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Summary. Let G be a graph and let X ,  count copies of G in a random 

graph K(n, p). The random variable ( X , - E ( X , ) ) / ~  is asymptotically 
normally distributed if and only if np"~oo and n 2 ( 1 - p ) ~ o o ,  where m 
= m a x  {e(H)/IHt:HcG}. In addition to, and in connection with this main 
result we investigate the formula for Var (X,) and the Poisson convergence 
of X, .  

1. Introduction 

A random graph K(n, p) is a graph on the vertex set {1 . . . . .  n} whose edges 
appear independently from each other and with probability p=p(n). One of 
the classical questions qf the theory of random graphs concerns the probability 
of existence and distribution of the number of copies of a given graph G one 
can encounter in K(n, p). The aim of this paper is to establish all instances 
of p(n) for which the above random variable is asymptotically normal. 

We assume the reader is familiar with elementary notions from graph theory. 
For  a graph G we denote by IGI and e(G) the number of vertices and edges 
of G, respectively. For  a random variable X, E(X) and V(X) stand for the expec- 
tation and variance of X, respectively. 

Let X,  be the number of subgraphs of a random graph K(n, p) isomorphic 
to a graph G. It is already known ([2, 4, 9]) that P(X, > 0 ) ~  1 (0) if np"--* oo (0), 
where r e = m a x  {d(H): H c  G}, d(H)=e(H)/I H] and " H e  G" means " H  is a sub- 
graph of G". On the threshold, i.e., when np"~ c > 0 one can reduce the problem 
of limit distributions of X,  to the case of balanced G (see [11]). (G is balanced 
if d(G)=m). Then all moments of X,  converge to positive constants but, in 
general, there is no way to derive a limit distribution from that. However, if 
G is strictly balanced, i.e., for all H~G, d(H)<d(G), then X,  converges to a 
Poisson distribution ([2, 6]). In fact, the inverse of last implication is also true 
([10]). 

* Part of the research was done during the author's stay in Division of Mathematics and Science, 
St. John's University, Staten Island, New York 
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Using the well-known relationship between the Poisson and normal distribu- 
tion some authors have established the asymptotic normality of X,  just above 
the threshold, i.e., when np" --+ oo sufficiently slowly ([1, 5, 6]). The method they 
had chosen, however, imposed two artificial restrictions. First, all those results 
were valid only for strictly balanced graphs G. Secondly, they were valid for 
a short range of p(n). Until now the best result has been due to Karofiski 
[5] who proved that, for ~=min{(d(G)--d(H))/]Hl:H~G} and ~=[G[/ 

[e(G)+ ~lGI/(IGI-2)] if np m--+ oo but n~p--->O then X,-~,N(O, 1), where 

2 _ X , - - E ( X , )  

The result followed from the fact that, in this range of p, X,  is Poisson convergent 
- a notion introduced by Barbour [1]. 

It was already noticed that 2 ,  may be normally distributed even if G is 
not strictly balanced (see [10]). Recently, Nowicki and Wierman [8] have estab- 
lished, using the projection method for U-statistics, the asymptotic normality 
of X, for an arbitrary graph G if np e(m- 1 __. oo but nZ(1-p)--* oo. In this paper 

we "close the book" by proving that X,--~N(O, 1) iff np --* oo and n2(1 - p )  ---> oo. 

This has been accomplished by the use of method of moments. For the sake 
of completeness and unification we give the proof of all possible sequences 
p=p(n). However, to avoid technical difficulties we assume that for every 5>0 
the limit of n~p exists or n~p diverges to infinity and the same is true for n~(1-p). 

In Sect. 2 we discuss the Poisson convergence of X,  and examine the behav- 
iour of V(X,). Our main result is proven in Sect. 3. 

2. P o i s s o n  c o n v e r g e n c e  

Let X, be a sequence of nonnegative, integer-valued random variables, 2, 
= E(X,). Barbour [1] has defined the Poisson convergence of X, by 

d(X,,Y,)= sup IP(X, eA) -P(Y ,~A) I -~O as n--*oo, 
A c  {0, 1,...} 

where Y, is a Poisson random variables with E(Y,)= )~,. Set 

X,  - X , -  2, 

(It is an easy exercise to prove that when 2 , ~  0% the Poisson convergence 

of X,  implies X,-~,*N(O, 1).) Barbour [1] applied this approach to X.  being 

the number of copies of a given graph G in K(n, p) and found the following 
bound for d(X,,  I1,): 
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Let G1, G2 . . . .  be all copies of G in the complete graph on {1, ..., n} and 
let li= 1 if G icK(n  , p), li=O otherwise. Then 

d(X., Y.) < 2p~+22~ -1 O. 
14:j 

e(Gi r~ Gj) > 0 

Using (1) and Theorem 2 from the next section we are in position to determine 
almost precisely the range of p=p(n) for which X.  is Poisson convergent. Let 
v=lG[,  e=e(G), d=d(G), q = l - p ,  and 

f< v-[HI " H ~ G } .  
fl = max ( e - -  e (H) 

