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Summary.  Let Xi, iEN,  be i.i.d. B-valued random variables where B is a 
real separable Banach space, and ~b a mapping B~IR.  Under  some con- 

ditions an asymptotic  evaluation of Z,=E exp n~ X]n is possi- 
i 

ble, up to a factor (1+o(1)). This also leads to a limit theorem for the 

appropriately normalized sums ~ X~ under the law transformed by the 

densityexp(nq)(~__lXi/n))/Z,. ~=1 

w 1. Introduction 

Let B a real separable Banach space with norm I I  and X,,  n e N ,  be a 
sequence of i.i.d. B-valued random variables with law # which satisfies: 

(1.1) jexp(tlXl)l~(dx)<oo for all t~lR 

(1.2) ~ x#(dx)=0. 

Let ~b be a real-valued Borel-measurable continuous function on B. The aim of 
this paper is to give an asymptotic evaluation of E(exp(n~b(S,/n))) as n--oo 

where S, = ~ X i. 
i = l  

If there exist real constants C, D > 0 with 

(1.3) ~(x) G C+Dlxl 

then it has been proved by Donsker  and Varadhan [5] that 
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where h is the entropy function of g: 

(1.5) h(x) = sup (~0 ( x ) - l o g  M(~0)). 
~o~B* 

B* being the topological dual of B and M(~o)=~eedl~ (see [-51 Theorem 5.3 and 
Sect. 3 of [14] and w where some basic facts on the entropy are collected). 

Furthermore, under these conditions there is at least one x* cB  with 4~(x*) 
-h ( x* )=sup(~ (x ) -h (x ) ) .  This will be proved in w We need the stronger 

x ~ B  

condition 

(1.6) There is a unique x * ~ B  with q)(x*)-h(x*)=sup(~(x) -h(x) ) .  
x 

We use x* exclusively for this point. 
We also need that ~ is smooth enough, namely 

(1.7) �9 has three continuous Fr6chet derivatives on B. 

If bEB, we write D k~(b) for the k-th Fr6chet-derivative of �9 at b (when it 
exists) which is a continuous k-linear form on B. 

We write Dkq~(b)[xl . . . . .  xkl for this form at x~, . . . , x k~B  and Dk~(b)[xk] 
instead of D k ~(b) I-x, ..., x]. 

Let dv=exp(D~(x*))d#/M(Dq)(x*)),  v has moments of all orders and in w 
we shall prove that 

(1.8) x* = ~ x v(dx) holds. 

Let v o be v centered at 0, i.e. Vo=V02.1 where 0a: B ~ B  is defined by Oa(x)=x 
- - a ,  

We need an assumption stating that the maximum in x* is non-degenerated 
in some sense. To formulate this we define the mapping ^: B * ~ B  by 
~o=~xq~(X)Vo(dx ). If ~p~B* then ~p(~) is the covariance of qo and 0 under 
vo: F(q~, 0 )=~  ~o(x)O(X)Vo(dx). Then we have 

Lemma 1. For all ~o~B* F(~o, q~)> DZ~(x*)[q32 I. 

This will be proved in w 2. We assume 

(1.9) For  all ~0 eB*, with ~ 0, F(qo, ~o) > D 2 ~ (x*) [c~ 2] holds. 

Remark 1. From Lemma 1 it clearly follows that in any case 

{~o: r(~0, q~)=D 2 ~(x*) E~2]) 

is a linear subspace of B* and it will be shown in w that this subspace is finite 
dimensional (see the remarks following the proof of Lemma 1). So (1.9) just 
states that this subspace of degenerate directions has dimension 0. 

Our main result is the following 

Theorem 1, We assume that ~t and cp satisfy 
a) (1.1), (1.2), (1.3), (1.6), (1.7), (1.9) and 
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b) v satisfies a central limit theorem, i.e. v, defined by v,(A)=v~"(]flnA) 
converges weakly to a Gaussian measure 7. 

(Here *" denotes n-fold convolution.) 
Then 

--S exp (�89 2 ~(x*) [y23) 7 (dy). 

