-y~l, O<x~, y~< 1, 

and the fact that f is bounded by some integer A, the first term in (2.3) is 
bounded by 

kn kn 

(2.5) ~ g(1--exp(- -a"  ~ f(m/n)z',m))<= ~ E ( 1 - e x p ( - a ' A  ~ Z',m)) 
i= 1 meI*  i i= 1 mEI* i 

=k 'g  1--exp - a ' A  ~ Z,, <=Ak'g 1 - e x p  - a "  ~ Z,, �9 
m = l  \ m = l  

/ 
Thus the first term of (2.3) tends to zero, since c = 1  is equivalent to k 'E | l  

\ 
- exp -- a, ~ ~', ~ 0. The third term in (2.3) tends to zero since it is bounded 

X m = l  

by (2.5), whereas the second term in (2.3) is bounded by 4k'c~,,z, ' (cf. Lemma 
2.1) which tends to zero as well. This concludes the case c = 1. 

(b) c <  1. Since f is nonzero, there is an interval Ic[-0, 1], and an ee(0, 1) 
such that i n f f (x )>e .  Write nI= {nx: xsI}. For each n, in each J, i c~nI which 

XEI 

contains more than 21" integers place 0" i sets of l" consecutive integers E'ij, 
l<j<O'z, where the sets E'ij, l<j<__O'z, l< i<k ' ,  are separated by at least 

d e f  kn 

l" integers and the 0"~ are chosen so that 0" = ~ 0,i satisfies 
i = l  

0, 
(2.6) k ~ o o ,  and 0"e',l  ~ 0 .  

This can be done by the choice of k, and the fact that for some 2 > 0 

1/ lim ~ _#(J~_nI) k ' > 2 1 i m  n 
" ~  i=1 21,, J /  _ " ~  / ~ = o o .  

By Lemma 2.1 and stationarity, 

( n ) 
gexp  --a" ~ f(m/n)z',m < ~ e x p ( - - a "  ~, f(m/n)x'.,.) 

ij  

< g ~  ~ )~,,, +40"e' , l , , .  
\ m = l  

It follows from H61der's inequality and (2.4) that the right hand side is bounded 
by 

gexp  -a"  ~, Z'.,, +O(1)=c~O~/k"+o(1)~O. 
m = l  
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Similarly by (2.4) we obtain 

kn / /n rn) 
1- I#exp( - - a .  2 f (m/n)Z . ,m)<g~ --a.  2 Z., +40.c~., 
i = 1 rn~dni \ m = 1 

which tends to zero as previously. Thus both terms in d. tend to zero, concluding 
the proof. [] 

The following similar result can be proved along the same lines as Lemma 
2.2 with even a weaker mixing condition D (u.) replacing A (u.), thus generalizing 
Lemma 2.1 of [9-]. However we are very grateful to the Editor for pointing 
out that under the condition A (u.) it can be obtained simply from Lemma 
2.2 as follows. 

Lemma 2.3. Suppose the condition A (u.) holds for {~j}, and let k., and J.~, 1 < i 
< k., be as defined in Lemma 2.2. Then 

kn 

P[M.<=u.]-- I-[ P[M(J.i)<=u.]_--->O as n--*oo. 
i=1 

Proof By Lemma 2.2 with f - 1, a. ~ o% and k. e-  "- --* 0, 

But 

and 

kn 
~ e - a ~ N . ( O ,  1 ) _  1 ~  # e-""N"(s~')-~O. 

i=1 

g e -a"N.(~ 1)--P {Nn(O , 1 ) = 0 } = ~  e-a"r p {N.(O, 1)=r}____e-a-+0 
1 

I)1 k~ _-< #e-"N"(J"')--I--[ P{N.(J. i)=O } k.e-""--*O, 
1 

giving the desired result. [] 

3. Characterization of Limits 

A main question of interest is the determination of the class of  point processes 
N which may occur as limifs in distribution of the exceedance point process 
?4.. Here we first explore the more general question to identify the class of 
random measures N which may appear as distributional limits of the random 
measures a .N.  for a sequence of non-negative constants {a.}. 

