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Summary. Let 3~ denote a branching random walk in IR 1 with mean particle 
production m, m > 1, and with incremental spatial distribution G, with G({0}) 
= p  and G ( { 1 } ) = l - p .  If  rap=l, then the minimal displacement of Y 
behaves asymptotically like loglog n/log 2. If the condition G({ 1}) -  1 - p  is 
replaced by G((0, or)) = 1 - p ,  we obtain a similar result. 

1. Introduction 

The Gal ton-Watson branching process {X,}, with X 0 = 1, together with the i.i.d. 
collection of random variables {X(at,...,a~)}, a k ~  +, k=l, . . . ,n,  defines a 

branching random walk Y~ (in IR1), where S(al,...,a,)= ~ X(a 1 ..... ak) is in- 
k = l  

~h individual of the n th generation with terpreted as the spatial position of the a n 
forebears (al), (al, a2),...,(al,...,a,_a). (See Harris [5], page 122, for greater 
detail.) If  we set M~= rain S(al, .,a,) ( =  oo if extinction of the process has 

a l ,  . . . , an  

occurred by time n), then M n is the position of the individual farthest to the left 
at time n, also referred to as the minimal displacement. Alternatively, if 
X(ai,...,a,) is assumed to be a positive random variable, X(al,...,a,) may 
instead be interpreted as the life-span of the individual (al . . . . .  a,). In this case, 
M,  may be thought of as the first death time of a member  of the n th generation 
of the process {X,}. 

Hammersley [4] demonstrates the existence of a 7oelR such that if F,(x) 
= P  [M n < x] and qo is the extinction probabili ty of 1;, then 

/~(n 7)-~0 for 7<70 

~ l - q o  for 7>70. 
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7607039 
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In the special case where the branching  process {X,} is dyadic  and G({0}) 
=G({ I} )= �89  where G ( x ) = P [ X ( a l , . . . , a , ) < x ] ,  Joffe-Le C a m - N e v e u  [6] show 
quite s imply that  

M ,  ~0w.p.  1 as n ~ o o ,  
n 

In  Section 2 of this paper,  the technique of Joffe-Le C a m - N e v e u  is extended 
to demons t ra te  

Theorem 1. Assume that EX2+~ < oo for some 6 >0 ,  G({0})=p,  G({1})= 1 - p ,  and 
m p = 1, where E X  1 = m > 1. Then, conditioned on the nonextinction of  Y~, 

holds w.p. 1. V is a random variable which is defined in Proposition4, and o(1) is 
stochastic. 1 

In Section 3, we generalize the condi t ion G ( { 1 } ) = l - p  to G((0, o o ) ) = l - p ,  
and demons t ra te  

Theorem 2. Assume that EX~+~ < oo for  some g)>0, G({0})=p,  G((0, oo))= 1 - p ,  
and rap= 1, where E X  1 = m >  1. Then, conditioned on the nonextinction of  3~, i f  

i G -  ~(p +(1 - p ) .  e x p ( -  2k)) = 
k = i  

for  some 2 >  1, then 

lira 
tl ~ ct3 

M~ 
= I  s (n) 

G-1  (p + (1 - p). exp ( - 2k)) 
k=l  

w.p. 1, whereas if  

i G - 1  (p AF(1- -p)"  e x p ( -  2k)) < oo 
k= l  

for  some 2 > 1, then 

lira M .  < oo 
n~eo 

w.p. 1. Here, s ( n ) = [ l o g l o g n / l o g 2 ] .  ~- 

1 Ix] denotes the least integer > x, and [xJ denotes the greatest integer <x. Note that because of 
the presence of [ 1, the presence of o(1) within the equation is not extraneous 
2 By G-l(y), we mean inf{x: G(x)>y} 
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2. Proof of Theorem I 

In this section it will be assumed that G({0})=p, G({1})= 1 - p ,  E X  1 = m >  1, and 
rap= 1. The essential idea behind the computation of {M,} in this case is to 
reinterpret X as a collection of branching processes within a branching process 
by means of an appropriate decomposition based on {S(al,.. . ,  a,)}. To do so, we 
introduce the concept of dynasty, where the dynasty of an individual (a 1 . . . .  , a,) 
is given by S(al,. . . ,  a,). 

Intuitively, an individual, (al , . . . ,  a,), is considered to enter a dynasty m if it 
reaches m by a move from the left, that is, if S(al, . . . ,a ,)=m and S(as,.. . ,a,_1) 
= m - 1 .  Since the probability of being stationary is p, the descendents of 
(as,...,  a,) which do not move from m form a Galton-Watson branching process, 
which is easily shown to be critical. We denote such a branching process by 
{ Yk(i'm)}i~im; I,n = {(as, ..., a,): S(al,. . . ,  a,) =m, S(al,.. .  , a,_ 1) = m -  1} denotes the 
set of individuals initiating processes at m. Thus, one can picture X as a 
collection of critical branching processes rooted at different spatial positions and 
beginning at different times. All of these branching processes have a common 
generation law due to the random walk structure of the spatial movement and 
the branching structure of ~; we denote the prototype by {~}. It should be 
noted that the subscript k of {Yk (~'")} does not refer to real time, but rather the 
number of generations that have elapsed since the individual i first reached m. (If 
m = 0, then i is unique, and of course k is also the real time.) 