Theorem 1. Let X ,  be the number of subgraphs of K(n,p) isomorphic to a given 
graph G. Then X ,  is Poisson convergent if and only if np a --+0 or nPp ~ 0  as 
n--+ oo 

Comments. 1. Since fl < v ( v -  2)/[e (v - 2) + el HI - e (H) v] < ~ for all H ~ G, Theo- 
rem 1 extends the results of Karofiski from [5] (see Introduction). 

2. fl < d -  1 iff G is strictly balanced. 

Proof of Theorem 1. Assume first that npd-* O. 
Since, for every A c {0, 1 . . . .  }, 

IP(X.~A)-P(Y.~A)I<=P(X~>O)+ P(Y.>O)+IP(X~=O)--P(Y~=O)J 

< 2P (X. > O) + 2P (Y~ > 0), 

one has d(X., I1.)< 42. -~  0, the last convergence following from the fact that 

2.~n~ p~=(npa) ~. 

If n p p ~ 0 then 
~ E(lilj)~ ~, nZv-lnlp2e-e(m=O(2.) (2) 

e(GitnGj)>O H ~ G  
e (H) > 0 

2 V(X.). Assume now that n 2 q-~ oo. It is easy and, again, d(X., Y.)~0.  Set a.  = 
to check (see below) that if n~p~  oo then 2.=0(o-2). Thus, if, in addition, np" 

o9 then X.  cannot be Poisson convergent. Indeed, J f .=a . J~ . ,  a. 

~ 0 ,  J~. ~N(0 ,1) ,  and by Slutsky's theorem [3, p. 249] ) ( .  ~,0. 

Next we consider 3 subcases: 
(a) G is not balanced. If np d ~ c > 0 then P(X.  > 0) ~ 0 but P(Y. > 0) ~ co > 0 

which implies lira d(X.,  Y.)>0. If npe~oo but n p " ~ c > O  then lira s u p P ( X .  
n ~ o o  n ~ c t 3  

> 0 ) <  1 (see [10]) whereas P(Y. >0)--+ 1 and again d(X., Y~)+-~O. 
(b) G is balanced but not strictly balanced. Now fi = d -  1 = m-  1. If np ~ ~ c > 0 

then, as we already mentioned in the introduction, all moments of X.  converge 
to positive and finite limits different from those of Po(2), 2 =  lira 2. (see [10] 

n ~ c o  
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for details). Thus, by [-3, p. 254, Corollary 7] there exists a kE{0, 1 . . . .  } such 
that lim P(X,=k)  4= lim P(Y,=k),  and so d(X,, Y,)+-~O. 

n --+ oo n ---~ c~  

2 (c) G is strictly balanced. Let us find a precise asymptotic formula for o-,. 
We have, provided p ~ 0, 

(u) 

a2,=E*C~ ljl"~,*E(l,,lJ) = Z ZP  2e-e(H)'~ 2 CFtta2v-IHIp 2e-e(n), (3) 
i , j  i , j  H ~ G  i , j  H ~ G  

e(H) > 0 e(H) > 0 

(H) (H) 
where ~ is taken over all pairs (i, j) such that G ~ G j = H ,  ~ * - -  ~ , c n 

H o G  

_ aut (H) e(m>o 
- a u t 2 ( G ~ f ( G , .  H), aut(K) is the number of automorphisms of the graph K 

andf(G, H) is the number of copies of H in G. 
It is visible now that if n~p ~ c then 2 ,~Coa ,  2, Co > 1, and so E(Jf,2)-~ 1. 
This excludes the Poisson convergence of X,  by [-3, p. 254, Cor. 7], since 

E(j(,4) = O(E(374))= 0(1) as shown in the proof of Theorem 2 below. 
Finally observe that if n2q-~c6[O, co) then lira p(X.=t )=e  -~/2, t 

= V!/aut(G), whereas for all k = 0 ,  1, ... and all s -1/2 and 

so lim P ( Y , = t ) = 0 .  
n - - +  oo 

As we have already seen in the above proof, the main term of Barbour's 
estimate (1) is strongly related to the variance of X,  provided p ~ 0 (compare 
(2) and (3) above). This is not an accident, what we will try to explain now. 
We have 

V(Xn)~ ~ ctlnZV-Iltl pZe-e(tt)(1--pe(tf)). 
H ~ G  

e ( H ) > O  

We call a subgraph H of G a leading overlap of G if 

V(X,) = O(n 2~- Inl p2e- e(m (1 __pe(tl))). 