Remark 2. If # has bounded support  then (1.3) can be replaced by the weaker 
condition that ~b is bounded above on bounded sets. 

Results of this type have been obtained in the case B = I R  by Mart in-L6f  
[11], for Banach spaces with Gaussian # by Schilder [13], Pincus [12] and Ellis 
and Rosen [6] and for a Hilbert space in some special situations by Kusuoka  
and Yamura [10]. 

Remark 3. The condition b) in Theorem 1 is automatically satisfied in so-called 
type 2 spaces (as v has a second moment), especially in Lp spaces for 2 < p < o o  
(see Hoffmann-Jorgensen [7]). In other spaces there are useful sufficient con- 
ditions for the central limit theorem. (See e.g. [8].) It is desirable to have 
conditions which only depend on # and not on ~b. Some of conditions for the 
validity of the central limit theorem nearly carry over from # to every possible 
v. As an example, we look of the condition of Jain and Marcus for C(T)- 
valued random variables, where T is compact  metric space (see [8], Theo- 
rem 3.5). If # on B = C(T) satisfies 

#({f:  ] f (s ) - f ( t ) ]>V(f )p(s ,  t) for some s, t } )=0  

where V : B ~ [ 0 , ~ )  satisfies Svz+~d//<oo for some c~>0 and p is a con- 
1 

tinuous metric on T which satisfies ~Hp(e)~de<oo (H()  the e-entropy of T 
o 

with respect to p) then an application of the H61der-inequality together with 
Theorem 3.5 of [8] shows that any possible v of the form dv=eOd#/M(cp), 
~o ~B*, satisfies the central limit theorem (if (1.1) is true). 

The Gaussian measure ~ is generated as an abstract Wiener measure (as all 
Gauss measures). We sketch the construction. As Gaussian measures have 
exponential and therefore second moments,  there is a natural mapping 
J: B*~L2(B, 7). We denote by H the closure of j(B*) in Lz(B, y) which is then 
a Hilbert space. If (psB* then the ~b defined above may also be written as 
~x~o(x) ~,(dx) as it only depends on the covariance form. It is easy to see that ~3 
depends only on j(~o) and the mapping j(cc)~--~b is continuous in the Lz-norm. 

So we obtain a continuous mapping i: H-~B which can be shown to be one 
to one. j is one to one if and only if the support  of y is B. i and j are compact  
linear mappings. (H, B, i) then generates y as an abstract Wiener measure in the 
sense of Gross (see [9]). 

For  proofs of these facts (in a more general setting) see [3]. 
We write ( , )n  for the inner product in H. We also identify H with the 

subset i(H)~ B and shall therefore not distinguish between x E H and i(x)~ B. If 
(p~B* then ~b clearly is in H. 
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Lemma 2. Z = exp (�89 2 ~b(x*) [y2]) 7(dy) is < oo and ~,' defined by 

(dT'/dT) (y) : Z -  1 exp (�89 2 ~b (x*) [y23) 

is a centered Gauss measure on B. 
The proof will be given in w 2. 
We can then prove the following central limit theorem. 

Theorem 2. Assume the same conditions as in Theorem 1. Let 

dP,/dP=exp ( n q ) ( ~ ) ) / E  (exp (n~b ( ~ ) ) ) .  

7~hen the Pn-law of lfln ( S ~ - x *  ) converge weakly to 7 '. 

Similar results have been obtained by Ellis-Rosen for Gaussian laws # even 
in degenerate cases, i.e., if (1.9) does not hold and where non Gaussian (finite 
dimensional) limit laws appear. 

The condition b) in Theorem 1 can be reformulated in the following way: 

(1.10) For any closed F ~ B  limsup vn(F)<__~(F). 
t l ~ o O  

The proofs of the Theorems 1 and 2 essentially depend on a Bernstein-type 

inequality stating roughly that if t is small compared with l//n, then vn(tF ) 
behaves as is reflected in (1.10). The /-/-norm governs the large deviations 
behavior of 7 in the following sense ([2], Theorem II 1.6): 

1 
(1,11) limsup ~ y ( t f )<  -inf{�89 x s F }  

t--+ o0 

(we put ]xlu= oe i f x e B \ H ) .  Let F ( F ) = i n f  {31 [xl~.2" x EF}. Therefore the follow- 
ing result looks quite plausible. 