In addition to the branching processes {Yk(~'')}~1.~, we also introduce the 
process {Zm}, where Z m =llml, the cardinality of I,,. In other words, Z,, is the 
number of individuals ever reaching position m by a move from the left, and is 
thus the number of distinct critical branching processes { Yk (i'"~} emanating from 
position m. Due to the branching and spatial structure of 3/, {Z,~} is also a 
Galton-Watson branching process. Whereas { Yk} is a critical branching process, 
{Z,,} has infinite mean particle production (see Proposition 2). 

Under this interpretation of ~, M, denotes the earliest dynasty still present 
at time n. Certainly, the behavior of {M,} and {Zm} will be closely connected. 
The key point behind the computations that follow is that (conditional on 
nonextinction of X) {Z,,} will in general increase extremely rapidly as m ~  c~ - t o  
such an extent that, because of the simple nature of {yf,m)}, knowledge of the 
asymptotic behavior of {Zm} alone is sufficient for accurate computation of 
{M,}. Proposition4 describes the asymptotic behavior of {Z,,}. Together with 
Corollary 1, which describes the asymptotic behavior of { Yk}, this is sufficient to 
enable us to derive Theorem 1, which characterizes the asymptotic behavior of 
{M.}. 

In the following, Ow will denote the generating function of the first genera- 
tion distribution W 1 of the branching process (W~}, and r the generating 
function of the rn th generation distribution W~. In addition, ~w will denote the 
generating function of the distribution W; it will be clear from the context which 
is meant. 

Proposition l. I f  {~} is a critical branching process, i.e., E Y I = I  , with variance 
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0 < ~r 2 < o% then 

2 
P[fk>0]  ~ko_~. 

Proof  See Athreya-Ney [1], page 19. 

Corollary 1. Assume that X 1 has variance a2 < 0% and let p be as in the beginning 
of  the section, with m p = 1. Then, 

2 
P[Yk>0] ~k(p2 a2 + l - p )  

Proof. Since m p = l  where E X I = m ,  {Yk} is a critical 
simple computation of q5~5(1), based on the equality 

q~y(s) = q~x(1 - p  +p s), 

shows that 

branching process. A 

a2=p2 cr2+ l - p ,  

where cr 2 is the variance of I11- Now apply Proposition 1. D 
We now proceed to examine the asymptotic behavior of {Zm}. Our plan is to 

first obtain an asymptotic expression for qS~z") (Proposition 5). We will apply a 
result of Darling [3] to reduce this to an explicit statement of weak convergence 
of {Zm} (Corollary 2). Applying a result of Cohn [2], we then sharpen this result 
to one of pointwise asymptotic behavior of {Z,,} (Proposition4). We commence 
by examining the behavior of Cz(S) for s close to 1. For ease of notation, we 
define k(s)= 1 -  ~bz(1-s), and therefore examine k(s) for small s. 

Proposition 2. Assume that for  some 6>0,  X 1 has a f inite (2+6) th moment, i.e. 

• pjj2+a < oO, 
j=o  

where pj = P I X  1 =J]. Then, 

k(s) --- a sl/2 (1 + 0 (s~/2)), 

where a =  [2(1 _p)/p(p2 tr2 + 1 _ p)] 1/z. 

Proof. Decomposition of t; based on the spatial motion of the individual 
branches yields the functional equation 

q5 z (s) = ~b x ((1 - p) s + p q5 z (s)). 

Therefore, 

k ( s )  = ~ - ~ , : ( 1  - (1  - p )  s -  p k ( s ) ) .  ( 1 )  
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Since Xt has finite (2 + 6) th moment, if we assume that 0 <6 < 1, we may rewrite 
~b x as 

p 2! " (2) 

(See Loi re  [7], page 199.) Substituting (2) into (1), we obtain 

k ( s ) = ~ "  s + k(s)- (a2 + ~ )  [(1-p)s + 

+ 0 [(1 -p) s +pk(s)] 2+~, 

and hence 

k ( s )  = - - -  
(1 -p )  

P 

(1 -p )  

�9 s+k[ 2((1-p)s+pO[(1-p)s+pk(s)]z§ ] 2/2 

�9 s + a [s + O(s 2 +~) + O(k(s) 2 +~)] ~/2. 

Dividing by k(s), (3) becomes 

~, k(~) ~a k~/i+O \k-~t+o(k~(~))] 

Now since Z~ < oo w.p. 1, ~bz(S ) is continuous at 1, and therefore 

k~(s)~O as s~0.  

Moreover, (4) implies that s/k2(s) is bounded as s-~0, and therefore 

s2§ as s ~ 0  

and 

s/k(s)--,O as s~0.  

Therefore, if we apply (5), (6), and (7), it follows from (4) that 

a 
1 =lira ~ .  s 1/2, 

s~o ( )  

and hence 

k(s) = aA(s )  s '/2, 

where A(s )~ l  as s~0.  Plugging (8) into (3), we obtain 

k(s)- - ( l -p)  s+a[s+O(s2+a)+O(sl+~/2)]l/2 
P 

=asl/2(l +O(sa/2)). 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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By applying Proposition2, we will show in Proposition 5 of Section 3 (in 
somewhat greater generality) that the existence of a (2+ 6y h moment for X 1 is 
enough to ensure that 

qS(zm) (1 - exp( - 2 m t))--*v(t) (9) 

as m-~ oo, for all 0 < t < 0% where v is a distribution function which is continuous 
and strictly increasing on x >0, with v(0 + ) =  %. (% is the extinction probability 
of 3;.) By means of a computation involving the Laplace transform, it is possible 
to reduce (9) to an explicit statement concerning the asymptotic behavior of 
{Zm}. The following result is due to Darling [3]. 