Lemma 3.1. Let N. be the exceedance point process corresponding to the level 
u., for the stationary sequence {~j}. Suppose A (u.) holds for {~j} and that 

d 
a. IV. , N for some sequence {a.} of non-negative constants and some random 
measure N. Then 
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(i) N is stationary, and in particular, N ([a, b]) ~ N ([a + z, b + z]) for all z > O, 
a, b, such that 0 <_ a < b <_ 1 - ~. 

(ii) N has no f i xed  atoms, i.e. N({x})=0  a.s. for each xE[0,  1]. 
(iii) N has independent increments. 

Proof  (i) follows by routine calculation from stationarity of a, Nn and its conver- 
gence in distribution to N, and (ii) follows from (i) and the fact that N has 
at most countably many fixed atoms. Finally since for random measures {qn}, 

d 
q, qn ,q  if and only if L , . ( f ) ~ L , ( f )  for all non-negative measurable f on 
[0, 1] whose set of discontinuities have zero q-measure a.s., it follows by (ii) 
that 

(a, N, ( I t ) . . .  a,  N, (Ira)) ~ 4 (N (t~)... N (I,,)) 

for intervals I~ ... Ira. If I t ... I,, are mutually disjoint Lemma 2.2 then readily 
shows that N(I1). . .  N(I, , )  are independent, giving (iii). []  

As a stationary random measure with independent increments on [0, 1], 
N is thus also infinitely divisible with a (possible) degenerate component  which 
is a constant multiple of Lebesgue measure, and canonical measure 2 concentrat- 
ed on the degenerate measures y6x, y > 0, x~ [-0, 1] (where c~ denotes unit mass 
at x). This leads in a standard way to the L6vy-type representation given in 
the following theorem. 

Theorem 3.2. Let N n be the exceedance point process corresponding to the level 
un, for the stationary sequence {~j}. Suppose A(un) holds and a , N  n d , N  for 
some sequence of constants a n>0, and some random measure N. Then N has 
Laplace Transform given by 

1 1 co 

(3.1) -- log L N (f)  = e ~ f d  x + ~ ~ (1 - e - ys(x)) d v (y) d x 
0 0 0 

oo 

where ~ > 0  and the (L6vy) measure v on (0, oo) satisfies ~ ( 1 - e  -y) dv (y )<  oo. 
0 

Consequently N has the cluster representation 

(3.2) N(-)~ ~m(-)+ ~ y~x(-)dq(x, y) 
x ~ O  y = O  

where e > 0 ,  m denotes Lebesgue measure, and q is a Poisson process on [0, 1] 
x (0, oo) with intensity measure m x v. []  

Thus any random measure limit N for the (normalized) exceedance point 
process has a uniform mass on [0, 1] together with a sequence of point masses 
Yl at points xl where (xz, y~) are the points of a Poisson process in [0, 1] x (0, or) 
with intensity m x v. If v is finite, the x~ form a stationary Poisson process on 
the line with intensity parameter v(0, or). In any case the points x~ for which 
y~>a form a Poisson process with intensity parameter v(a, oo) for any a > 0 .  
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Note also that the Laplace Transform of N [0, 1] is (from (3.1)) given by 

- l o g g e  -~m~ l~-~es+ ~ (1 - e  -sy) dv(y) 
0 

and hence P {N [-0, 1] = 0} = lim g exp ( -  sN  [0, 1]) = 0 ifc~ > 0, and exp ( -  v (0, co)) 
s--+ ct3 

if e = 0 .  Thus P{N[0 ,  1 ] = 0 } > 0  if and only if e : 0  and v(0, co)< co. That is, 
if e =I=0 or v(0, co)= co, the interval [0, 1] (and likewise every interval) contains 
mass with probability one. 