Theorem 3. I f  F c B  is closed then 

limsup sup logv,(tF):  c<-_t<]/n/c < -F(F) .  
c -+oO n , t  

In case where B is a Hilbert space and F = { x :  Ix[> 1} the proposition follows 
from results of Yurinskii ([151, Sect. 4). He also obtained results for certain 
Banach spaces but they are not sharp enough to give the Theorem 3 immediately. 
But Yurinskii's Theorem 2.1 is basic in the Proof given in w 3. 

The proofs of the Theorems 1 and 2 are given in w 4. 

w 2. Properties of the Entropy and Proofs of the Lemmas 

Let/~ be any probability measure on B and define h by (1.5). h obviously is > 0  
and as a supremum of continuous affine function it is lower semicontinuous 
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with values in [-0, oo] (even in the weak*-topology) and convex. The strong 
condition (1.1) guarantees that h may be obtained as a contraction of the so- 
called Kullback-Leibler information (or/-divergence). 

If 2 is a probability measure on B then the Kullback-Leibler information of 
2 with respect to # is defined by 

S l o g ~ -  d2 if 2 ~ #  and log~u-#eLl(2 ) 
k(2l#)-= 

L oo else. 

It is well known (and easy to see) that as a function of 2 (with # fixed) k is 
convex, strongly convex on {2: k(21#)< oo} and lower semicontinuous in the 
weak topology (see e.g. [4]). 

Lemma 3. Let (1.1) be satisfied (not necessarily (1.2)) then 
a) h(x)=inf{k(21#): Slyl 2(dy)< o% Sy)~(dy)=x}. 
b) If h(x)<oo then there is a unique probability measure 2 x with k(2xi#) 

=h(x) and ~ y2x(dy)=x. 
c) h(x)=0 if and only if x=SyF(dy ). 
d) For all r e [0 ,  oo) {x: h(x)<r} is compact in B. 

Proof. The facts follow from the considerations in w 5 of [5]: 

Donsker and Varadhan define h(x) as inf{k(21#): Sy2(dy)=x} (k(21#) 
=Iu(2) in their notation, see (5.3) in [5]) a), c), d) of our lemma then follow 
from (iv), (ii) and (iii) of Theorem 5.2 in [5]. To prove b) we look at a sequence 
2, of probability measures with k(2,t#),~h(x), Sy2,(dy)=x. By Lemma 5.1 of 
[-5] (2,) is tight and a straightforward argument shows that any limit point 
satisfies Sy2x(dy)=x and h(x)=R(2xl#) (see the proof of Lemma 5.l in [5]). 
Unicity of 2 x follows from the strong convexity of k. [] 

Lemma 4. I f  (1.l) is satisfied, then h(x)/[xl--,oo uniformly as Ixl--,oo. 

Proof. If 2 > 0, we choose c > 0 with 

S exp ((1 + 2)]x[) #(dx) < 1. 
Ixl>c 

If x e B, let (p e B* satisfy [~o ], = 1 and (p(x)= I xl. Then 

h (x) > (1 + 2) (p (x) - log M ((1 + 2) (p) 

>(1 +2)Ixl - l o g s  exp ((1 +2)Ixl)#(dx) 

>(1 + 2 ) I x l - l o g  {exp ((1 +2)c  + S e(l+~)lxl #(dx)} 

>(l + 2)lxl-( l  + R)c-log2. Ixl-->c 

Therefore, if I x l > ( l + 2 ) c + l o g 2  then h(x)/Ixl>2. [] 

Using d) of Lemma 3 and Lemma4,  one immediately sees that under 
condition (1.3) sup (cb(x)-h(x)) is attained, as is claimed in w 1. 

X 
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In the case where # has bounded support h is ~ outside a bounded set and 
if 4~ is bounded on bounded sets, the same conclusion holds true. 

