Minimal Displacement of Branching Random Walk

Maury D. Bramson*
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York 10012, N.Y., USA

Abstract

Summary. Let \mathfrak{X} denote a branching random walk in \mathbb{R}^{1} with mean particle production $m, m>1$, and with incremental spatial distribution G, with $G(\{0\})$ $=p$ and $G(\{1\})=1-p$. If $m p=1$, then the minimal displacement of \mathfrak{X} behaves asymptotically like $\log \log n / \log 2$. If the condition $G(\{1\})=1-p$ is replaced by $G((0, \infty))=1-p$, we obtain a similar result.

1. Introduction

The Galton-Watson branching process $\left\{X_{n}\right\}$, with $X_{0}=1$, together with the i.i.d. collection of random variables $\left\{X\left(a_{1}, \ldots, a_{n}\right)\right\}, a_{k} \in \mathbb{Z}^{+}, k=1, \ldots, n$, defines a branching random walk \mathfrak{X} (in \mathbb{R}^{1}), where $S\left(a_{1}, \ldots, a_{n}\right)=\sum_{k=1}^{n} X\left(a_{1}, \ldots, a_{k}\right)$ is interpreted as the spatial position of the $a_{n}^{\text {th }}$ individual of the $n^{\text {th }}$ generation with forebears $\left(a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{1}, \ldots, a_{n-1}\right)$. (See Harris [5], page 122, for greater detail.) If we set $M_{n}=\min S\left(a_{1}, \ldots, a_{n}\right)$ ($=\infty$ if extinction of the process has occurred by time n), then M_{n} is the position of the individual farthest to the left at time n, also referred to as the minimal displacement. Alternatively, if $X\left(a_{1}, \ldots, a_{n}\right)$ is assumed to be a positive random variable, $X\left(a_{1}, \ldots, a_{n}\right)$ may instead be interpreted as the life-span of the individual (a_{1}, \ldots, a_{n}). In this case, M_{n} may be thought of as the first death time of a member of the $n^{\text {th }}$ generation of the process $\left\{X_{n}\right\}$.

Hammersley [4] demonstrates the existence of a $\gamma_{0} \in \mathbb{R}$ such that if $F_{n}(x)$ $=P\left[M_{n} \leqq x\right]$ and q_{0} is the extinction probability of \mathfrak{X}, then

$$
\begin{aligned}
& F_{n}(n \gamma) \rightarrow 0 \\
& \text { for } \gamma<\gamma_{0} \\
& \rightarrow 1-q_{0} \\
& \text { for } \gamma>\gamma_{0} .
\end{aligned}
$$

[^0]In the special case where the branching process $\left\{X_{n}\right\}$ is dyadic and $G(\{0\})$ $=G(\{1\})=\frac{1}{2}$, where $G(x)=P\left[X\left(a_{1}, \ldots, a_{n}\right) \leqq x\right]$, Joffe-Le Cam-Neveu [6] show quite simply that

$$
\frac{M_{n}}{n} \rightarrow 0 \text { w.p. } 1 \text { as } n \rightarrow \infty .
$$

In Section 2 of this paper, the technique of Joffe-Le Cam-Neveu is extended to demonstrate

Theorem 1. Assume that $E X_{1}^{2+\delta}<\infty$ for some $\delta>0, G(\{0\})=p, G(\{1\})=1-p$, and $m p=1$, where $E X_{1}=m>1$. Then, conditioned on the nonextinction of \mathfrak{X},

$$
\lim _{n \rightarrow \infty}\left(M_{n}-\left\lceil\frac{\log \log n-\log (V+o(1))}{\log 2}\right\rceil\right)=0
$$

holds w.p.1. V is a random variable which is defined in Proposition 4, and o(1) is stochastic. ${ }^{1}$

In Section 3, we generalize the condition $G(\{1\})=1-p$ to $G((0, \infty))=1-p$, and demonstrate

Theorem 2. Assume that $E X_{1}^{2+\delta}<\infty$ for some $\delta>0, G(\{0\})=p, G((0, \infty))=1-p$, and $m p=1$, where $E X_{1}=m>1$. Then, conditioned on the nonextinction of \mathfrak{X}, if

$$
\sum_{k=1}^{\infty} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda^{k}\right)\right)=\infty
$$

for some $\lambda>1$, then

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{\sum_{k=1}^{s(n)} G^{-1}\left(p+(1-p) \cdot \exp \left(-2^{k}\right)\right)}=1
$$

w.p. 1, whereas if

$$
\sum_{k=1}^{\infty} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda^{k}\right)\right)<\infty
$$

for some $\lambda>1$, then

$$
\lim _{n \rightarrow \infty} M_{n}<\infty
$$

w.p. 1. Here, $s(n)=\left[\log \log n / \log 27 .^{2}\right.$

[^1]
2. Proof of Theorem 1

In this section it will be assumed that $G(\{0\})=p, G(\{1\})=1-p, E X_{1}=m>1$, and $m p=1$. The essential idea behind the computation of $\left\{M_{n}\right\}$ in this case is to reinterpret \mathfrak{X} as a collection of branching processes within a branching process by means of an appropriate decomposition based on $\left\{S\left(a_{1}, \ldots, a_{n}\right)\right\}$. To do so, we introduce the concept of dynasty, where the dynasty of an individual $\left(a_{1}, \ldots, a_{n}\right)$ is given by $S\left(a_{1}, \ldots, a_{n}\right)$.

Intuitively, an individual, $\left(a_{1}, \ldots, a_{n}\right)$, is considered to enter a dynasty m if it reaches m by a move from the left, that is, if $S\left(a_{1}, \ldots, a_{n}\right)=m$ and $S\left(a_{1}, \ldots, a_{n-1}\right)$ $=m-1$. Since the probability of being stationary is p, the descendents of $\left(a_{1}, \ldots, a_{n}\right)$ which do not move from m form a Galton-Watson branching process, which is easily shown to be critical. We denote such a branching process by $\left\{Y_{k}^{(i, m)}\right\}_{i \in I_{m}} ; I_{m}=\left\{\left(a_{1}, \ldots, a_{n}\right): S\left(a_{1}, \ldots, a_{n}\right)=m, S\left(a_{1}, \ldots, a_{n-1}\right)=m-1\right\}$ denotes the set of individuals initiating processes at m. Thus, one can picture \mathfrak{X} as a collection of critical branching processes rooted at different spatial positions and beginning at different times. All of these branching processes have a common generation law due to the random walk structure of the spatial movement and the branching structure of \mathfrak{X}; we denote the prototype by $\left\{Y_{k}\right\}$. It should be noted that the subscript k of $\left\{Y_{k}^{(i, m)}\right\}$ does not refer to real time, but rather the number of generations that have elapsed since the individual i first reached m. (If $m=0$, then i is unique, and of course k is also the real time.)

In addition to the branching processes $\left\{Y_{k}^{(i, m)}\right\}_{i \in I_{m}}$, we also introduce the process $\left\{Z_{m}\right\}$, where $Z_{m}=\left|I_{m}\right|$, the cardinality of I_{m}. In other words, Z_{m} is the number of individuals ever reaching position m by a move from the left, and is thus the number of distinct critical branching processes $\left\{Y_{k}^{(i, m)}\right\}$ emanating from position m. Due to the branching and spatial structure of $\mathfrak{X},\left\{Z_{m}\right\}$ is also a Galton-Watson branching process. Whereas $\left\{Y_{k}\right\}$ is a critical branching process, $\left\{Z_{m}\right\}$ has infinite mean particle production (see Proposition 2).

Under this interpretation of \mathfrak{X}, M_{n} denotes the earliest dynasty still present at time n. Certainly, the behavior of $\left\{M_{n}\right\}$ and $\left\{Z_{m}\right\}$ will be closely connected. The key point behind the computations that follow is that (conditional on nonextinction of \mathfrak{X}) $\left\{Z_{m}\right\}$ will in general increase extremely rapidly as $m \rightarrow \infty-$ to such an extent that, because of the simple nature of $\left\{Y_{k}^{(i, m)}\right\}$, knowledge of the asymptotic behavior of $\left\{Z_{m}\right\}$ alone is sufficient for accurate computation of $\left\{M_{n}\right\}$. Proposition 4 describes the asymptotic behavior of $\left\{Z_{m}\right\}$. Together with Corollary 1, which describes the asymptotic behavior of $\left\{Y_{k}\right\}$, this is sufficient to enable us to derive Theorem 1, which characterizes the asymptotic behavior of $\left\{M_{n}\right\}$.