If c~=0 and v(0, co)< co write n for the probability distribution v(-)/v(0, co) 
and ~b for its Laplace Transform, obtaining, from (3.1) 

1 

(3.3) - - l o g L N ( f ) = v  ~ [1--q~(f(x))] dx 
0 

(v = v(0, co)), which is the standard representation for a compound Poisson pro- 
cess occurring with a Poisson rate v and (not necessarily integer-valued) multipli- 
cities with distribution re. 

We now discuss briefly how the behavior of a, (at co) relates to the form 
of N. Assume the conditions of Lemma 3.1 and consider the following situations: 

(a) Suppose there exists a subsequence {a,,} of {a,} tending to some a in 
(0, co). Then obviously N, converges without normalization, and the limit is 
necessarily a point process since the distributional limit of point processes must 
be a point process (cf. [5], 15.7.4). Thus, in the representation (3.1) of the limit, 

--0 and v(-) is finite and is concentrated on the positive integers. In particular, 
then, the following result holds. 

Corollary 3.3. Let N, be the exceedance point process corresponding to the level 
u, in the stationary sequence {~}. Suppose that A(u,) holds for {4i} and that 

d 
N, > N, for some point process N. Then N is necessarily a compound Poisson 
point process with Laplace Transform given by (3.3), Poisson rate v, and c~(s) 

= ~ n(j) e -si, (re(j), j = 1~ 2 . . . .  ) being the distribution of  multiplicities. [] 
j = l  

(b) Suppose there exists a subsequence {a,,} of {a,} tending to infinity. Then 
for each c > 0  [ca,,] N,, d >cN since ca , ,~  [ca,,]. As a limit of point processes, 
cN is a point process for each c >0,  showing that N is the null measure with 
probability one. 

(c) Suppose {a,,} is a subsequence which tends to zero. It is not clear what 
forms N may have. However, if the mixing rate e,, l. tends to zero sufficiently 
fast, a weak law of large numbers can be proved, showing that N = e m ( - )  for 
some ~. 

The remaining part of this paper will be exclusively confined to the setting 
in (a). 

4. Clustering of Exceedances and a Sufficient Condition for Convergence of A~ 

The multiplicity distribution ~c of the point process limit N of N. has an intuitively 
appealing interpretation as a limiting distribution of a cluster of exceedances 
of u., by {~j}, as we shall now see. 
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First separate {@ into successive groups (~1, ..., ~r.), (~,+1 . . . . .  ~2~,),--. 
of r, consecutive terms (for appropriately chosen r,). Then all exceedances of 
u, within a group are regarded as forming a cluster (coalescing to a multiple 
point in the limiting point process if r, = o(n)). The distribution ~z n of cluster 
sizes is then naturally defined on {1, 2, 3 . . . .  } by 

} (4.1) un(J) = P  Z,, Zn, j > 0  , j =  1, 2 . . . . .  
i i=1 

We show now that the multiplicity distribution zc is just the limit of the 
cluster size distribution rc, under the conditions of Corollary 3.3. 

Theorem 4.1. Assume the conditions of Corollary 3.3 and use the notation there. 
The parameter v satisfies lim P {M, < u,} = e-  ~, and if v ~= O, the probability distri- 

n- -echo  

bution zc satisfies 

(4.2) ~(j)= lim ~.(j), j =  1, 2, . . .  
n ~ o o  

where ~, is the cluster distribution given by (4.1)for ~= with k, tending 
to infinity and satisfying the conditions in Lemma 2.2. 

Proof. That P { M , < u , }  ~ e  -~ follows from the discussion after Theorem 3.2. 
To show (4.2), note first that ~ exp ( - s N ,  [0, 11) converges and hence, by Lemma 