Proof of (1.8). By the convexity of h one obtains h(x*)+D~b(x*)[x]<h(x* 
+x)  for all xeB  and therefore ~ the entropy function of v i.e. h=h-Dcb(x*) 
+logM(D~b(x*)) is minimal at x* and so equals zero there. From c) of 
Lemma3  one has ~yv(dy)=x*. [] 

Proof of Lemma 1. Let ~0eB* and the probability v, on B ( t>0)  be defined by 
d v t = exp (D cb(x*) + t rp) d#/M(D q)(x*) + t qo). An easy calculation gives 

(2.1) M(DeP(x*)+tcp)=et~(~*)M(D~(x*)) (1 t2 as +Tr(~o, ~o)+o(?)) t-~o 

Let a t = ~ x v,(d x). Applying (2.1), one obtains 

a~ = x*  + t S x (~o (x) - q~ (~*)) v (d x) + R (t) 

where IR(t)] =O( t  z) for t near O. ~x(p(x)-cp(x*))v(dx) equals (p. 
By applying the Taylor formula, one obtains for t near O 

t 2 
(2.2) rb (a,) - q6 (x*) = D ~(x*) [a, - x * ]  +~-  D 2 q~(x*) [~b 23 + o(t2). 

On the other hand, applying (2.1), one obtains 

h(a,) < k(vt[# ) = D ~(x*)  [a~ - x * ]  + D ~(x*)  [ x * ] + t  2 (p(~) 

t 2 
- log M(D eb(x*)) - ~ -  F(~0, (p) + o (t 2) 

~2 
= D ~(x*) [a, - x*] + h(x*) + ~  r(q~, q~) + o(t2). 

Comparing this with (2.2), one obtains F(q), q~)~D 2 ~(x*)[0 2] for all ~0 e B* as 
is claimed in Lemma 1. 

Remarks. a) We have F(~o,~o)=l~bl~ and by continuity, we see that 
lyl2>D 2 ~(x*) [y2] holds true for all y e  H. 

b) S={yeH: lyl~=D2q)(x*)[y2]} is easily seen to be a closed linear sub- 
space of H. We claim that it is finite dimensional. Indeed, D 2 q~(x*) defines a 
bounded operator B~B*. Taking compositions with the compact operators 
i" H---,B, j: B*-+H, we see that D2~b(x *) defines a compact self-adjoint opera- 
tor H--,H. If ( e , ) ,~  is any countable orthonormal family of vectors in H then 
lim D 2 ~(x*)[e,2~ =0.  This proves the claim. 

n --~ o o  

c) If (1.9) is satisfied, then dim(S)=0.  

To prove this, assume dim(S)>0.  Then there is a y e l l  with l=Lyl 2 
=D2~(x*)[y2]. Let z e H  satisfy D2cp(x*)[y,z]=O. Then yt=(y+tz)/(1 
+t2D2~b(x*)[z2]) ~, t e l l ,  is well defined (at least if Itl is small enough) and 
satisfies D24)(x*)[y~]=l. From Lemma 1 one therefore has lyt l~>l  and so 
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lY, I 2 is minimal at t=0 .  This implies <y ,z>z=0 .  If we put 0 
= D 2 q~(x*) [y,.  ] e B*, we therefore have ~ = c~y for some c~ e ]R\{0}. 

But this contradicts (1.9). 

Proof  of  Lemma 2. By the consideration in the Remark b) above, D2qS(x *) 
defines a compact self-adjoint operator H ~ H .  

We choose an orthonormal base (e,) of H with D 2 ~b(x*)[ei, ejl =,)ui~ij..~i--~O 
as i~oo  and from Remark c) we see that 2~<1 for all i. 