Now, condition (2) is equivalent to the fact that the only leading overlap of 
a strictly balanced graph G is G itself. On the other hand, if a proper subgraph 
of G is a leading overlap then E(X, )~V(X, )  and the Poisson convergence is 
unlikely. It is also interesting to know how the leading overlaps of G change 
as the order of p increases. If p+*0 then clearly K 2 is the only leading overlap 
of G. In fact, K :  becomes such as soon as n f  ~ co, where 

f<-e(H)-l- 'HcG, e(H)>  1} 
v = m a x  L [HI--2 
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At the other end, when npm-* oo arbitrarily slowly, the smallest subgraph Ga 
which maximizes d(H) is a leading overlap of G. For  G strictly balanced, G~ = G 
and G remains the only leading overlap of itself as long as n ~ p ~ 0 (i.e., exactly 
as long as X ,  in Poisson convergent). In between other subgraphs take their 
turns unless G is s-balanced, in which case the change from G to Kz is very 
sudden. A graph G is called s-balanced if for every H c G, e(H)> 1, 

e (H) - 1 < e -  1 

[ H I - 2  = v - 2 "  

G is called strictly s-balanced if the above inequality is strict for all H=t= G. 
Notice that every s-balanced graph is strictly balanced unless it is a union 

of disjoint edges. For  an s-balanced graph G, 1 =/? = (v - 2 ) / (e -  1) and, assuming 
7 

G is strictly balanced, the only leading overlap of G is G itself when p n p ~ 0 
and K 2 when p n z ~ oo. 

If p n p ~ c > 0 then both G and K2 are leading overlaps of G (the only ones 
if G is strictly s-balanced). For  instance, every tree T is s-balanced but not 
strictly s-balanced. Therefore, when np ~ c > O ,  all connected subgraphs of T 
are leading overlaps. An example of a strictly balanced graph which is not 
s-balanced is the graph G with vertex-set {1, ..., 5} such that the vertices 1, 2, 3, 4 
form K 4 and the vertex 5 is joined to 1 and 2. Consequently, if np 2 ~ oo but 
n2pS--* O, K 4 is the leading overlap of G. 

For  further references we summarize here our knowledge about  the asymp- 
totic behaviour of the variance of X, .  Let p = p(n) --* c. 

[ CK2rt2V-2 c2e- l(1--C) 

V (X , )~ IcK:  n2V-2q 

if 0 < c < 1 ,  

if c = l ,  

if c = 0 ,  

where al = c m n IHI - I/-/d pe(H)-e(HO and H 1 . . . .  , H u are all pairwise nonisomorphic 
leading overlaps of G. 

3. Asymptotic Normality 

As we have seen in Sect. 2, if G is strictly balanced, np"---,oo, and n ~ p ~ O  

then X , ~ N ( O ,  1). There is no hope, however, to extend the normal phase of 

X,  any further using the technique of Poisson convergence. Surprisingly enough, 
the problem of asymptotic normality of X, ,  the number of copies of G one 
can find in K(n, p), can be solved once and for ever by the standard method 
of moments. This approach was inspired by the way Maehara applied the meth- 
od of moments in [7]. 
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Theorem 2. Let G be an arbitrary graph with at least one edge. Then 

X , ~ N ( O ,  1) if and only if n p m ~ o c  and n 2 ( 1 - p ) ~ m .  

Moreover, i fn2(1-p) - -+c>O then -X,~. .~Po . 

Proof I. Sufficiency. Set ~k for the kth central moment of X, .  It is enough 
to prove 

(2k)! k 
#2k~k.--f~-# 2 and #2k+1----0(#~+~), k = l ,  2 , . . . .  (5) 

Indeed, then 

E (Jfk") ~ I O  2[(k)!k! k/2 ififkisk is even~ (since # 2 ~  oo) 

and the thesis follows from the fact that the distribution of N(0, 1) is uniquely 
determined by its moments. 