2.2, so does C exp - s ~ Z,. . By Lemma 2.3 
j = l  

( g e x p  - - s ~ z , ,  = I - - P { M ,  <=u,}(1--~e-~J~n(j)) 
j = l  

= 1 - •  (1 - ~ e-~i ~,(j))(1 + o (1)). 
k, 

Writing ct, = v ( 1 -  ~ e -~j zc~(j)), it follows that ( 1 -  c~,/k,) k~ converges from which 
it follows that ~, converges. Thus if v+0,  ~e -~ i~ , ( j )  converges as n - , o v  for 
each s>0 .  This is equivalent to the existence of a measure g' on {1, 2, 3, ...} 
such that re' (j)= lim re, (j), j = 1, 2, ..., and in this case 

n--~ oo 

lim ~ e-  ~j z~ (j) = ~ e-  ~j ~z' (j), 

and hence by the above calculations g exp ( - s N ,  [0, 11)~ exp ( -v  ( 1 - ~  e -~  re'(j))). 
But gexp( - - sN, [0 ,  1])--+gexp(--sN[O, l l ) = e x p ( - v ( 1 - ~ e - ~ J z c ( j ) ) )  so that 

-- 7f, giving (4.2). [] 

It is also possible to give a constructive result for convergence of Nn based 
on the convergence of P {M, __< u,} and ~z,, as follows. 

Theorem 4.2. Assume that the stationary sequence {~j} satisfies the condition 
A(u,) and that lim P {M~<=u.}=e -~ for some re(0, ~).  Suppose there exists a 

n ~  o o  
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probability distribution ~r on {1, 2, 3, ...} and a sequence {k.} which tends to infinity 
and satisfies the conditions in Lemma 2.2 and for which 7r(j)= lim rc,(j) for each 

n--+ oo 

j = l ,  2, ..., where re, is defined by (4.1) with r ,=[n/kJ.  Then N, converges 
in distribution to a compound Poisson process with Laplace Transform 

exp( -v i (1 - j~=le - I {~  O. 

To obtain  Theorem 4.2, we first prove a technical lemma. 

L e m m a  4.3. Suppose the assumptions of Theorem 4.2 hold. For a fixed step function 
f on [0, 1], define a function R, on [0, 1] by 

ir n j )  

1 - - g  exp -- ~ f(j/n) X,, , 
j = ( i - 1 ) r n +  l 

R"(t)-[O ' 

Then as n ~ o% 

(i) n R,(t) is uniformly bounded, and 
rn 

1 t 

(ii) _n y R,(t)dt--*v ~ (1- 
rn 0 0 

(i-- 1) r n ir, 
- - < t < - - ,  i < i<k ,  

n n 

kn rn < 
t = 0  or t_--<l. 

n 

Proof n R,(t) is obviously  uniformly bounded  as n -o  o% since it is either zero 
r n  

or for some i = 1, 2, .. . ,  k, 

n R . ( t ) = n  p{Mr >u. } 
r n r n  

( ( ( "  / )) �9 1 - g  exp -- ~ f ( j /n)x, , j  Z , , i > 0  
j = l i - 1 ) r . + l  / j = ( i - t ) r , ~ + t  

< n  p{Mr >u.}--*v 
r n 

by L e m m a  2.3. To  show (ii) first define/~.(t)  on [0, 1] by  

1--d~exp --f(t) ~ )~,, , < t < - - ,  l < i<k ,  
/ ~ . ( t ) =  , ~ = ( i - l ~ r . + l  n n 

k. r. < 
[0, t = 0  or t=<l. 

n 

By stat ionari ty/~,( t)  = 1 - - g  exp(--f(t)  ~ Z, j) f~ 0 <  t-< k"r". Thus, using again 
\ j = l  ' / - -  n 

the fact n p {Mr. > u.} --* v, (ii) readily follows if Rn is replaced b y / ~ . .  Suppose  
r n  
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f has m jumps. Then R.  and /~. differ on at most m intervals 

((i--_l,r.. ir.] 
n]' l<i<k.. Thus 

1 

lim n ~ [R.(t)--_R~(t)ldt< lim n mr. P{Mr>u.}=O, 
n-~oo r n o n~oo rn n 

among 

which concludes the proof. []  