Proposition3. Let {2,~} be a sequence of integer valued random variables, and 
assume that 

q52~(1 - exp ( - b mt)) ~ 9(t) 

as m--, co, for all 0 < t < c G where b > 1. Then, 

P [b -= log(2= + 1) < x] --, ~(x) 

as m~oo, for all 0 < x <  oo. 

In our specific case, (9) implies that we obtain 

Corollary 2. P [2 -m log(Z m + 1) < x] -~v(x) as m--* 0% for all 0 < x < oo. 

Cohn [2] shows that in the case where {Zm} is a Galton-Watson branching 
process, and ~(t) is a distribution function which is continuous and strictly 
increasing on x>0 ,  weak convergence as in the conclusion of Proposition 3 
actually implies a.s. convergence to a random variable 17" having distribution 9. 
Therefore, Corollary 2 may be strengthened to 

Proposition4. 2-"log(Zm+ l)--,Vw, p. 1 as m--,oo, where V is a random variable 
having distribution v. v(0+)=qo , and therefore V > 0  w.p. 1 on the set of 
nonextinction of ?i. 

Corollary 1 and Proposition4 provide us with precise enough information 
regarding the asymptotic behavior of { Yk} and {Z,,} to analyze {M,}. 

Theorem l. Assume that {M,} is the minimal displacement of the branching 
random walk ?~, where EX2+~ < oo for some 6>0;  G({0})=p, G({1})= 1 - p ,  and 
rap= 1, where EX 1 = m >  1. Then, conditioned on the nonextinction of ?i, 

,~olim ( M , - [  l~176176176 l )  =0  

holds w.p. 1. V is defined in Proposition4, and o(1) is stochastic. 

Proof. (a) Since ~ Y~"~>0 implies that M,<m,  determination of ~ Y}~'m~ will 
i~Im ielrn 

give an upper bound for M,. By Corollary 1, there exists some C > 0 s.t. 

PEY,,>o] >= C/n 
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for all n_> 1. Hence 

P [ 2 y(i , ' )  > O I N ' ]  ~ 1 - (1 - C/Kl) Zm ~ 1 - e- cz~/. ,  
ielm 

which is at least 

1 - e  -c" for l <_n<_Z'/m. 

Let Q be the set such that l iminfZ ' /m>l .  Since ~ e-C'< oe, a simple Borel- 

Cantelli argument implies that 

P [lim inf ~ v (i,,~ -tzm/'~ > 01Q3 = 1. 

Let Qo denote the set of nonextinction of ~. Then, Proposition4 implies that 
P[Q]=P[Qo]=l -qo ,  and that [Z'/mJ=exp[2"(V+o(1))] on Qo for some 
appropriate o(1). Therefore, 

P[liminf ~ Y~2"~>0lOo]=l, 
m ~  i~Im 

where e" = exp[2m(v+ o(1))]. Inverting e', it follows that 

limsup,~ (M n-  [loglogn-log(V+o(1))]~]o~ l/--<0 

w.p. 1 on Qo, the set of nonextinction of/t~. 
(b) Analysis of ~, yf, k), for k= 1,...,m, also gives a lower bound for M~. 

i~Ik 
Proceeding in a manner similar to part (a), Corollary 1 implies that 

PV F~ Yf'k)>0PZk] ----< 1 - - e  - c ' z k / n  (10) 
i~Ik 

for some C'>0 and all k and n. The 1.h.s. of (10) is therefore at most 
1 - e x p [ - C ' e  "] for n>emZk . Since for large m, 1 - e x p [ - C ' e - ' J ~ C ' e - ' ,  
it follows that 

k= 0 ieIk 

for some C">O, where fm, k=[e'Zk]. Now, set g ' =  ~ f ' ,k=  ~ [e'Zk]. Notice 
k~O k=O 

that if ~ ~ Y)~k)k=0, then the 0 th dynasty ends by time fro, o, implying that the 
k= 0 iEIk 

first dynasty ends by time f,~,o +fro, i, and so on, showing that the mth dynasty 
ends by time g' .  Thus, 

m, 
L k =  0 i~lk 
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which, together with (11), implies that 

P[Mg, <_m] <= C"(m+ 1)e-".  (12) 

Proposition 4 implies that if V > 0, 

g,,= ~ exp[m+2k(V+o(1))l .  
k=o 

(If V = 0, gm is, of Course, bounded w.p. 1.) In either case, 

g~ = exp [2m (V+ o (1))]. 

Since ~ ( m + l ) e - " < o e ,  we may apply Borel-Cantelli, from which it follows 
m=O 

that 

P [lim inf(Mg,, - m) < 0] = 0. 
m ~ ( x )  

Inverting gin, we obtain 

lim inf (M, [log log n -  log(V+ 
.~o~ - I  ~ ~ 

w.p.1. 
The assertion follows from parts (a) and (b). 