We split the proof of sufficiency into 3 cases according to the value of c 
= lira p(n): 0 < c < 1 ,  c=1 ,  c=0 .  

n --+ c o  

In each case we will make use of the expression 

#k = 2 (*) E [(lil - -pC) . . .  (lik __ pc)3 =- ~(*)a ( i l ,  . . .  , ik), 

where the sum ~*) is taken over all sequences (G~ . . . . . .  Gi~) of not necessarily 
distinct copies of G one can find in the complete graph with vertex set {1, ..., n} 
which satisfy 

V h = l  . . . .  , k: e(G~hn ~ Gij)>O. (*) 
j*h  

(Let us recall that 1 i is the indicator of the event "Gi c K (n, p)".) 
Also we say that (Gi~, ..., G~) satisfies (**) [(***)] if Vh=  1 . . . . .  k3 unique 

j =~ h: e(G~ ~ G~) > 0 [-and, moreover, e (G~ ~ G 0 = 1]. 
We begin with the easiest case which may serve as the essence of the method 

applied in all three cases. 

Case 1. p ~ c, 0 < c < 1. In this case #k is a polynomial in n of degree max I U Gij[. 
J 

We have 
#k=~ ", ~, a(il . . . . .  ik)=~e**)a(it . . . . .  ik)+O(nkv-k-a). 

l IUGidl=l 
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Thus 

2k  ) 1  n2k(~_l)cZ~_l( 1 (2k)! k2. [A2k"~ ck2 --C) k 
2 , . . . , 2  /d. 

On the other hand, if k is odd then no k-tuple of copies of G satisfies (***) 
and so ~k = 0 (/~k/2). 

Case 2. p ~  l. Set ~ =  1 - / j ,  E ~ = l - p ~ = v ~ e q ,  q = l - p .  Then 

a (i 1 . . . . .  ik) = (-- 1) k E [(1 h -- v)... (Y/~- v)]. 

By the F K G  inequality the term E ( ~  ... ~ )  dominates among all terms obtained 
by multiplying the product  under expectation. Let r = r ( i l  . . . . .  ik) be the mini- 
mum number of edges whose removal destroys all Gz's. Then E(1 h...T/~)~q ~ 
and there are O(nk("-2)+2 0 such sequences (ia, ..., ik). Thus, given r, the terms 
which dominate in #k correspond to k-tuples (G~ . . . . .  , G~) of copies of G clustered 
into r disjoint "s tar-shaped" bunches, i.e., all mutual intersections within a bunch 
are the very same single edge. We call such a k-tuple a "Milky Way".  Note 
that for a "Milky Way"  all terms of the form E[(]-[~.)vk-IJI], J ~ { i  1 . . . .  , ik}, 

j~J 

are o(E(~,...Ti~)). Note also that if (Gi,, .. . ,  G J  is not a "Milky Way"  then 
a(il,  ..., ik)= 0 (n k(~- 2)+ 2~), where r has the above meaning. Hence 

tk/2J 
f l k ~ ( - -  1) k 2 S2(k, r) ck/22k/2-rn2r+k(v-2) K2 qr, (6) 

r = l  

where S2(k , r) is the number of unordered partitions of a k-element set into 
r classes of size at least 2. However, rt 2 q --+ ~ and so 

~tk "~ (-- 1) k $2 (k, [k/2J) n k~- 2Ik/21 qtk/2] e~f 2k/2 -[k/21. 

Thus (5) is fulfilled. 

Case 3. p ~ O. We will prove (5) by induction on k. For  k = 1, 2 there is nothing 
to do. For  k >  3 let us assume that (5) holds for t < k - 1 ,  which, in particular, 

. - -  x ~ ( * * )  
implies that #3 = O (/~2). We split #k = Ak + Bk, where Ak = 2 .  a (il . . . . .  ik). Recall 
that Ak=O for k odd. If (Gi . . . . . .  G~) satisfies (*) but not (**) there exists j 
such that (G~,, ..., G~j_,, Gq . . . . . . .  G~) satisfies (*) too. The best way to see 
this is to imagine the hypergraph whose vertices are the edges of U G~s and 

$ 

edges are the edge-sets E(Gis), s = 1 . . . . .  k. There must be a connected component  
with at least 3 edges and one of them is just E(G~j). Since there may be more 
than one index j with the above property, we always choose the smallest one. 
Furthermore we denote K = Gzj c~ U Gis. Of course, both j and K are functions 

s~j  

of (il . . . .  , ik). This way we have defined a mapping between k-tuples satisfying 
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(*) but not (**) and (k-1)-tuples satisfying (*) in which every (k-1)-tuple is 
the image of O( ~ r IGI-IKI) k-tuples. Hence 