In the following, ϕ_{W} will denote the generating function of the first generation distribution W_{1} of the branching process $\left\{W_{m}\right\}$, and $\phi_{W}^{(m)}$, the generating function of the $m^{\text {th }}$ generation distribution W_{m}. In addition, ϕ_{W} will denote the generating function of the distribution W; it will be clear from the context which is meant.

Proposition 1. If $\left\{\hat{Y}_{k}\right\}$ is a critical branching process, i.e., $E \hat{Y}_{1}=1$, with variance
$0<\sigma^{2}<\infty$, then

$$
P\left[\hat{Y}_{k}>0\right] \sim \frac{2}{k \sigma^{2}}
$$

Proof. See Athreya-Ney [1], page 19.
Corollary 1. Assume that X_{1} has variance $\sigma^{2}<\infty$, and let p be as in the beginning of the section, with $m p=1$. Then,

$$
P\left[Y_{k}>0\right] \sim \frac{2}{k\left(p^{2} \sigma^{2}+1-p\right)} .
$$

Proof. Since $m p=1$ where $E X_{1}=m,\left\{Y_{k}\right\}$ is a critical branching process. A simple computation of $\phi_{Y}^{\prime \prime}(1)$, based on the equality

$$
\phi_{Y}(s)=\phi_{X}(1-p+p s)
$$

shows that

$$
\sigma_{Y}^{2}=p^{2} \sigma^{2}+1-p
$$

where σ_{Y}^{2} is the variance of Y_{1}. Now apply Proposition 1.
We now proceed to examine the asymptotic behavior of $\left\{Z_{m}\right\}$. Our plan is to first obtain an asymptotic expression for $\phi_{Z}^{(m)}$ (Proposition 5). We will apply a result of Darling [3] to reduce this to an explicit statement of weak convergence of $\left\{Z_{m}\right\}$ (Corollary 2). Applying a result of Cohn [2], we then sharpen this result to one of pointwise asymptotic behavior of $\left\{Z_{m}\right\}$ (Proposition 4). We commence by examining the behavior of $\phi_{Z}(s)$ for s close to 1 . For ease of notation, we define $k(s)=1-\phi_{Z}(1-s)$, and therefore examine $k(s)$ for small s.
Proposition 2. Assume that for some $\delta>0, X_{1}$ has a finite $(2+\delta)^{\text {th }}$ moment, i.e.

$$
\sum_{j=0}^{\infty} p_{j} j^{2+\delta}<\infty
$$

where $p_{j}=P\left[X_{1}=j\right]$. Then,

$$
k(s)=a s^{1 / 2}\left(1+O\left(s^{\delta / 2}\right)\right)
$$

where $a=\left[2(1-p) / p\left(p^{2} \sigma^{2}+1-p\right)\right]^{1 / 2}$.
Proof. Decomposition of \mathfrak{X} based on the spatial motion of the individual branches yields the functional equation

$$
\phi_{Z}(s)=\phi_{X}\left((1-p) s+p \phi_{Z}(s)\right) .
$$

Therefore,

$$
\begin{equation*}
k(s)=1-\phi_{X}(1-(1-p) s-p k(s)) \tag{1}
\end{equation*}
$$

Since X_{1} has finite $(2+\delta)^{\text {th }}$ moment, if we assume that $0<\delta<1$, we may rewrite ϕ_{X} as

$$
\begin{equation*}
\phi_{X}(s)=1+\frac{1}{p} \cdot(s-1)+\left(\sigma^{2}+\frac{1-p}{p^{2}}\right) \cdot \frac{(s-1)^{2}}{2!}+O\left(|s-1|^{2+\delta}\right) \tag{2}
\end{equation*}
$$

(See Loève [7], page 199.) Substituting (2) into (1), we obtain

$$
\begin{aligned}
k(s)= & \frac{(1-p)}{p} \cdot s+k(s)-\left(\sigma^{2}+\frac{1-p}{p^{2}}\right) \frac{[(1-p) s+p k(s)]^{2}}{2!} \\
& +O[(1-p) s+p k(s)]^{2+\delta}
\end{aligned}
$$

and hence

$$
\begin{align*}
k(s) & =-\frac{(1-p)}{p} \cdot s+\left[\frac{2\left((1-p) s+p O[(1-p) s+p k(s)]^{2+\delta}\right)}{p\left(p^{2} \sigma^{2}+1-p\right)}\right]^{1 / 2} \\
& =-\frac{(1-p)}{p} \cdot s+a\left[s+O\left(s^{2+\delta}\right)+O\left(k(s)^{2+\delta}\right)\right]^{1 / 2} . \tag{3}
\end{align*}
$$

Dividing by $k(s)$, (3) becomes

$$
\begin{equation*}
1=-\frac{(1-p)}{p} \cdot \frac{s}{k(s)}+a\left[\frac{s}{k^{2}(s)}+O\left(\frac{s^{2+\delta}}{k^{2}(s)}\right)+O\left(k^{\delta}(s)\right)\right]^{1 / 2} \tag{4}
\end{equation*}
$$

Now since $Z_{1}<\infty$ w.p. $1, \phi_{Z}(s)$ is continuous at 1 , and therefore

$$
\begin{equation*}
k^{\delta}(s) \rightarrow 0 \quad \text { as } \quad s \rightarrow 0 \tag{5}
\end{equation*}
$$

Moreover, (4) implies that $s / k^{2}(s)$ is bounded as $s \rightarrow 0$, and therefore

$$
\begin{equation*}
s^{2+\delta} / k^{2}(s) \rightarrow 0 \quad \text { as } \quad s \rightarrow 0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
s / k(s) \rightarrow 0 \quad \text { as } \quad s \rightarrow 0 \tag{7}
\end{equation*}
$$

Therefore, if we apply (5), (6), and (7), it follows from (4) that

$$
1=\lim _{s \rightarrow 0} \frac{a}{k(s)} \cdot s^{1 / 2}
$$

and hence

$$
\begin{equation*}
k(s)=a A(s) s^{1 / 2} \tag{8}
\end{equation*}
$$

where $A(s) \rightarrow 1$ as $s \rightarrow 0$. Plugging (8) into (3), we obtain

$$
\begin{aligned}
k(s) & =\frac{-(1-p)}{p} \cdot s+a\left[s+O\left(s^{2+\delta}\right)+O\left(s^{1+\delta / 2}\right)\right]^{1 / 2} \\
& =a s^{1 / 2}\left(1+O\left(s^{\delta / 2}\right)\right) .
\end{aligned}
$$

By applying Proposition 2, we will show in Proposition 5 of Section 3 (in somewhat greater generality) that the existence of a $(2+\delta)^{\text {th }}$ moment for X_{1} is enough to ensure that

$$
\begin{equation*}
\phi_{Z}^{(m)}\left(1-\exp \left(-2^{m} t\right)\right) \rightarrow v(t) \tag{9}
\end{equation*}
$$

as $m \rightarrow \infty$, for all $0<t<\infty$, where v is a distribution function which is continuous and strictly increasing on $x>0$, with $v(0+)=q_{0}$. $\left(q_{0}\right.$ is the extinction probability of \mathfrak{X}.) By means of a computation involving the Laplace transform, it is possible to reduce (9) to an explicit statement concerning the asymptotic behavior of $\left\{Z_{m}\right\}$. The following result is due to Darling [3].
Proposition 3. Let $\left\{\hat{Z}_{m}\right\}$ be a sequence of integer valued random variables, and assume that

$$
\phi_{\hat{\mathcal{L}}_{m}}\left(1-\exp \left(-b^{m} t\right)\right) \rightarrow \hat{v}(t)
$$

as $m \rightarrow \infty$, for all $0<t<\infty$, where $b>1$. Then,

$$
P\left[b^{-m} \log \left(\hat{Z}_{m}+1\right) \leqq x\right] \rightarrow \hat{v}(x)
$$

as $m \rightarrow \infty$, for all $0<x<\infty$.
In our specific case, (9) implies that we obtain
Corollary 2. $P\left[2^{-m} \log \left(Z_{m}+1\right) \leqq x\right] \rightarrow v(x)$ as $m \rightarrow \infty$, for all $0<x<\infty$.
Cohn [2] shows that in the case where $\left\{\hat{Z}_{m}\right\}$ is a Galton-Watson branching process, and $\hat{v}(t)$ is a distribution function which is continuous and strictly increasing on $x>0$, weak convergence as in the conclusion of Proposition 3 actually implies a.s. convergence to a random variable \hat{V} having distribution \hat{v}. Therefore, Corollary 2 may be strengthened to

Proposition 4. $2^{-m} \log \left(Z_{m}+1\right) \rightarrow V$ w.p. 1 as $m \rightarrow \infty$, where V is a random variable having distribution $v . v(0+)=q_{0}$, and therefore $V>0$ w.p. 1 on the set of nonextinction of \mathfrak{X}.