3. Proof of Theorem 2 

If G is generalized from the two point distribution, where G({0})--p, G({1})= 
1-p ,  and rap= 1, to a distribution with G({0})=p, G((0, oe))= 1 - p ,  and rap= 1, 
then the basic techniques of Section 2 are still applicable toward computation of 
{M,}. We again apply the concept of dynasty in decomposing the branching 
random walk 3~, but with the modification that the individual (al,.. .  , a,,) is now 
considered a member of the mth dynasty if 

~'~X{X(al ..... at,)> 0} = m,  
k = l  

where Z is the indicator function. (Denote by F(al , . . . ,a ,)  the dynasty of 
(a 1 .... , a,).) Furthermore, we will say that (al, . . . ,  a,) is a first generation member 
of its dynasty if X(a 1 .... , a,) >0. 

Unlike the simpler case in Section2, it is now no longer sufficient to 
calculate Zm, the number of individuals at the start of the mth dynasty, to obtain 
an asymptotic estimate for {M,}. We will, however, be able to obtain asymptotic 
upper and lower bounds for {M,} by examining certain auxiliary processes of 3~. 
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The computation of the upper bound is messy, that of the lower bound is 
simple; our methodology is such that Theorem2, which characterizes {M.}, is 
somewhat weaker than its analogue, Theorem 1. 

Computation of an Upper Bound for M, 

To compute an upper bound for {M,}, we introduce an auxiliary process Y~ by 
"trimming" the tree associated with X, so that only those individuals of the mth 
dynasty with spatial movement at most 7(m) are preserved. (~ will be assumed to 
be a decreasing function on 2g+.) That is, an individual (a~,...,a,) is retained 
only if 

X(at, . . . ,ak)<7oF(a I .... ,ak) for k=l , . . . ,n .  

Note that trimming occurs only among the first generation of each dynasty. The 
corresponding minimal displacement M, ~ of ~ will be bounded above by 
r n - - t  

~(k) if extinction of the mth dynasty of iF has not yet occurred by time n. 
k = 0  

This provides us with an upper bound for {Mn}, M, being less than M, y. 
We will be making use of those 7 of the form 

7~,J(k) = G-  1 (p + (1 - p) e . . . .  j(k)), (13) 

where 

c%,~(k) = {2 k-j if k>j  
if k<j, 

and either l < a < 2  or ~=0,  with 0_<e_<a. In the event that G is a bounded 
distribution, it will suffice to set e = 0. When no misunderstanding is possible, we 
will drop 7, e, and j from the superscript, and will write ~ ,  {M~}, and {Z~,} for 
the auxiliary processes induced by ?~~ The key point in the following estimates 
is that although {Z~} is subject to the effects of increasingly vigorous trimming 
as m ~  0% the doubly exponential growth of {Zm} (see Proposition 4 of Section 2) 
will offset this trimming so that {Z~} will retain the same asymptotic behavior 
as {Z,,}. As in Section 2, this behavior of {Z~} will enable us to analyze {M~}. 
The basic technique employed in Section2 of using generating functions to 
examine {Zm} will still be valid. However, e~,j will not in general be constant, 
and therefore {Z~} not a Galton-Watson branching process, nor its generating 
function after m generations the m-fold iterate of some fixed generating func- 
tion. 3 Therefore, we must introduce some new terminology, and define 
~b(~"+*'")(s) to be the m-fold composite generating function governing repro- 
duction from the I th to (l+m) th generations of {Z~,}. 4 That is, q~(~m+~"*)(s) is the 
generating function of Z~,+t given that Z~= 1. Clearly, 

(~(~t' ~ 

3 Generation will of course have a different meaning depending on whether it is used in the 
context of Y~ or of {Z~} 
4 Again, we suppress subscripts when convenient 
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whereas we obtain the inductive relations 

r  ) _-  ~ ~'~("+~- ~,m _ 11 o T ~'~("+~' 1 ) ( s )  

__ (])(l+ 1, 1) o (b (m+l'm- I)(S) 

= r  (1 [G(T~"(I+I))-P] 
(1 - p )  

[~(~ ,(l(1 -p) + I))-p]. r + ~,~_ "(s)) .~ 

If G is continuous, the last line is equivalent to 

0z(1 - e . . . .  j(z + 1) AVe . . . .  ./(1 + 1). ~)(m+ l,m - 1) (S)). 

Note that qS(~ ~'m) is simply the generating function of Z],. 
For  computat ional  purposes, also define 

h(~ " + ~'")(s) = - log [1 - qS(~ " +'' ~)(1 - exp( - s))], 

from which it follows that  

h(m + l,m) ( ~  __ h(l + 1,1) o h(m + l,m - 1) ( ~  

Also set 

h(s) = - log [ 1 - 0z(1 - exp ( - s))], 

whence 

h(s) = - log k(exp( - s)) 

= h(o 1' 1)(s) = h~' 1)(s), 

M.D. Bramson 

(14) 

(15) 

(16) 

(17) 