Proof of Theorem 4.2. It suffices to show that LN.(f) converges to the Laplace 
Transform in the theorem for each non-negative step function f on [0, 1] (cf. 
[5, Theorem 4.23). Using the notation of Lemma 4.3, 

log d ~ exp - ~ f(j/n) Z~, 
i= 1 j = ( i -  1 ) r ~ +  1 

n r. log 1 -  1 -doexp  f(j/n))~., 
rn i = 1  /'/ j = ( i - - 1 ) r n + l  

1 

n 5 log[1--R~(t ) ]dt .  
rn 0 

Write ~b (x) = - log (1-- x) -- x, xe[0 ,  1), so that O(x)~x2/2 as x-~0.  Hence for 
large n, IO(R.(t))l<R2(t) for all t e l0 ,  1], since clearly R.(t)~O uniformly in 
t by Lemma 4.3, showing that 

i 0 2 n ]~b(R.(t))ldt<r. n R.(t dt~O 
rno  n o 

since (n/r.)R.(t) is uniformly bounded and r,]n ~ 0. It thus follows from Lemma 
2.2 and Lemma 4.3 that 

k ( i. ) 
lim g e x p ( - -  ~fdN.)= lim I~ doexp -- Z f(J/n)z.,J 

n - - , m  n ~ m  i = t  j = ( i - 1 ) r ~ + l  

=Xime p(-- i R  tldt) 
n ~ o  \ rn o 

1 

as required. []  

5. N o r m a l i z e d  Leve l s  

An important  case where the exceedance point processes often have useful point 
process limits occurs when the levels u. are "normal ized" to be approximately 
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the (1 -z /n ) -percen t i l e  of the underlying d.f. F for each ~i. More  specifically 
for 0 < z <  oo 

(5.1) n i l  F(u(,~))]--*z as n ~ o v .  

The  existence of such a family u~ ) is guaranteed  for any d.f. F such that  

(1 - F (x))/(1 - F (x - )) ~ 1 as x -~ x r  ~f  sup (u: F (u) < 1) (cf. [ 10], Theo rem 1.1.13), 
which we assume in what  follows wi thout  further  comment .  We write N, (~) for 
the exceedance point  process cor responding  to the level u~ ). No t e  that  if u(~) 1 
and u(,~) 2 are two different sequences satisfying (5.1) and N.,}~)I, N.,(~) 2 are the corre-  
sponding exceedance point  processes, then 

P(N~(Q( n, 1 :~=i'(~)n, 2jt <nlF(u(.~),)--f(u(.~,)2)]--'O as n ~ o o  

by (5.1). Since we are only interested in weak convergence results, the choice 
of {u(2 )} thus need not  be specific, and indeed we can use any convenient  {u~, ~)} 
satisfying (5.1) for  our  purposes.  

The  following result shows that  if N, (~) has a limit for  one z it has a limit 
for  all z and the c o m p o u n d  Poisson limits obta ined  are very simply related. 

Theorem 5.1. Suppose that for each z > 0  the stationary sequence {~j} satisfies 
the condition A(u~ ~)) and that for some z~ >0 ,  N, (~') converges in distribution to 
a point process N (~'). Then N, (~ converges to a compound Poisson process N (~) 
for all z > O, with Laplace Transform given by 

(5.2) LNc , ( f )=exp{ - -Oz  i [-1--~b(f(t))] dt}  
o 

where 0 < 0 <_ 1 and c~ (s)= e-SJ re(j) is the Laplace Transform of a probability 
j = l  

distribution ~z on {1, 2 . . . .  }, 0 and ~ being independent of z. 

Proof Assume wi thout  loss of  generali ty that  -c 1 = 1. By Corol lary  3.3, {1 } 
LN(1)(f) = exp -- 0 ~ [-1 -- q~ (f( t ))]  d t 

o 

so that  (5.2) holds for z = l ,  where 0 = -  limlogP{M,<u(,1)}. To  show that  
n ~ o o  

(5.2) holds for each z > 0, it suffices to show the following: 

(.) Fo r  each z > 0 ,  there exists a c5>0 such that  for each interval 1 c [ 0 ,  1] 
with re(I)< 5, N,(~)(I) converges in dis tr ibut ion to a c o m p o u n d  Poisson ran- 
dom variable with Laplace Trans form exp { - O'cm(1)(1 - qS(s))}. 