Corollary 1 and Proposition 4 provide us with precise enough information regarding the asymptotic behavior of $\left\{Y_{k}\right\}$ and $\left\{Z_{m}\right\}$ to analyze $\left\{M_{n}\right\}$.
Theorem 1. Assume that $\left\{M_{n}\right\}$ is the minimal displacement of the branching random walk \mathfrak{X}, where $E X_{1}^{2+\delta}<\infty$ for some $\delta>0 ; G(\{0\})=p, G(\{1\})=1-p$, and $m p=1$, where $E X_{1}=m>1$. Then, conditioned on the nonextinction of \mathfrak{X},

$$
\lim _{n \rightarrow \infty}\left(M_{n}-\left\lceil\frac{\log \log n-\log (V+o(1))}{\log 2}\right\rceil\right)=0
$$

holds w.p. 1. V is defined in Proposition 4, and $o(1)$ is stochastic.
Proof. (a) Since $\sum_{i \in I_{m}} Y_{n}^{(i, m)}>0$ implies that $M_{n} \leqq m$, determination of $\sum_{i \in I_{m}} Y_{n}^{(i, m)}$ will give an upper bound for M_{n}. By Corollary 1, there exists some $C>0$ s.t.

$$
P\left[Y_{n}>0\right] \geqq C / n
$$

for all $n \geqq 1$. Hence

$$
P\left[\sum_{i \in I_{m}} Y_{n}^{(i, m)}>0 \mid Z_{m}\right] \geqq 1-(1-C / n)^{Z_{m}} \geqq 1-e^{-C Z_{m} / n},
$$

which is at least

$$
1-e^{-C m} \quad \text { for } 1 \leqq n \leqq Z_{m} / m
$$

Let Q be the set such that $\liminf _{m \rightarrow \infty} Z_{m} / m>1$. Since $\sum_{m=0}^{\infty} e^{-C_{m}}<\infty$, a simple BorelCantelli argument implies that

$$
P\left[\underset{m \rightarrow \infty}{\liminf } \sum_{i \in I_{m}} \mathrm{Y}_{\left[Z_{m} \mid m\right]}^{(i, m)}>0 \mid \mathrm{Q}\right]=1 .
$$

Let Q_{0} denote the set of nonextinction of \mathfrak{X}. Then, Proposition 4 implies that $P[Q]=P\left[Q_{0}\right]=1-q_{0}$, and that $\left[Z_{m} / m\right\rfloor=\exp \left[2^{m}(V+o(1))\right]$ on Q_{0} for some appropriate $o(1)$. Therefore,

$$
P\left[\liminf _{m \rightarrow \infty} \sum_{i \in I_{m}} Y_{e_{m}}^{(i, m)}>0 \mid Q_{0}\right]=1
$$

where $e_{m}=\exp \left[2^{m}(V+o(1))\right]$. Inverting e_{m}, it follows that

$$
\limsup _{n \rightarrow \infty}\left(M_{n}-\left\lceil\frac{\log \log n-\log (V+o(1))}{\log 2}\right\rceil\right) \leqq 0
$$

w.p. 1 on Q_{0}, the set of nonextinction of \mathfrak{X}.
(b) Analysis of $\sum_{i \in I_{k}} Y_{n}^{(i, k)}$, for $k=1, \ldots, m$, also gives a lower bound for M_{n}. Proceeding in a manner similar to part (a), Corollary 1 implies that

$$
\begin{equation*}
P\left[\sum_{i \in I_{k}} Y_{n}^{(i, k)}>0 \mid Z_{k}\right] \leqq 1-e^{-C^{\prime} Z_{k} / n} \tag{10}
\end{equation*}
$$

for some $C^{\prime}>0$ and all k and n. The l.h.s. of (10) is therefore at most $1-\exp \left[-C^{\prime} e^{-m}\right]$ for $n \geqq e^{m} Z_{k}$. Since for large $m, 1-\exp \left[-C^{\prime} e^{-m}\right] \sim C^{\prime} e^{-m}$, it follows that

$$
\begin{equation*}
P\left[\sum_{k=0}^{m} \sum_{i \in I_{k}} Y_{f m, k}^{(i, k)}>0\right] \leqq C^{\prime \prime}(m+1) e^{-m} \tag{11}
\end{equation*}
$$

for some $C^{\prime \prime}>0$, where $f_{m, k}=\left\lceil e^{m} Z_{k}\right\rceil$. Now, set $g_{m}=\sum_{k=0}^{m} f_{m, k}=\sum_{k=0}^{m}\left\lceil e^{m} Z_{k}\right\rceil$. Notice that if $\sum_{k=0}^{m} \sum_{i \in I_{k}} Y_{f, k}^{(i, k)}=0$, then the $0^{\text {th }}$ dynasty ends by time $f_{m, 0}$, implying that the first dynasty ends by time $f_{m, 0}+f_{m, 1}$, and so on, showing that the $m^{\text {th }}$ dynasty ends by time g_{m}. Thus,

$$
\left\{M_{g_{m}} \leqq m\right\} \subset\left\{\sum_{k=0}^{m} \sum_{i \in I_{k}} Y_{f_{m, k}}^{(i, k)}>0\right\}
$$

which, together with (11), implies that

$$
\begin{equation*}
P\left[M_{g_{m}} \leqq m\right] \leqq C^{\prime \prime}(m+1) e^{-m} \tag{12}
\end{equation*}
$$

Proposition 4 implies that if $V>0$,

$$
g_{m}=\sum_{k=0}^{m} \exp \left[m+2^{k}(V+o(1))\right] .
$$

(If $V=0, g_{m}$ is, of course, bounded w.p. 1.) In either case,

$$
g_{m}=\exp \left[2^{m}(V+o(1))\right]
$$

Since $\sum_{m=0}^{\infty}(m+1) e^{-m}<\infty$, we may apply Borel-Cantelli, from which it follows that

$$
P\left[\liminf _{m \rightarrow \infty}\left(M_{\mathrm{g}_{m}}-m\right) \leqq 0\right]=0
$$

Inverting g_{m}, we obtain

$$
\liminf _{n \rightarrow \infty}\left(M_{n}-\left\lceil\frac{\log \log n-\log (V+o(1))}{\log 2}\right\rceil\right) \geqq 0
$$

w.p.1.

The assertion follows from parts (a) and (b).

3. Proof of Theorem 2

If G is generalized from the two point distribution, where $G(\{0\})=p, G(\{1\})=$ $1-p$, and $m p=1$, to a distribution with $G(\{0\})=p, G((0, \infty))=1-p$, and $m p=1$, then the basic techniques of Section 2 are still applicable toward computation of $\left\{M_{n}\right\}$. We again apply the concept of dynasty in decomposing the branching random walk \mathfrak{X}, but with the modification that the individual $\left(a_{1}, \ldots, a_{n}\right)$ is now considered a member of the $m^{\text {th }}$ dynasty if

$$
\sum_{k=1}^{n} \chi_{\left\{X\left(a_{1}, \ldots, a_{k}\right)>0\right\}}=m
$$

where χ is the indicator function. (Denote by $\Gamma\left(a_{1}, \ldots, a_{n}\right)$ the dynasty of $\left(a_{1}, \ldots, a_{n}\right)$.) Furthermore, we will say that $\left(a_{1}, \ldots, a_{n}\right)$ is a first generation member of its dynasty if $X\left(a_{1}, \ldots, a_{n}\right)>0$.

Unlike the simpler case in Section 2, it is now no longer sufficient to calculate Z_{m}, the number of individuals at the start of the $m^{\text {th }}$ dynasty, to obtain an asymptotic estimate for $\left\{M_{n}\right\}$. We will, however, be able to obtain asymptotic upper and lower bounds for $\left\{M_{n}\right\}$ by examining certain auxiliary processes of \mathfrak{X}.

The computation of the upper bound is messy, that of the lower bound is simple; our methodology is such that Theorem 2, which characterizes $\left\{M_{n}\right\}$, is somewhat weaker than its analogue, Theorem 1.