(18) 

where k(s) is defined in Section2. F rom (14), (15), and (17), it follows that  

h~+l'l)(s)=h ( s - l o g  [G(Y~'J-(!+ 1 ) ) - P ] t ,  (19) 
L 1 - p  y 

which equals h(s + e~,;(l+ 1)) if G is continuous. 
As in Section 2, we will derive the limiting behavior of ~b(~"'~)(1- exp(-2ms)),  

and apply Darling's and Cohn's results to obtain analogous properties of {Z~}, 
h~ . and hence {M,}. We begin with a pair of lemmas which characterize w+~,m) 

Lemma 1. Assume that EX2+O < co for some 5 >0,  and define 

~ j(l) = - l o g  [ -G(y~'~(/)) - p  ] .  (201 
' k 1 - p  

T h e n ,  

s As in Section 2, q~z still refers to the generating function of Z a 
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and 

hy + 2,1)(s ) = h(s + ~.j(1)). (21) 

Moreover, 

(m+lm) m+Z =21 ~ 2 - k c ~ j ( k + l )  h~ ' ( 2  s) s +  
k = l  

- 2(1 - 2 - ") log a + @,,,, (exp( - 2 l - 1 c~ s)), (22) 

where a is defined in Proposition 2. For some fixed uo, 0 < u < u o implies that 

sup IOf'm(u)] < oQ. (23) 
f,m,u U 

(Therefore, in future computat ions  involving Lemma 1, the subscripts will be 
dropped  from Oz,,,. ) 

Proof G,;(l)<G,j(l ) follows immediately from (13), and h~Z+l'l)(s)=h(s+~,j(l)) 
follows immediately from (19). To demonstra te  (22), we apply induction on m 
simultaneously for all 1. Equat ion (16), together with (22) stated for m -  1, implies 
that 

k = 2  

- 2(1-2t -"~) .  loga+O~+ ~,m_ ~(exp(-2fOs))),  

which by (21), equals 

(2f+ls + ~ 2 -(k- ~' ~,;(k + l) h 
\ k = l  

2(1 - 2 ~ - " ) .  log a + Of + ~ . . . .  ~ (exp ( - 2~3 s))). (24) 

Now, Proposi t ion 2 and (18) together imply that 

(for some 0'). Therefore, (24) equals 
m 

2~ s + ~ 2-kY~,j(k + l ) -2 (1  - 2 - ~ ) .  loga+�89 ~,~_l(exp(-2f6s))  
k = l  

+0'  [exp ( - 6  ( 2 l s +  ~ 2 - k , , J ( k + l ) - ( 1 - 2 ~ - m ) . l o g a  
k = l  

+ 5Oz+ ~.,,_ ~ (exp ( -  2~c~ s)) 

= 2 f s + ~ 2 -  k y~,j(k + l) - 2 (1 - 2-m). log a + Oz,~ (exp ( - 2 f-  ~ ~ s)). 
k = l  
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This demonstrates (22). Now, choose M, q ,  and t 2 so that  

[ O ' (exp( -  ~ t))l < M .  e x p ( -  ~ t) 

and 

[ O1 + 1,m- 1 (exp (-- ~ t)) I < 2 M .  exp ( -  6 t) 

for 0 < t 1 < t, and 

t > 2  [loga I + 2 M -  e x p ( -  ~ t) 

for 0 < t 2 < t .  It follows that  for t> to ,  where t o = t  t v t2 ,  

] Ol,,~ (exp ( - 6 t))l < 2 M-  exp ( - 6 t), 

the bound being independent of I. This implies (23). [] 

Lemma 2. h(s) (hence h(~l'l)(s) and h~m+l'O(s)) is norm decreasing. That is, if s 1 > s2, 
then s 1 - s z >h(s l ) -h ( sz ) .  

Proof Since k(t) = 1 - ~bz(1 - t), where q~z is a strictly convex generating function, 
k(t) is strictly concave with k(0)=0. Therefore, for t 2 > t  1 >0,  

k(t2) < t2. 
k ( t l )  t l  

If we set s~= - l o g  ti, then (18) implies that  

h(s 1) - h(s2) = log [k(exp ( - s2))/k(exp( - sl))] 

= log  [k(t2)/k(tl)] 

< log  t2 
- - - - S  1 - - S  2 . 
t l - -  

Equations(21) and (16) imply that the same is true for h~'l)(s) and for 
h ~ * " ' ( s ) .  

We now state our main technical result, which was used in Section 2 to 
characterize the asymptotic behavior of {Zm}, and will be similarly used in this 
section to characterize {Z~}. 

Proposition 5. Assume that E X  2 +~ < oo for some ~ > O. Then, 

~b~:'~) (1 - e x p ( -  2 m s))~v~,fls)  

as m--.cc for 0 < s < o o ,  where v~,,fls) is continuous and strictly increasing, and 
v~, ( ~ ) =  1. As j~oo and ~+0, v~,:(s)J, Vo(S)=V(s), where v is defined in (9). v(0+)  

=q0. 

Proof  Making use of (15), it suffices to demonstrate 

Proposition5". Assume that EX~+a< oo for some 3>0.  Then, 

h(m+l"m)(2 m+z ~, ,  , s ) - - ,w~ ,; (s) 

M.D. Bramson 
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as m--+oo for 0 < s <  c~. I f  we set w~.j(s)-=w~.j;o(S), then 

w~ ,, (s)=h~l;~ w~o ,;,(s), 

and w~.j is continuous and strictly increasing, with w~.j( oo)= oo. As j'[ oo and e j, O, 
%~.~(s)J,w(s), which is defined as Wo(S ). w ( 0 + ) =  - l o g ( 1 - % ) .  