To  see that  (.) is sufficient, observe that  any finite number  of disjoint intervals 
Ii, 1 < i < k, in [0, 11 can be decomposed  into finer disjoint intervals Iij, 1 <= j <= ni, 
1 _< i < k, each of which has length less than  6, and thus L e m m a  2.2 together  



Process for a Stationary Sequence 109 

with (*) imply 

,) lim gexp  s~N,(~)(I~ = lim 1-I I~ ~ 
n---~ao - - i  n - - ~  i = 1  j = l  

=exp{--Ozi~=m(Ii)(1- ~b(s0)}, 

showing that the finite dimensional distributions of N, (~) converge to those of 
a compound Poisson process having Laplace Transform given by (5.2) from 
which the theorem follows. To show (.), first let z < 1 and assume for convenience 

that .~u(~)-,~ (~-.~, , where n'=[n/z]. Since 4 ~ J ~ t ~ - ~ t J ~ [ o , ~ e ]  ~ __<4 for each 

interval I in [0, 1] with length e, it follows that 

]g exp ( -  sN,(~)(I))-- g exp ( -  sN~9 ) [0, z e])] < 4 [1 - V(u(~,))] ~ 0 

and thus that 

lim g exp ( -  sN,(r = lim ~ exp (-- sN(,, 1~ [0, ze]) = exp { - 0ze(1 - ~b (s))}. 
n--+ oo n ---~ co 

This proves (*) for r < 1 with 6 = 1. For  z > 1, the proof is identical except that 
6 must be 1/z. [] 

The parameter 0 is linked to the asymptotic distributional properties of 
the maximum M, through the relationship P {M, < u~, ~)} = P {N, ~) [0, 1] = 0} 
~ e  -~ (as is readily seen from (5.2)) under the conditions of the theorem. On 
this account, 0 has been called the extremal index of the sequence {~j}. Since 

d 
N~ ~) [0, 1] ~ N (~) [0, 1] it follows (e.g., by Skorohod's representation and Fatou's 
Lemma) that 

oo 
v=  lim n[-1 - F(u(~))] = lim gN,(~)[-0, 1] > o~N(~)[-0, 1] =Oz ~, jrc(j) 

n - -+~  n ~ o o  j = l  

since the intensity of Poisson events is 0z and rc is the multiplicity distribution. 
Here O<(~jrc(j))-l-<_l since rc is a distribution on {1, 2, ...}. Clearly 0 > 0  so 
that 0_<0_<1. If 0=1  it also follows that ~ , j~r( j )=l  and hence ~ ( j ) = l  or 0 
according as j =  1 or j >  1 so that the compound Poisson process reduces to 
an ordinary Poisson process with intensity z. Many common cases (and in partic- 
ular i.i.d, sequences) have extremal index 0 = 1. A value 0 < 1 indicates clustering 
of exceedances of u(~ ~), giving rise to multiplicities in the limit. 

A question that arises naturally from the above discussion is, when 0 +  1, 
whether 0 = ( ~  j~z(j))- 1, or equivalently whether lim ~ j~z,(j)= ~ j~(j). Counter- 

n ~ o o  

examples using regenerative sequences have been constructed by H. Rootz~n 
and by R.L. Smith. Note, however, that the equality is ensured by, for example, 
uniform integrability of re, (or N, [0, 1]), and in turn by rapidly decreasing mixing 
rate of {~j}. For example, the equality holds when {~j} is m-dependent. 
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6. Applications and Examples 

First we apply our convergence results to problems that are of concern in the 
more traditional theory. Let M(, k) be the k th largest among ~ ,  ~ 2  . . . .  , ~,. It 
is obvious that (m(,k)<u~)) is the same event as (N(,~)<k - 1). Using this fact, 
one can derive asymptotic distributions for properly normalized M~, k). 