Computation of an Upper Bound for M_{n}

To compute an upper bound for $\left\{M_{n}\right\}$, we introduce an auxiliary process \mathfrak{X}^{γ} by "trimming" the tree associated with \mathfrak{X}, so that only those individuals of the $m^{\text {th }}$ dynasty with spatial movement at most $\gamma(m)$ are preserved. (γ will be assumed to be a decreasing function on \mathbb{Z}^{+}.) That is, an individual $\left(a_{1}, \ldots, a_{n}\right)$ is retained only if

$$
X\left(a_{1}, \ldots, a_{k}\right) \leqq \gamma \circ \Gamma\left(a_{1}, \ldots, a_{k}\right) \quad \text { for } k=1, \ldots, n .
$$

Note that trimming occurs only among the first generation of each dynasty. The corresponding minimal displacement M_{n}^{γ} of \mathfrak{X}^{γ} will be bounded above by $\sum_{k=0}^{m-1} \gamma(k)$ if extinction of the $m^{\text {th }}$ dynasty of \mathfrak{X}^{ν} has not yet occurred by time n. This provides us with an upper bound for $\left\{M_{n}\right\}, M_{n}$ being less than M_{n}^{γ}.

We will be making use of those γ of the form

$$
\begin{equation*}
\gamma^{\alpha_{\varepsilon, j}}(k)=G^{-1}\left(p+(1-p) e^{-\alpha_{\varepsilon, j}(k)}\right), \tag{13}
\end{equation*}
$$

where

$$
\alpha_{\varepsilon, j}(k)= \begin{cases}\alpha^{k-j} & \text { if } k>j \\ \varepsilon & \text { if } k \leqq j\end{cases}
$$

and either $1<\alpha<2$ or $\alpha=0$, with $0 \leqq \varepsilon \leqq \alpha$. In the event that G is a bounded distribution, it will suffice to set $\varepsilon=0$. When no misunderstanding is possible, we will drop γ, ε, and j from the superscript, and will write $\mathfrak{X}^{\alpha},\left\{M_{n}^{\alpha}\right\}$, and $\left\{Z_{m}^{\alpha}\right\}$ for the auxiliary processes induced by $\gamma^{\alpha_{c, j}}$. The key point in the following estimates is that although $\left\{Z_{m}^{\alpha}\right\}$ is subject to the effects of increasingly vigorous trimming as $m \rightarrow \infty$, the doubly exponential growth of $\left\{Z_{m}\right\}$ (see Proposition 4 of Section 2) will offset this trimming so that $\left\{Z_{m}^{\alpha}\right\}$ will retain the same asymptotic behavior as $\left\{Z_{m}\right\}$. As in Section 2, this behavior of $\left\{Z_{m}^{\alpha}\right\}$ will enable us to analyze $\left\{M_{n}^{\alpha}\right\}$. The basic technique employed in Section 2 of using generating functions to examine $\left\{Z_{m}\right\}$ will still be valid. However, $\alpha_{\varepsilon, j}$ will not in general be constant, and therefore $\left\{Z_{m}^{\alpha}\right\}$ not a Galton-Watson branching process, nor its generating function after m generations the m-fold iterate of some fixed generating function. ${ }^{3}$ Therefore, we must introduce some new terminology, and define $\phi_{\alpha}^{(m+l, m)}(s)$ to be the m-fold composite generating function governing reproduction from the $l^{\text {th }}$ to $(l+m)^{\text {th }}$ generations of $\left\{Z_{m}^{\alpha}\right\} .{ }^{4}$ That is, $\phi_{\alpha}^{(m+l, m)}(s)$ is the generating function of Z_{m+l}^{α} given that $Z_{l}^{\alpha}=1$. Clearly,

$$
\phi_{\alpha}^{(l, 0)}(s)=s,
$$

[^2]whereas we obtain the inductive relations
\[

$$
\begin{align*}
\phi_{\alpha}^{(m+l, m)}(s)= & \phi_{\alpha}^{(m+l-1, m-1)} \circ \phi_{\alpha}^{(m+l, 1)}(s) \\
= & \phi_{\alpha}^{(l+1,1)} \circ \phi_{\alpha}^{(m+l, m-1)}(s) \\
= & \phi_{Z}\left(1-\frac{\left[G\left(\gamma^{\alpha_{\varepsilon, j}}(l+1)\right)-p\right]}{(1-p)}\right. \\
& \left.+\frac{\left[G\left(\gamma^{\alpha_{\varepsilon, j}, j}(l+1)\right)-p\right]}{(1-p)} \cdot \phi_{\alpha}^{(m+l, m-1)}(s)\right) \cdot{ }^{5} \tag{14}
\end{align*}
$$
\]

If G is continuous, the last line is equivalent to

$$
\phi_{Z}\left(1-e^{-\alpha_{\varepsilon, j}(l+1)}+e^{-\alpha_{\varepsilon, j}(l+1)} \cdot \phi_{\alpha}^{(m+l, m-1)}(s)\right) .
$$

Note that $\phi_{\alpha}^{(m, m)}$ is simply the generating function of Z_{m}^{α}.
For computational purposes, also define

$$
\begin{equation*}
h_{\alpha}^{(m+l, m)}(s)=-\log \left[1-\phi_{\alpha}^{(m+l, m)}(1-\exp (-s))\right], \tag{15}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
h_{\alpha}^{(m+l, m)}(s)=h_{\alpha}^{(l+1,1)} \circ h_{\alpha}^{(m+l, m-1)}(s) . \tag{16}
\end{equation*}
$$

Also set

$$
\begin{equation*}
h(s)=-\log \left[1-\phi_{Z}(1-\exp (-s))\right] \tag{17}
\end{equation*}
$$

whence

$$
\begin{align*}
h(s) & =-\log k(\exp (-s)) \\
& =h_{0}^{(1,1)}(s)=h_{0}^{(l, 1)}(s), \tag{18}
\end{align*}
$$

where $k(s)$ is defined in Section 2. From (14), (15), and (17), it follows that

$$
\begin{equation*}
h_{\alpha}^{(l+1,1)}(s)=h\left(s-\log \left[\frac{G\left(\gamma^{\alpha_{c, j}}(l+1)\right)-p}{1-p}\right]\right), \tag{19}
\end{equation*}
$$

which equals $h\left(s+\alpha_{\varepsilon, j}(l+1)\right)$ if G is continuous.
As in Section 2, we will derive the limiting behavior of $\phi_{\alpha}^{(m, m)}\left(1-\exp \left(-2^{m} s\right)\right)$, and apply Darling's and Cohn's results to obtain analogous properties of $\left\{Z_{m}^{\alpha}\right\}$, and hence $\left\{M_{n}^{\alpha}\right\}$. We begin with a pair of lemmas which characterize $h_{\alpha}^{(m+l, m)}$.
Lemma 1. Assume that $E X_{1}^{2+\delta}<\infty$ for some $\delta>0$, and define

$$
\begin{equation*}
\bar{\alpha}_{s, j}(l)=-\log \left[\frac{G\left(\gamma^{\alpha_{\varepsilon, j}}(l)\right)-p}{1-p}\right] \tag{20}
\end{equation*}
$$

Then,

$$
\bar{\alpha}_{\varepsilon, j}(l) \leqq \alpha_{\varepsilon, j}(l),
$$

[^3]and
\[

$$
\begin{equation*}
h_{\alpha}^{(l+1,1)}(s)=h\left(s+\bar{\alpha}_{e, j}(l)\right) . \tag{21}
\end{equation*}
$$

\]

Moreover,

$$
\begin{align*}
h_{x}^{(m+l, m)}\left(2^{m+l} s\right)= & 2^{l} s+\sum_{k=1}^{m} 2^{-k} \bar{\alpha}_{\varepsilon, j}(k+l) \\
& -2\left(1-2^{-m}\right) \log a+O_{l, m}\left(\exp \left(-2^{l-1} \delta s\right)\right), \tag{22}
\end{align*}
$$

where a is defined in Proposition 2. For some fixed $u_{0}, 0<u<u_{0}$ implies that

$$
\begin{equation*}
\sup _{l, m, u} \frac{\left|O_{l, m}(u)\right|}{u}<\infty \tag{23}
\end{equation*}
$$

(Therefore, in future computations involving Lemma 1, the subscripts will be dropped from $O_{i, m}$.)
Proof. $\bar{\alpha}_{e, j}(l) \leqq \alpha_{\varepsilon, j}(l)$ follows immediately from (13), and $h_{\alpha}^{(l+1,1)}(s)=h\left(s+\bar{\alpha}_{i, j}(l)\right)$ follows immediately from (19). To demonstrate (22), we apply induction on m simultaneously for all l. Equation (16), together with (22) stated for $m-1$, implies that

$$
\begin{aligned}
h_{\alpha}^{(m+l, m)}\left(2^{m+t} s\right)= & h_{\alpha}^{l l+1,1)}\left(2^{l+1} s+\sum_{k=2}^{m} 2^{-(k-1)} \bar{\alpha}_{\varepsilon, j}(k+l)\right. \\
& \left.-2\left(1-2^{1-m}\right) \cdot \log a+O_{l+1, m-1}\left(\exp \left(-2^{i} \delta s\right)\right)\right)
\end{aligned}
$$

which by (21), equals

$$
\begin{align*}
& h\left(2^{l+1} s+\sum_{k=1}^{m} 2^{-(k-1)} \bar{\alpha}_{\varepsilon, j}(k+l)\right. \\
& \left.\quad-2\left(1-2^{1-m}\right) \cdot \log a+O_{l+1, m-1}\left(\exp \left(-2^{l} \delta s\right)\right)\right) \tag{24}
\end{align*}
$$