Proof Throughou t  the proof, we suppress the subscripts e and j when con- 
venient. We first demonst ra te  existence of  the limit w~;,. For  m, m' given, with 
m<m', L e m m a 2  implies that for mo<m, 

(m+, m) m+,  (ra'+l m') m'+l  I h, ' (2 s ) - h ~  ' (2 s) l 

=<[h(~m+',m-m~ s)-h(=m' +t,m'-m~ +' s)[ 

By Lemm a  1, this is at most  

2-k ~(k + l + mo) + 21+m~ " log a + O(exp( -  2' +m~ ~ 6 s)). (25) 
k = m - m o +  l 

If m--+ o% then we may choose too--+ oo in a manner  so that 

2-~g(k+l+mo)  < ~, 2 - ~ ( k + I + m o )  
k=m--mo+ i k=m--mo+ 1 

k = m - m o + i  

Therefore,  (25) implies that {h(~m+l'm)(2m+'s)} is Cauchy in m, and hence w~,,(s) 
exists. 

%(s) = h~l'~ w~;,(s) follows immediately from the construct ion of %;,(s). 
Cont inui ty  of w~ is demonst ra ted  in a manner  analogous to the demon-  

strat ion of the existence of %;,. F r o m  Lemmas  1 and 2, it follows that for s, 
S 1 >0 ,  

[h(m+,,m+O(2,~+,sl)__h(=m+,,m+O(2m+,s)l 

< 2' Is1 - s l + 0 (2- exp ( - 2 ' -  * 6is,/~ s))). (26) 

If we let rn+  c~, then (26) implies that 

[ % ( s j  - w~(s)[ <2 '  Is, - s l  + 0 ( 2 .  e x p ( - 2 ' -  16(sl/x s))). (27) 

Choosing I appropriately,  we see that the r.h.s, of (27) approaches  0 as s 
approaches  s,, and hence w= is continuous.  

w= is strictly increasing: For  s~ >s2,  if we choose 1 so that  

O (2- exp ( 7  2 ' -  * 6 s2) ) < 2 ' -  1 (S 1 - -  $2 )~  

L e m m a  1 implies that  

h(m+,,m)~gm+l~ ] h(m+',m)(2m+'s2)> 2'-l(sl__S2). 



102 M.D. Bramson 

Lett ing m--, o% we obtain  

w~;,(sl)- w~;~(s2) >_- 2 l -  1(sl  - s2). 

Therefore,  

w~(st)  - w~(s2) = h(''') o w~;,(s 0 - hi ' ' ') o w~;,(s2) > 0, 

since h~ t'~) is strictly increasing. 
w~(oc)= co follows trivially f rom L e m m a  1 by s e t t i n g / = 0 ,  and letting s--,oo, 

m-~oo in (22). 
w ~ , j ( s ) $ w ( s )  as j1"~,  eL0: L e m m a  1 implies that  

m 

h (m+l'm)~€ (2"+t~'~) _ h(o,,+t,,,)(2m+Zs) < ~ 2 - k g ~ , j ( k + l ) + O ( 2  . e x p ( _  2t-  16 s)). 
k = l  

By (13) and (20), this is at most  

e + 2 (~ -~) A o. + O (2. exp ( - 2 z- 16 s)). 
k = l  

Lett ing m ~  oo and applying L e m m a  2, we obtain  

h (z,t) o h~'~l ' ,ow~, , ; , (s)- . -~, ,  Wo; , ( s )<w~, , , ; , ( s ) -Wo; , ( s )  

< e + 2 (~- j) ~ o. + 0 (2- exp ( - 2 z- ~ ~ s)). (28) 
k = i  

Now,  for j > / ,  as e ~ 0 ,  

h~;'l ~ wo;z(s) - h(1) o wo;z(s)--.O. 

This, together  with (28), implies that  

w ~ o , j ( s ) - w ( s ) - h  (t't) w~,,j;~ - h~;l)jo Wo;,(s) + h~'~! W o ; z ( s ) - h  (t~ o w0;,(s)--*0 

as e--*0 and j-- .oo, which we see by choosing l so that  l ~ o o  and j - l ~ o o .  
Convergence  is clearly m o n o t o n e  in e and j. 

w ( 0 + ) =  - l o g ( 1 - % ) :  For  s > 0 ,  

w(0 + )  = l im w(2 -I  s) = lira l im h~m)(2 " - I  s) 

= l im hi( l im h~(2r~ s)) 
l ~ z O  Ttl ~ c(~ 

= lim hl(w(s)).  

By (17), this equals 

l im [ - l o g o  - q~)(v (s)))] = - l o g ( 1  - l im (~)(v(s))) .  

Since 0 < v(s) < 1, 

l i m  +~t~(~))  = qo, 
l -~  co 
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q0 being the extinction probability of {Z~}, and hence of ~. (See Athreya-Ney 
[1], page 4.) Therefore, 

w(0+)=- log(1 -qo) .  [] 

Proposition5 shows that {Z~} satisfies the conditions of Proposition3. 
Therefore, applying Proposition3, we conclude that {Z~} has the same basic 
asymptotic behavior as {Zm}, which is expressed by the following weak con- 
vergence result. 