K ~ G  
e(K) > 0 

(*) (*) 

Bk~ ~ E(li,...l~,)= ~'. E(li~...li~_~l~j+~...li~)p ~(m-~(~) 
(**) ~ (**) 

= 0 (  ~ nl~i-IKl p~(~)-~(K) ~(*) E(li~...Ii~_,)) 
K ~ G  

e(K)>0 

= 0 ( ~  r/[G[ -[K[ p e ( G ) -  e(K) # k  - 1) = 0 (#k2/2), 

K 

since #k-1 = 0(~(2 k- 1)/2) by the induction assumption and 

nlGI -IKL pe(G)- e(K) ---- 0 ( # ~ / 2 ) ,  

the last following from the fact that 

o 0  ~ n IHI pe(H) = O(nlKI p e ( K ) )  

for each leading overlap H of G. Thus/z k = o(#k/2) for k odd. In order to prove 
the other part of (5) we partition A2k=Cak+D2k, where the sum C2k is taken 
over those (G~ . . . . .  , G~2k) whose intersections are leading overlaps of G. Recall 
that H c G is a leading overlap of G if/~2 = 0 (n 2"- IHI p2e-e(m). To each 2 k-tuple 
of D2k we associate a (2k-2)-tuple by removing the lexicographically first pair 
of copies of G which intersect on a nonleading subgraph of G. Since every 
(2k-2)-tuple is the image of 0 (~  n z ' -  ml) 2 k-tuples 

K 

D2k = 0 (~  n 2~- IKI p 2 ~ - ~ ( g ) # 2 k -  2) = 0 (p~) 
K 

by the induction assumption and the fact that the sum is taken over all nonlead- 
ing K c G ,  e(K)>0.  

Finally, let H =H1,  H2 . . . .  , Hu be all, pairwise nonisomorphic leading over- 
laps of G. Then 

C z k ~  2 ,  . . .  ~ .  l l + . . , + l ~ = k  . . .  i=1 

1 u k 

2 V(X,), If npm~O then )~=o(a,)  and so, for II. Necessity. Set 2 ,=E(X,) ,  a, = 
every e > O. 

P (])~0 ] >O=P(X,>ea,+2,)+P(X, /a ,+e<)~, /a , )  

< P (X, > O) + P (e < 2,/o-,) ~ O. 
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Hence X,~,,0. If np m-, c > 0  and G is strictly balanced then X, converges to 

a Poisson random variable (see Introduction for the references). Assume now 
that G is not strictly balanced, i.e., there is I-I~=G with d(H)=m. It is easy 
to check that for np" ~ c > 0 H is a leading overlap of G if and only if d(H) = m. 
Thus B k is no longer o(tt~/2). In particular, B 4 is at least equal to the sum 
of those terms a(il, ..., i4) which correspond to four copies of G mutually inter- 
secting at H. So, B4~con4V-31Itlp4e-3e(I-1)~Cl[122, Co, C l > 0  , and lim EO~)  

3 + c 1. Moreover, it follows that E()7~)= O(1) which implies that X , ~ N ( O ,  1) 

by [3, p. 254, Corollary 73. Finally, if n2q--*0 then we divide (4) by G~ and 

after applying Markov's inequality we conclude that X ~ 0 .  

III. The case n2q-~ c > 0. Let us focus on formula (6). By inclusion - exclusion 

S2(k, r)= ~ (-1)l(kl) S ( k -  l, r-1) ,  where S( , ) are the Stirling numbers of the 
/ = 0  

second kind. After substituting and dividing by #k2/2 we get 

k k - l  

E(3~k)~(__l)k2 k/2 ~ (__1)~ ~ S(k_l,r)2,+z, 2=c/2 .  
/ = 0  r = 0  

On the other hand, if Y is a Poisson random variable with expectation 2 then 

~, (i_2)k=2_k/2l~=o (~) oo E(~'k)=2 -k/2 P(Y=i) (--1)' 2 l ~ P(Y=i) i  k-t 
i = 0  i = 0  

k 
=]~-k/2t~=O(--1)l(l) 2tE(yk-l). 

k - 1  

But E(yk-1)= ~ S(k--l, r)2 r and so, for every k =  1, 2, ..., 
r = O  

lira E (2  k) = E (( -- ~)k), 

which completes the proof, since - Yis uniquely determined by its moments. [] 

Remark. Let Z ,  be the number of nonedges in K(n, ~ (7) p). Then Z,~.*Po provided 

nZ q --~ c. 
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