Now, Proposition 2 and (18) together imply that

$$
\begin{aligned}
h(s) & =\frac{s}{2}-\log a-\log \left[1+O\left(\exp \left(-\frac{\delta}{2} s\right)\right)\right] \\
& =\frac{s}{2}-\log a+O^{\prime}\left(\exp \left(-\frac{\delta}{2} s\right)\right)
\end{aligned}
$$

(for some O^{\prime}). Therefore, (24) equals

$$
\begin{aligned}
2^{l} s+ & \sum_{k=1}^{m} 2^{-k} \bar{\alpha}_{\varepsilon, j}(k+l)-2\left(1-2^{-m}\right) \cdot \log a+\frac{1}{2} O_{l+1, m-1}\left(\exp \left(-2^{l} \delta s\right)\right) \\
& +O^{\prime}\left[\operatorname { e x p } \left(-\delta\left(2^{l} s+\sum_{k=1}^{m} 2^{-k} \bar{\alpha}_{\varepsilon, j}(k+l)-\left(1-2^{1-m}\right) \cdot \log a\right.\right.\right. \\
& \left.\left.\left.+\frac{1}{2} O_{l+1, m-1}\left(\exp \left(-2^{l} \delta s\right)\right)\right)\right)\right] \\
= & 2^{l} s+\sum_{k=1}^{m} 2^{-k} \bar{\alpha}_{\varepsilon, j}(k+l)-2\left(1-2^{-m}\right) \cdot \log a+O_{l, m}\left(\exp \left(-2^{l-1} \delta s\right)\right)
\end{aligned}
$$

This demonstrates (22). Now, choose M, t_{1}, and t_{2} so that

$$
\left|O^{\prime}(\exp (-\delta t))\right|<M \cdot \exp (-\delta t)
$$

and

$$
\left|O_{l+1, m-1}(\exp (-\delta t))\right|<2 M \cdot \exp (-\delta t)
$$

for $0<t_{1}<t$, and

$$
t>2|\log a|+2 M \cdot \exp (-\delta t)
$$

for $0<t_{2}<t$. It follows that for $t>t_{0}$, where $t_{0}=t_{1} \vee t_{2}$,

$$
\left|O_{l, m}(\exp (-\delta t))\right|<2 M \cdot \exp (-\delta t)
$$

the bound being independent of l. This implies (23). \quad]
Lemma 2. $h(s)$ (hence $h_{\alpha}^{(l, 1)}(s)$ and $\left.h_{\alpha}^{(m+l, l)}(s)\right)$ is norm decreasing. That is, if $s_{1}>s_{2}$, then $s_{1}-s_{2}>h\left(s_{1}\right)-h\left(s_{2}\right)$.
Proof. Since $k(t)=1-\phi_{Z}(1-t)$, where ϕ_{Z} is a strictly convex generating function, $k(t)$ is strictly concave with $k(0)=0$. Therefore, for $t_{2}>t_{1}>0$,

$$
\frac{k\left(t_{2}\right)}{k\left(t_{1}\right)}<\frac{t_{2}}{t_{1}}
$$

If we set $s_{i}=-\log t_{i}$, then (18) implies that

$$
\begin{aligned}
h\left(s_{1}\right)-h\left(s_{2}\right) & =\log \left[k\left(\exp \left(-s_{2}\right)\right) / k\left(\exp \left(-s_{1}\right)\right)\right] \\
& =\log \left[k\left(t_{2}\right) / k\left(t_{1}\right)\right] \\
& <\log \frac{t_{2}}{t_{1}}=s_{1}-s_{2}
\end{aligned}
$$

Equations(21) and (16) imply that the same is true for $h_{\alpha}^{(l, 1)}(s)$ and for $h_{\alpha}^{(m+l, l)}(s)$. $]$

We now state our main technical result, which was used in Section 2 to characterize the asymptotic behavior of $\left\{Z_{m}\right\}$, and will be similarly used in this section to characterize $\left\{Z_{m}^{\alpha}\right\}$.
Proposition 5. Assume that $E X_{1}^{2+\delta}<\infty$ for some $\delta>0$. Then,

$$
\phi_{\alpha_{\varepsilon, j}}^{(m, m)}\left(1-\exp \left(-2^{m} s\right)\right) \rightarrow v_{\alpha_{\varepsilon, j}}(s)
$$

as $m \rightarrow \infty$ for $0<s<\infty$, where $v_{\alpha_{c, j}}(s)$ is continuous and strictly increasing, and $v_{\alpha_{\varepsilon, j}}(\infty)=1$. As $j \uparrow \infty$ and $\varepsilon \downarrow 0, v_{\alpha_{\varepsilon, j}}(s) \downarrow v_{0}(s)=v(s)$, where v is defined in $(9) . v(0+)$ $=q_{0}$.
Proof. Making use of (15), it suffices to demonstrate
Proposition 5'. Assume that $E X_{1}^{2+\delta}<\infty$ for some $\delta>0$. Then,

$$
h_{\alpha_{\varepsilon, j}}^{(m+l, m)}\left(2^{m+l} s\right) \rightarrow w_{\alpha_{\varepsilon, j} ; l}(s)
$$

as $m \rightarrow \infty$ for $0<s<\infty$. If we set $w_{\alpha_{\varepsilon, j}}(s)=w_{\alpha_{\varepsilon, j ;} ;}(s)$, then

$$
w_{\alpha_{\varepsilon, j}}(s)=h_{\alpha_{\varepsilon, j}}^{(l, l)} \circ w_{\alpha_{\alpha_{i} ;} ;}(s),
$$

and $w_{\alpha_{\varepsilon}, j}$ is continuous and strictly increasing, with $w_{\alpha_{\varepsilon, j}}(\infty)=\infty$. As $j \uparrow \infty$ and $\varepsilon \downarrow 0$, $w_{\alpha_{\varepsilon}, j}(s) \downarrow w(s)$, which is defined as $w_{0}(s) . w(0+)=-\log \left(1-q_{0}\right)$.
Proof. Throughout the proof, we suppress the subscripts ε and j when convenient. We first demonstrate existence of the limit $w_{\alpha ; l}$. For m, m^{\prime} given, with $m<m^{\prime}$, Lemma 2 implies that for $m_{0} \leqq m$,

$$
\begin{aligned}
& \left|h_{\alpha}^{(m+l, m)}\left(2^{m+l} s\right)-h_{\alpha}^{\left(m^{\prime}+l, m^{\prime}\right)}\left(2^{m^{\prime}+l} s\right)\right| \\
& \quad \leqq\left|h_{\alpha}^{\left(m+l, m-m_{0}\right)}\left(2^{m+l} s\right)-h_{\alpha}^{\left(m^{\prime}+l, m^{\prime}-m_{0}\right)}\left(2^{m^{\prime}+l} s\right)\right| .
\end{aligned}
$$

By Lemma 1, this is at most

$$
\begin{equation*}
\sum_{k=m-m_{0}+1}^{\infty} 2^{-k} \bar{\alpha}\left(k+l+m_{0}\right)+2^{1+m_{0}-m} \cdot \log a+O\left(\exp \left(-2^{l+m_{0}-1} \delta s\right)\right) . \tag{25}
\end{equation*}
$$

If $m \rightarrow \infty$, then we may choose $m_{0} \rightarrow \infty$ in a manner so that

$$
\begin{aligned}
\sum_{k=m-m_{0}+1}^{\infty} 2^{-k} \bar{\alpha}\left(k+l+m_{0}\right) & \leqq \sum_{k=m-m_{0}+1}^{\infty} 2^{-k} \alpha\left(k+l+m_{0}\right) \\
& =\alpha^{l-j+m_{0}} . \sum_{k=m-m_{0}+1}^{\infty}\left(\frac{\alpha}{2}\right)^{k} \rightarrow 0 .
\end{aligned}
$$