Corollary3. PE2-~log(Z~ + 1)<=x]--.v~(x) as m--*~, for all 0 < x <  o% where v~ is 
defined in Proposition 5. 

We continue to follow the same format as in the prologue to Theorem 1. 
Having shown weak convergence of {Z~} under appropriate renormalization, 
we desire to convert this statement into one of a.s. convergence. Now, we have 
shown in Proposition 5 that v~(x) is a distribution function which is continuous 
and strictly increasing on x >0. Once again we wish to apply Cohn's result to 
conclude that weak convergence as in Corollary3 is sufficient to imply a.s. 
convergence. Although Cohn's assertion is made only for Galton-Watson 
branching processes, this restriction is stronger than necessary, and his proof 
carries over for {Z~}. ({Z~,} can be thought of as a branching process with 
varying environment.) Therefore, we obtain 

Corollary4. 2-~log(Z~,+l)~V~ w.p. 1 as m~oo,  where V~ is a random variable 
having distribution v~. 

We now have the same tools available for an investigation of the minimal 
displacement {M~} of the process X ~ as we had for the branching random walk 
X in Section 2. Corollary4 assumes the role of Proposition4 in expressing the 
asymptotic behavior of {Z~}. On the other hand, the law governing the 
termination of a dynasty is the same for both Y and Y~, since y(m) induces 
trimming only among the first generation of each dynasty. Therefore, the 
branching processes { y(i,m)} within the m ~h dynasty satisfy the same law as their 
analogues in Section 2, and hence Corollary 1 still holds in our new setting. A 
duplication of the reasoning of the first part of Theorem 1 will thus yield the 
same results as before regarding the minimal displacement of the process. The 
only difference is that an m th dynasty individual, (al,...,a,), will now have 

m--1 

position S(al , . . . ,a , )  at most ~ 7(k), rather than having S(a 1 .. . .  ,a , )=m as in 
k=O 

Section 2. We therefore obtain the following analogue of Theorem l(a). 

Proposition 6. Let {M~} be the minimal displacement of the "trimmed" branching 
random walk 3U, where EX~+o < oo for some 6>0; G({0})=p, G((0, oo))= 1-p ,  
and rap= 1. Then, 

r(n) \ 

limsup 
n~oo k= 1 / 
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w.p. 1 on {V~>0}, where V~ is defined in Corollary 4, 

r(n) = [(log log n -  log (V~ + o (1)))/log 2], 

o(1) is stochastic, and 1 <c~<2. 

Up to now, we have chosen ~ and j somewhat arbitrarily in defining 7 ~~ 
Proposition 5 states that v~ j(s)$v(s) as jTc~ and e+0. This is fairly clear, since if 
we start trimming at the jtb 'dynasty for j large, Zj will already be very large, and 
the trimming will have little effect on the magnitude of Zm, in the sense of 
Corollary4, as m~oo.  Since v(0+)=qo,  it follows that v~,j(O+)~qo asjToo and 
e+0. Because M, < M~, ~ we can modify Proposition 6 into a statement on {M,}. 

Proposition6". Let {M,} be the minimal displacement of the branching random 
walk Y;, where EX~+O <oo for some 6>0;  G({0})=p, G((0, o o ) ) = l - p ,  and mp 
= 1. Then, 

/ r' (n) , 

l imsupl imsup ( M , -  ~ ;:~,J(k)) <0 
N n ~ m  \ k ~  1 

w.p. 1 on {V>0}. V is defined in Proposition4, 

N = {(e,j): V~.j > 0; ~-- 1, 1/2, 1/3,... ; jeZ+},  

r' (n) = [(log log n - log (V~,j + o ~,j (1)))/log 2], 

o~",J(1) is stochastic, and ~ is fixed, with 1 < ~ < 2 .  (o's,J(1) denotes dependence of 
o(1) on c~,j.) 

Computation of a Lower Bound for M,  

During our investigation of an upper bound for {M,}, we defined 7~(m) in such a 
manner that the trimming of ~ thus induced was insufficient to hamper the rapid 
growth of {Z~,}. We will presently show, however, that if fl > 2, and ? ~ is defined 
so that 

7 ~ (m) = G-1 (p + (1 - p)- exp ( -  tim)), 

then the trimming induced by 7 ~ "kills" the process in a strong enough sense so 
as to allow a simple computation of a lower bound for {M,}. 

We will be examining those sets A m of trees, which possess at least one first 
generation member within the mth dynasty with spatial movement less than 7(m). 
That is, 

Am={Co: min X(al,...,a,)<y~(m) for those 
al, , . . ,an 

(al, .. . ,a,) with F(al, . . . , a , )=m and X(a 1, ...,an)>0}. 