Theorem 6.1. Suppose A (u~)) holds for {~j} for each z > O, and that N, (~ converges 
in distribution to some non-trivial point process N (~) for some z > O. Assume that 
a, > O, b, are constants such that 

(6.1) P { a , ( M , - b , )  < x} --* G(x) 

for some non-degenerate distribution function G (necessarily of extreme value 
type). Then for each k = 1, 2 . . . . .  

(6.2) l imP{a , (M( ,k ) -b , )<x}=G(x)  ~ ( - l ~  G(x))J "--'~ i=j j t  7c*J(i 

(where G(x)>0,  and zero where G(x)=0),  where for each j, rc *j is the j-fold 
convolution of the probability distribution rc obtained as in Theorem 4.1 by letting 
u, there be u(, ~ for any ~ > O. 

Proof By Theorem 5.1, N, ~) converges in distribution to N (~) for each z>0 ,  
where the Laplace Transform of N (~) is given by (5.2), and 0 and r in the 
transform are independent of z and can be obtained as in Theorem 4.1 by 
letting u, there be u(, ~) for any ~ > 0. Since the limit is assumed non-trivial we 
have 0>0 .  It follows from (6.1) and Theorem 2.5 of [-9] that G is one of the 
three extreme value type distributions, and l imP{a , (M, - -b , )<x}=GX/~  

. - - +  oO 

where ~ ,  is the maximum of n independent random variables all having the 
same distribution as ~ .  Thus 

limP{IQi <=a~ 1 G-l(e-~176176 -~, 
n--+ oo 

which shows by Theorem 1.5.1 of [10] that 

1 - F ( a ~  - 1 G - l ( e - ~  as n ~ o o .  

Writing z(x)= - l o g  Gl/~ we thus have 

(6.3) 1 -- F (a21 x + b,) ~ ~ (x)/n. 

Now it follows from (5.2), (6.3) and the fact that N,}~)([0, 1]) ~ , N(~)([-0, 1]) that 

lira P {a,( M~ ~- b,) <__x} = lim P { M~) <= u(. ~(x~} 

= lim P {N,(W~ l])=<k-- 1} 
. ~ c O  
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= P {N(~(~))([O, 1])~ k-- 1} 

[ ] = e  -~ 1+  ~ J! n*J(i) 
j : l  i = j  

which gives (6.2) since e -~ G(x). [] 

We end with two examples which illustrate the theory. 

Examples 6.2. A trivial example of a case where clustering occurs is given by 
~j=max(t / j ,  t/j+1 ) where {t/t } is an i.i.d, sequence. In this case 0 =  1/2, clusters 
have size 2 (in the limit) and the limiting distribution (6.2) for M(,, k) becomes 

E(k-,)12J ( _  log _G(x))i] 
limP{a.(M~k)-b.)~x}=G(x) 1+  

j=l  J! J 

where G, a,, b, are as in (6.1). This is an obvious modification of the classical 
result and simply reflects the fact that exceedances occur (predominantly) in 
pairs. 

This example may be extended to include stochastic cluster sizes by defining 
~j=max(~j ,  ~j+l . . . . .  ~1i+~j) for i.i.d, positive integer valued flj independent of 
the q's. Another example with stochastic cluster sizes is the following. 

Example 6.3. Consider the sequence 

~j = max pk Zj-k 
k>0 

where 0 < p < 1 and {Z~} is an i.i.d, sequence with common d.f. exp ( -  1/x), x > 0. 
This example was due to L. De Haan who showed that {~j} has extremal index 
0 = l - p  ((cf. [9]), which can be any value between zero and one. It can be 
shown by some calculation (cf. [3], Chapter 5) that the limits (4.2) exist and 
are given by ~{i} = p i - X ( 1 - p ) .  It then follows from Theorem 4.2 that N, (~) con- 
verges in distribution to a Compound Poisson Process with Laplace Transform 

1 oo 

e x p { - ( 1  p)z!(1-~=lrc{j}e-JY(~ }. 

In particular the limiting cluster sizes follow a geometric distribution. 
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