Therefore, (25) implies that $\left\{h_{\alpha}^{(m+l, m)}\left(2^{m+l} s\right)\right\}$ is Cauchy in m, and hence $w_{\alpha ; l}(s)$ exists.
$w_{\alpha}(s)=h_{\alpha}^{(l, l)} \circ w_{\alpha ; l}(s)$ follows immediately from the construction of $w_{\alpha ; l}(s)$.
Continuity of w_{α} is demonstrated in a manner analogous to the demonstration of the existence of $w_{\alpha ; l}$. From Lemmas 1 and 2, it follows that for s, $s_{1}>0$,

$$
\begin{align*}
& \left|h_{\alpha}^{(m+i, m+i)}\left(2^{m+l} s_{1}\right)-h_{\alpha}^{(m+i, m+l)}\left(2^{m+l} s\right)\right| \\
& \quad \leqq 2^{l}\left|s_{1}-s\right|+O\left(2 \cdot \exp \left(-2^{l-1} \delta\left(s_{1} \wedge s\right)\right)\right) \tag{26}
\end{align*}
$$

If we let $m \rightarrow \infty$, then (26) implies that

$$
\begin{equation*}
\left|w_{\alpha}\left(s_{1}\right)-w_{\alpha}(s)\right| \leqq 2^{t}\left|s_{1}-s\right|+O\left(2 \cdot \exp \left(-2^{l-1} \delta\left(s_{1} \wedge s\right)\right)\right) . \tag{27}
\end{equation*}
$$

Choosing l appropriately, we see that the r.h.s. of (27) approaches 0 as s approaches s_{1}, and hence w_{α} is continuous.
w_{α} is strictly increasing: For $s_{1}>s_{2}$, if we choose l so that

$$
O\left(2 \cdot \exp \left(-2^{l-1} \delta s_{2}\right)\right)<2^{l-1}\left(s_{1}-s_{2}\right)
$$

Lemma 1 implies that

$$
h_{\alpha}^{(m+l, m)}\left(2^{m+l} s_{1}\right)-h_{\alpha}^{(m+l, m)}\left(2^{m+l} s_{2}\right) \geqq 2^{l-1}\left(s_{1}-s_{2}\right)
$$

Letting $m \rightarrow \infty$, we obtain

$$
w_{\alpha ; l}\left(s_{1}\right)-w_{\alpha ; l}\left(s_{2}\right) \geqq 2^{i-1}\left(s_{1}-s_{2}\right) .
$$

Therefore,

$$
w_{\alpha}\left(s_{1}\right)-w_{\alpha}\left(s_{2}\right)=h_{\alpha}^{(l, l)} \circ w_{\alpha ; l}\left(s_{1}\right)-h_{\alpha}^{(l, l)} \circ w_{\alpha ; l}\left(s_{2}\right)>0
$$

since $h_{\alpha}^{(l, l)}$ is strictly increasing.
$w_{\alpha}(\infty)=\infty$ follows trivially from Lemma 1 by setting $l=0$, and letting $s \rightarrow \infty$, $m \rightarrow \infty$ in (22).
$w_{\alpha_{\varepsilon, j}}(s) \downarrow w(s)$ as $j \uparrow \infty, \varepsilon \downarrow 0$: Lemma 1 implies that

$$
h_{\alpha_{\varepsilon, j}}^{(m+l, m)}\left(2^{m+l} s\right)-h_{0}^{(m+l, m)}\left(2^{m+l} s\right) \leqq \sum_{k=1}^{m} 2^{-k} \bar{\alpha}_{\varepsilon, j}(k+l)+O\left(2 \cdot \exp \left(-2^{l-1} \delta s\right)\right)
$$

By (13) and (20), this is at most

$$
\varepsilon+2^{(l-j) \wedge 0} \cdot \sum_{k=1}^{\infty}\left(\frac{\alpha}{2}\right)^{k}+O\left(2 \cdot \exp \left(-2^{l-1} \delta s\right)\right)
$$

Letting $m \rightarrow \infty$ and applying Lemma 2, we obtain

$$
\begin{align*}
& h_{\alpha_{\varepsilon, j}}^{(l, l)} \circ w_{\alpha_{s, j} ; i}(s)-h_{\alpha_{\varepsilon, j}}^{(l, l)} \circ w_{0 ; l}(s) \leqq w_{\alpha_{\varepsilon, j} ; l}(s)-w_{0 ; i}(s) \\
& \quad \leqq \varepsilon+2^{(l-j) \wedge 0} \cdot \sum_{k=1}^{\infty}\left(\frac{\alpha}{2}\right)^{k}+O\left(2 \cdot \exp \left(-2^{l-1} \delta s\right)\right) . \tag{28}
\end{align*}
$$

Now, for $j \geqq l$, as $\varepsilon \rightarrow 0$,

$$
h_{\alpha_{\varepsilon, j}}^{(l, l)} \circ w_{0 ; l}(s)-h^{(l)} \circ w_{0 ; l}(s) \rightarrow 0
$$

This, together with (28), implies that

$$
w_{\alpha_{\varepsilon, j}}(s)-w(s)=h_{\alpha_{\varepsilon, j}}^{(l, l)} \circ w_{\alpha_{\varepsilon, j ;}}-h_{\alpha_{\varepsilon, j}}^{(l, l)} \circ w_{0 ; l}(s)+h_{\alpha_{\varepsilon, j}}^{(l, l)} \circ w_{0 ; l}(s)-h^{(l)} \circ w_{0 ; l}(s) \rightarrow 0
$$

as $\varepsilon \rightarrow 0$ and $j \rightarrow \infty$, which we see by choosing l so that $l \rightarrow \infty$ and $j-l \rightarrow \infty$.
Convergence is clearly monotone in ε and j.

$$
\begin{aligned}
w(0+) & =-\log \left(1-q_{0}\right): \text { For } s>0 \\
w(0+) & =\lim _{l \rightarrow \infty} w\left(2^{-l} s\right)=\lim _{l \rightarrow \infty} \lim _{m \rightarrow \infty} h^{(m)}\left(2^{m-l} s\right) \\
& =\lim _{l \rightarrow \infty} h^{l}\left(\lim _{m \rightarrow \infty} h^{m}\left(2^{m} s\right)\right) \\
& =\lim _{l \rightarrow \infty} h^{l}(w(s)) .
\end{aligned}
$$

By (17), this equals

$$
\lim _{l \rightarrow \infty}\left[-\log \left(1-\phi_{Z}^{(l)}(v(s))\right)\right]=-\log \left(1-\lim _{l \rightarrow \infty} \phi_{Z}^{(l)}(v(s))\right) .
$$

Since $0<v(s)<1$,

$$
\lim _{t \rightarrow \infty} \phi_{Z}^{(l)}(v(s))=q_{0}
$$

q_{0} being the extinction probability of $\left\{Z_{m}\right\}$, and hence of \mathfrak{X}. (See Athreya-Ney [1], page 4.) Therefore,

$$
w(0+)=-\log \left(1-q_{0}\right)
$$

Proposition 5 shows that $\left\{Z_{m}^{\alpha}\right\}$ satisfies the conditions of Proposition 3. Therefore, applying Proposition 3, we conclude that $\left\{Z_{m}^{\alpha}\right\}$ has the same basic asymptotic behavior as $\left\{Z_{m}\right\}$, which is expressed by the following weak convergence result.

Corollary 3. $P\left[2^{-m} \log \left(Z_{m}^{\alpha}+1\right) \leqq x\right] \rightarrow v_{\alpha}(x)$ as $m \rightarrow \infty$, for all $0<x<\infty$, where v_{α} is defined in Proposition 5.

We continue to follow the same format as in the prologue to Theorem 1. Having shown weak convergence of $\left\{Z_{m}^{\alpha}\right\}$ under appropriate renormalization, we desire to convert this statement into one of a.s. convergence. Now, we have shown in Proposition 5 that $v_{\alpha}(x)$ is a distribution function which is continuous and strictly increasing on $x>0$. Once again we wish to apply Cohn's result to conclude that weak convergence as in Corollary 3 is sufficient to imply a.s. convergence. Although Cohn's assertion is made only for Galton-Watson branching processes, this restriction is stronger than necessary, and his proof carries over for $\left\{Z_{m}^{\alpha}\right\} .\left(\left\{Z_{m}^{\alpha}\right\}\right.$ can be thought of as a branching process with varying environment.) Therefore, we obtain

Corollary 4. $2^{-m} \log \left(Z_{m}^{\alpha}+1\right) \rightarrow V_{\alpha}$ w.p. 1 as $m \rightarrow \infty$, where V_{α} is a random variable having distribution v_{α}.