Let V be as defined in Proposition 4. X(al , . . . ,a , )  conditioned on 
X(al , . . .  , a,)>0 is independent of {Zm}. Therefore, 

P [a, ,  I Zm < exp (2 m + 1 V)] < 1 - (1 - exp ( -  flm))exp(2m +1 V) 

< C" exp(2 m+ 1 V__tim) (29) 
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for some constant C >0. Now, Proposition 4 implies that 

lira sup (Z,~ - exp(2 m+ 1 V)) <0 
m~co 

w.p. 1. Since 

~ exp(2 m+ V-fl") < oo 1 
m=l 

w.p. 1, we may therefore apply a Borel-Cantelli argument to (29) to conclude 
that 

P [coEA m infinitely often] = 0. (30) 

Equation (30) states that for almost every tree of our branching random walk 
X, for large enough m, each first generation member of the mth dynasty will have 
spatial movement at least 7B(m). Therefore, 

inf S(a 1 . . . .  , a , ) -  ~ 7r  > - o o  
k = l  

w.p. 1. Actually, we will only need the following weaker assertion: 

t m~l )} 
inf M , -  7r m=  min F(al , . . . ,  a, > - oo w.p. 1. (3l) 

n ~. k ~  1 al~ . . . , a n  

Theorem l(b), together with (31), will now yield a lower bound for the 
minimal displacement of the branching random walk ~, with G({0})=p and 
G((0, oo))= 1 -p .  We observe that S'(a> ..., a , )=F(a l ,  ..., a,) induces a branching 
random walk 3s of the type studied in Section 2, where G({0})=p and G({1})= 
1-p. Therefore, Theorem l(b) implies that the minimal displacement of ~', M', 
= rain F(a, . . . . .  a,), satisfies 

a l , . . . , a n  

inf(M; - [log log n/log 2]) > - ~ w.p. 1. 
n 

This, together with (31), yields the following analogue of Theorem l(b) for ~. 

Proposition7. Let  {Mn} be the minimal displacement of  the branching random 
walk Y., where E X  2+a < oo; G({0}) =p, G((O, oo)) = 1 - p ,  and m p =  1. Then, 

/ s(n) \ 
inf ; 
n k=l 

w.p. 1, where 

s(n) -- [log log n/log 2] 

and ]3>2. 
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The Theorem 

Proposition6' provides us with an upper bound for M,, and Proposition7 
provides us with a lower bound. With the aid of these results, we obtain the 
following weaker analogue of Theorem 1.6 

Theorem 2. Assume that M n is the minimal displacement of the branching random 
walk Y., where EX2+~<oo for some 5>0; G({0})=p, G((0, oo) )= l -p ,  and mp 
= 1, where EX 1 = m >  1. Then, conditioned on the nonextinction of Y., if 

G-l(p + ( I - p ) .  exp(-  2k))= oo (32) 
k = l  

for some 2> 1, then 

lim M , = 1 (33) s(n) 

" ~  y, G-I (p+(1-p)-exp(-2k))  
k = l  

w.p. 1, whereas if 

• G- t(p +(1 -p ) .  exp( -  2k)) < c~ 

for some 2 > l, then 

lim M, < oo 
f l~oo  

w.p.I. Here, s(n) = [log log n/log 2]. 

Proof First observe that for )~2 >)h > 1, 

(34) 

(35) 

r ~ r 
k=O k=O 

whereas if we set t(m) = Ira. log 2a/log 2tJ, 

yZ~(k)= ~ G-a (p+(1-p) .  exp(-A~)) 
k=O k=O 

= ~ G-a(P+(1 -p ) .  exp(--A]"~176 
k = 0  

>log2 L "") 
=1~ " k=o • G-I(P+(1 -P)" exp(-2])) 

l~ . ~(") 
--1og22 ~=o~ 7:q(k) 

(36) 

6 T o  avo id  confus ion ,  we explici t ly  inc lude  the  subsc r ip t s  j a n d  e of  cqj  in o u r  n o t a t i o n  m 
T h e o r e m  2. 7 ~ (m) will m e a n  G -  t (/9 + (1 - p) .  exp ( - cd')) 
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by the monotonicity of G-~, In particular, 

iff 

O-~(p +(1 - p ) .  e x p ( -  2~)) = oc 
k = l  

oo 

G- ~(p +(1 - p ) .  e x p ( -  2~)) = c~. 
k = l  

By (13), 

~, 7~,J(k)= ~ G-~(P+(1--p)'exp(--c~k-J)), 
k = j + l  k=j+J .  

where 1 < c~ < 2. Therefore, if ~ > 0, (34) implies that 

k = l  

and (35) follows fi'om Proposition 6'. 
Now, assume that (32) holds. Proposition 6' implies that for 1 < c~ < 2, 

i s(n) ,,, 
M. k=l * / < 0  (37) lim sup -s(,F~ s(,) l =  

~ k =  1 

w.p. 1 on { V > 0}. On the other hand, Proposition 7 implies that for fl > 2, 

lim in f ( -  (,) M~ j~)17~ (k) \  

w.p. 1. Together with (36), (37) and (38) imply that 

log2 M, M, < l~  
log/3 < lim inf-s(,) < lira sup s(,) = log 

Z?(k) Zr 
k = l  k = l  

on {V>O}. If we let ~T2, fi+2, it follows that 

lira Mn = lim M, - 1  s(n) s(n) 
n~oo • G_l(p+(l_p) .exp(_Zk)  ) " ~  E 72(k) 

k = l  k = l  

w.p. 1 on {V>O}, the set of nonextinction of 3/. This demonstrates (33), and 
hence the proof is complete. 
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