We now have the same tools available for an investigation of the minimal displacement $\left\{M_{n}^{\alpha}\right\}$ of the process \mathfrak{X}^{α} as we had for the branching random walk \mathfrak{X} in Section 2. Corollary 4 assumes the role of Proposition 4 in expressing the asymptotic behavior of $\left\{Z_{m}^{\alpha}\right\}$. On the other hand, the law governing the termination of a dynasty is the same for both \mathfrak{X} and \mathfrak{X}^{α}, since $\gamma(m)$ induces trimming only among the first generation of each dynasty. Therefore, the branching processes $\left\{Y_{n}^{(i, m)}\right\}$ within the $m^{\text {th }}$ dynasty satisfy the same law as their analogues in Section 2, and hence Corollary 1 still holds in our new setting. A duplication of the reasoning of the first part of Theorem 1 will thus yield the same results as before regarding the minimal displacement of the process. The only difference is that an $m^{\text {th }}$ dynasty individual, $\left(a_{1}, \ldots, a_{n}\right)$, will now have position $S\left(a_{1}, \ldots, a_{n}\right)$ at most $\sum_{k=0}^{m-1} \gamma(k)$, rather than having $S\left(a_{1}, \ldots, a_{n}\right)=m$ as in Section 2. We therefore obtain the following analogue of Theorem 1 (a).
Proposition 6. Let $\left\{M_{n}^{\alpha}\right\}$ be the minimal displacement of the "trimmed" branching random walk \mathfrak{X}^{α}, where $E X_{1}^{2+\delta}<\infty$ for some $\delta>0 ; G(\{0\})=p, G((0, \infty))=1-p$, and $m p=1$. Then,

$$
\limsup _{n \rightarrow \infty}\left(M_{n}^{\alpha}-\sum_{k=1}^{r(n)} \gamma^{\alpha_{\varepsilon, j}}(k)\right) \leqq 0
$$

w.p. 1 on $\left\{V_{\alpha}>0\right\}$, where V_{α} is defined in Corollary 4,

$$
r(n)=\left\lceil\left(\log \log n-\log \left(V_{\alpha}+o(1)\right)\right) / \log 2\right\rceil,
$$

$o(1)$ is stochastic, and $1<\alpha<2$.
Up to now, we have chosen ε and j somewhat arbitrarily in defining $\gamma^{\alpha_{\varepsilon, j}}$. Proposition 5 states that $v_{\alpha_{s, j}, j}(s) \downarrow v(s)$ as $j \uparrow \infty$ and $\varepsilon \downarrow 0$. This is fairly clear, since if we start trimming at the $j^{\text {th }}$ dynasty for j large, Z_{j} will already be very large, and the trimming will have little effect on the magnitude of Z_{m}, in the sense of Corollary 4, as $m \rightarrow \infty$. Since $v(0+)=q_{0}$, it follows that $v_{\alpha_{\varepsilon, j}}(0+) \downarrow q_{0}$ as $j \uparrow \infty$ and $\varepsilon \downarrow 0$. Because $M_{n} \leqq M_{n}^{\alpha_{\varepsilon, j}}$, we can modify Proposition 6 into a statement on $\left\{M_{n}\right\}$.
Proposition 6'. Let $\left\{M_{n}\right\}$ be the minimal displacement of the branching random walk \mathfrak{X}, where $E X_{1}^{2+\delta}<\infty$ for some $\delta>0 ; G(\{0\})=p, G((0, \infty))=1-p$, and $m p$ $=1$. Then,

$$
\limsup _{N} \limsup _{n \rightarrow \infty}\left(M_{n}-\sum_{k=1}^{r^{\prime}(n)} \gamma^{\alpha_{\varepsilon, j}}(k)\right) \leqq 0
$$

w.p. 1 on $\{V>0\} . V$ is defined in Proposition 4,

$$
\begin{aligned}
& N=\left\{(\varepsilon, j): V_{\alpha_{\varepsilon, j}}>0 ; \varepsilon=1,1 / 2,1 / 3, \ldots ; j \in \mathbb{Z}^{+}\right\} \\
& r^{\prime}(n)=\left\lceil\left(\log \log n-\log \left(V_{\alpha_{\varepsilon, j}}+o^{\alpha_{\varepsilon, j}}(1)\right)\right) / \log 2\right\rceil
\end{aligned}
$$

$o^{\alpha_{\varepsilon, j}}(1)$ is stochastic, and α is fixed, with $1<\alpha<2$. ($o^{\alpha_{\varepsilon, j}}(1)$ denotes dependence of $o(1)$ on $\alpha_{\varepsilon, j}$)

Computation of a Lower Bound for M_{n}

During our investigation of an upper bound for $\left\{M_{n}\right\}$, we defined $\gamma^{\alpha}(m)$ in such a manner that the trimming of \mathfrak{X} thus induced was insufficient to hamper the rapid growth of $\left\{Z_{m}^{\alpha}\right\}$. We will presently show, however, that if $\beta>2$, and γ^{β} is defined so that

$$
\gamma^{\beta}(m)=G^{-1}\left(p+(1-p) \cdot \exp \left(-\beta^{m}\right)\right),
$$

then the trimming induced by γ^{β} "kills" the process in a strong enough sense so as to allow a simple computation of a lower bound for $\left\{M_{n}\right\}$.

We will be examining those sets A_{m} of trees, which possess at least one first generation member within the $m^{\text {th }}$ dynasty with spatial movement less than $\gamma(m)$. That is,

$$
\begin{aligned}
A_{m}= & \left\{\omega: \min _{a_{1}, \ldots, a_{n}} X\left(a_{1}, \ldots, a_{n}\right)<\gamma^{\beta}(m)\right. \text { for those } \\
& \left.\left(a_{1}, \ldots, a_{n}\right) \text { with } \Gamma\left(a_{1}, \ldots, a_{n}\right)=m \text { and } X\left(a_{1}, \ldots, a_{n}\right)>0\right\} .
\end{aligned}
$$

Let V be as defined in Proposition 4. $X\left(a_{1}, \ldots, a_{n}\right)$ conditioned on $X\left(a_{1}, \ldots, a_{n}\right)>0$ is independent of $\left\{Z_{m}\right\}$. Therefore,

$$
\begin{align*}
P\left[A_{m} \mid Z_{m}<\exp \left(2^{m+1} V\right)\right] & \leqq 1-\left(1-\exp \left(-\beta^{m}\right)\right)^{\exp \left(2^{m+1} V\right)} \\
& \leqq C \cdot \exp \left(2^{m+1} V-\beta^{m}\right) \tag{29}
\end{align*}
$$

for some constant $C>0$. Now, Proposition 4 implies that

$$
\limsup _{m \rightarrow \infty}\left(Z_{m}-\exp \left(2^{m+1} V\right)\right)<0
$$

w.p. 1. Since

$$
\sum_{m=1}^{\infty} \exp \left(2^{m+1} V-\beta^{m}\right)<\infty
$$

w.p. 1, we may therefore apply a Borel-Cantelli argument to (29) to conclude that

$$
\begin{equation*}
P\left[\omega \in A_{m} \text { infinitely often }\right]=0 \tag{30}
\end{equation*}
$$

Equation (30) states that for almost every tree of our branching random walk \mathfrak{X}, for large enough m, each first generation member of the $m^{\text {th }}$ dynasty will have spatial movement at least $\gamma^{\beta}(m)$. Therefore,

$$
\inf _{m}\left\{S\left(a_{1}, \ldots, a_{n}\right)-\sum_{k=1}^{m-1} \gamma^{\beta}(k): n \in \mathbb{Z}^{+}, \Gamma\left(a_{1}, \ldots, a_{n}\right)=m\right\}>-\infty
$$

w.p. 1. Actually, we will only need the following weaker assertion:

$$
\begin{equation*}
\inf _{n}\left\{M_{n}-\sum_{k=1}^{m-1} \gamma^{\beta}(k): m=\min _{a_{1}, \ldots, a_{n}} \Gamma\left(a_{1}, \ldots, a_{n}\right)\right\}>-\infty \quad \text { w.p. } 1 . \tag{31}
\end{equation*}
$$

Theorem 1(b), together with (31), will now yield a lower bound for the minimal displacement of the branching random walk \mathfrak{X}, with $G(\{0\})=p$ and $G((0, \infty))=1-p$. We observe that $S^{\prime}\left(a_{1}, \ldots, a_{n}\right)=\Gamma\left(a_{1}, \ldots, a_{n}\right)$ induces a branching random walk \mathfrak{X}^{\prime} of the type studied in Section 2, where $G(\{0\})=p$ and $G(\{1\})=$ $1-p$. Therefore, Theorem $1(b)$ implies that the minimal displacement of $\mathfrak{X}^{\prime}, M_{n}^{\prime}$ $=\min _{a_{1}, \ldots, a_{n}} \Gamma\left(a_{1}, \ldots, a_{n}\right)$, satisfies

$$
\inf _{n}\left(M_{n}^{\prime}-\lceil\log \log n / \log 2\rceil\right)>-\infty \quad \text { w.p. } 1
$$

This, together with (31), yields the following analogue of Theorem 1 (b) for \mathfrak{X}.
Proposition 7. Let $\left\{M_{n}\right\}$ be the minimal displacement of the branching random walk \mathfrak{X}, where $E X_{1}^{2+\delta}<\infty ; G(\{0\})=p, G((0, \infty))=1-p$, and $m p=1$. Then,

$$
\inf _{n}\left(M_{n}-\sum_{k=1}^{s(n)} \gamma^{\beta}(k)\right)>-\infty
$$

w.p. 1, where

$$
s(n)=\lceil\log \log n / \log 2\rceil
$$

and $\beta>2$.

The Theorem

Proposition 6^{\prime} provides us with an upper bound for M_{n}, and Proposition 7 provides us with a lower bound. With the aid of these results, we obtain the following weaker analogue of Theorem $1 .{ }^{6}$

Theorem 2. Assume that M_{n} is the minimal displacement of the branching random walk \mathfrak{X}, where $E X_{1}^{2+\delta}<\infty$ for some $\delta>0 ; G(\{0\})=p, G((0, \infty))=1-p$, and $m p$ $=1$, where $E X_{1}=m>1$. Then, conditioned on the nonextinction of \mathfrak{X}, if

$$
\begin{equation*}
\sum_{k=1}^{\infty} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda^{k}\right)\right)=\infty \tag{32}
\end{equation*}
$$

for some $\lambda>1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{M_{n}}{\sum_{k=1}^{s(n)} G^{-1}\left(p+(1-p) \cdot \exp \left(-2^{k}\right)\right)}=1 \tag{33}
\end{equation*}
$$

w.p. 1, whereas if

$$
\begin{equation*}
\sum_{k=1}^{\infty} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda^{k}\right)\right)<\infty \tag{34}
\end{equation*}
$$

for some $\lambda>1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M_{n}<\infty \tag{35}
\end{equation*}
$$

w.p. 1. Here, $s(n)=\lceil\log \log n / \log 2\rceil$.

Proof. First observe that for $\lambda_{2}>\lambda_{1}>1$,

$$
\sum_{k=0}^{m} \gamma^{\lambda_{1}}(k) \geqq \sum_{k=0}^{m} \gamma^{\lambda_{2}}(k)
$$

whereas if we set $t(m)=\left\lfloor m \cdot \log \lambda_{2} / \log \lambda_{1}\right\rfloor$,

$$
\begin{align*}
\sum_{k=0}^{m} \gamma^{\lambda_{2}}(k) & =\sum_{k=0}^{m} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda_{2}^{k}\right)\right) \\
& =\sum_{k=0}^{m} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda_{1}^{k \cdot \log \lambda_{2} / \log \lambda_{1}}\right)\right) \\
& \geqq \frac{\log \lambda_{1}}{\log \lambda_{2}} \cdot \sum_{k=0}^{t(m)} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda_{1}^{k}\right)\right) \\
& =\frac{\log \lambda_{1}}{\log \lambda_{2}} \cdot \sum_{k=0}^{t(m)} \gamma^{\lambda_{1}}(k) \tag{36}
\end{align*}
$$

[^4]by the monotonicity of G^{-1}. In particular,
$$
\sum_{k=1}^{\infty} G^{-1}\left(p+(1-p) \cdot \exp \left(-\lambda_{1}^{k}\right)\right)=\infty
$$
iff
$$
\sum_{k=1}^{\infty} G^{-1}\left(p+(1--p) \cdot \exp \left(-\lambda_{2}^{k}\right)\right)=\infty .
$$

By (13),

$$
\sum_{k=j+1}^{\infty} \gamma^{\alpha_{c, j}}(k)=\sum_{k=j+1}^{\infty} G^{-1}\left(p+(1-p) \cdot \exp \left(-\alpha^{k-j}\right)\right),
$$

where $1<\alpha<2$. Therefore, if $\varepsilon>0$, (34) implies that

$$
\sum_{k=1}^{\infty} \gamma^{\alpha_{\varepsilon, j}}(k)<\infty,
$$

and (35) follows from Proposition 6^{\prime}.
Now, assume that (32) holds. Proposition 6^{\prime} implies that for $1<\alpha<2$,

$$
\limsup _{n \rightarrow \infty}\left(\begin{array}{cc}
M_{n} & \sum_{k=1}^{s(n)} \gamma^{\alpha}(k) \tag{37}\\
\frac{\sum_{k=1}^{s(n)} \gamma^{2}(k)}{} & \sum_{k=1}^{s(n)} \gamma^{2}(k)
\end{array}\right) \leqq 0
$$

w.p. 1 on $\{V>0\}$. On the other hand, Proposition 7 implies that for $\beta>2$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\frac{M_{n}}{\sum_{k=1}^{s(n)} \gamma^{2}(k)}-\frac{\sum_{k=1}^{s(n)} \gamma^{\beta}(k)}{\sum_{k=1}^{s(s n)} \gamma^{2}(k)}\right) \geqq 0 \tag{38}
\end{equation*}
$$

w.p. 1. Together with (36), (37) and (38) imply that

$$
\frac{\log 2}{\log \beta} \leqq \liminf \frac{M_{n}}{\sum_{k=1}^{s(n)} \gamma^{2}(k)} \leqq \limsup \frac{M_{n}}{n \rightarrow \infty} \frac{\log 2}{\sum_{k=1}^{s(n)} \gamma^{2}(k)} \leqq \frac{\log \alpha}{\log }
$$

on $\{V>0\}$. If we let $\alpha \uparrow 2, \beta \downarrow 2$, it follows that

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{\sum_{k=1}^{s(n)} G^{-1}\left(p+(1-p) \cdot \exp \left(-2^{k}\right)\right)}=\lim _{n \rightarrow \infty} \frac{M_{n}}{\sum_{k=1}^{s(n)} \gamma^{2}(k)}=1
$$

w.p. 1 on $\{V>0\}$, the set of nonextinction of \mathfrak{X}. This demonstrates (33), and hence the proof is complete.

Acknowledgment. I wish to thank Professor Kesten for suggesting this problem and for many valuable conversations. I also wish to thank J. Hutton for proofreading the manuscript, and the referee for a careful job in catching many mistakes and for suggestions for improving the exposition.

References

1. Athreya, K.B., Ney, P.E.: Branching Processes. Berlin-Heidelberg-New York: Springer 1972
2. Cohn, H.: Almost sure convergence of branching processes. Z . Wahrscheinlichkeitstheorie verw. Gebiete 38, 73-81 (1977)
3. Darling, D.A.: The Galton-Watson process with infinite mean. J. App. Probability 7, 455-456 (1970)
4. Hammersley, J.M.: Postulates for subadditive processes. Ann. Probability 2, 652-680 (1974)
5. Harris, T.E.: The Theory of Branching Processes. Berlin-Heidelberg-New York: Springer 1963
6. Joffe, A., Le Cam, L., Neveu, J.: Sur la loi des grands nombres pour des variables aléatoires de Bernoulli attachées à un arbre dyadique. C.R. Acad. Sci., Paris, Série A 277, 963-964 (1973)
7. Loève, M.: Probability Theory, 3rd ed. Princeton: Van Nostrand, 1963

Received December 8, 1977; in revised form June 8, 1978

[^0]: * Research was partially supported by the National Science Foundation under grant MCS7607039

[^1]: $1\lceil x\rceil$ denotes the least integer $\geqq x$, and $\lfloor x\rfloor$ denotes the greatest integer $\leqq x$. Note that because of the presence of \rceil, the presence of $o(1)$ within the equation is not extraneous
 ${ }^{2}$ By $G^{-1}(y)$, we mean $\inf \{x: G(x) \geqq y\}$

[^2]: ${ }^{3}$ Generation will of course have a different meaning depending on whether it is used in the context of \mathfrak{X}^{α} or of $\left\{\mathcal{Z}_{m}^{\alpha}\right\}$
 4 Again, we suppress subscripts when convenient

[^3]: 5 As in Section 2, ϕ_{Z} still refers to the generating function of Z_{1}

[^4]: ${ }^{6}$ To avoid confusion, we explicitly include the subscripts j and ε of $\alpha_{\varepsilon, j}$ in our notation in Theorem 2. $\gamma^{\alpha}(m)$ will mean $G^{-1}\left(p+(1-p) \cdot \exp \left(-\alpha^{m}\right)\right)$