Let # , , n e N ,  be a sequence of i.i.d, standard normally distributed random 
variables, defined on some probability space. Then ~ ei# i converges a.s. and in 

i 

L 2 to a B-valued random vector with law ~ (see [9], p. 157). Then s  i 
i 

converges a.s. and in L2, too (see Theorem 5.8 of [7]). We denote by 7' the law 
of this limit which is clearly centered Gaussian. We claim that 7 '< ~/and dT'/d3~ 
has the desired form. 

i i i :  .,~i > 0 i : . ~ i  < 0 

As these two summands are independent, and EID2~b(x*)[ (~ ie i )2] l  < oo, we 
see that ~ I;~l < oo. i 

i 

We can now apply the Kakutani-criterium (see [91, p. 116) to conclude that 

the law of (~ l / t f [ - )~ l ,  ~2/1/1-22 . . . .  ) on IR ~ is absolutely continuous with 
respect to that of (~1, ~2, -..) with a density 

const, exp ( �89  (x 1 , x 2 . . . .  ) e N  ~. 
i 

F rom this one derives in a standard way that 

(dT'/d?) (y) = const, exp (�89 2 ~b(x*) [y2]). 

w 3. Proof of Theorem 3 

Let p be a probability measure on B which satisfies (1.1), (1.2) and let p, be 

defined by p,(A)= p*"(]/~A). 

Lemma 5. I f  p satisfies the central limit theorem then there is linear subset B o 
c B  with a norm I Io on B o such that 

(a) (B0, i [o) is a Banach space; 

(b) { x e B  o IXlo__<l} is compact in B; 

(c) p(Bo)= l ; 

(d) ~exp( lx lo)p(dx)< oo; 

(e) sup ~ Ix[ 0 p~(dx) < oo. 
t~ 

Proof. By the Banach-Mazur theorem, there exists an isometric imbedding of B 
into C = C[0, 11, such that B becomes a closed linear subspace of C. 
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Let {eft, j e N ,  be a normal ized Schauder  basis of C with associated 
coordinate  functionals f j  ~ C*. 

co 

If xE  C, let rck(x)= ~, f~(x)ej and let F k be the subspace of C spanned by 
e l  ' " " ,  ek" j = k + l  

It is easy to see that  there is a constant  M > 0 such that  

(3.1) [nk(x)]<Md(x, Fk) for all k and x ~ C  

where d(x, Fk)=min  {Ix--y[" y~Fk}. 

Indeed, by the Banach-Steinhaus theorem 

b = s u p  x -  fj(x)ej : k e N ,  x with Ixl<l < 
J . 

OO~ 

k 

j = l  

To x 6 B  we choose x(k)~Fk with ]X--x(k)[<2d(x, Fk). Then 

j=k~. <2bd(x,  Fk). and therefore 

As p,  is tight (in B and therefore in C), it follows that  for all 5 > 0  
lim sup p,  ({ x: In k (x)[ > e} ) = 0. Therefore  

k--+ co tl 

supSffCk(x)lpn(dx)<=e+sup 5 ]nk(x)lpn(dx) 
n n {x: ~k(x) >~} 

<= g + M sup (51 x12 P,(d x)) ~ p,({x:  Ire k (x)] > ~})~. 
n 

By a result of the Acosta and Gin6 (see I-1]) 5Lx] 2p, (dx)  converges, so it 
follows that  

lim sup 5 Ink(X)[ p,(d x) = 0. 
k ~ c o  n 

If k E N ,  let n o ~ N satisfy 

(3.2) supSIn,,(x)lp,(dx)<k -3 for m>n ~ 
n 

F r o m  (1.1) and (3.1) one obtains 

lira 5exp(tlnk(X)[)p(dx)=l for all t ~ .  
k--~ co 

We choose n k > n o increasing in k with 

(3.3) 5exp(2k2k]n,,(x)l)p(dx)<2 for m>nk_ 1 . 

If x~C,  let x l = x - n , , ( x  ) and xk=nn~_x(X)--n,~(x) for k > 2 .  We put IXlo 

= ~ klx~[E[0, 0o]. 
913 

k = l  

Let  C o = { X e  C: IXlo< oe}. (Co, ] 1o) clearly is a (separable) Banach space. 
We put Bo=BC~ C o. Then (B o, ] 1o) is a Banach space, too. So (a) is proved. 
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To prove (b) we remark that {xeC: ]x]0<l } is compact in 
intersection with B is also compact. 

(c) clearly follows from (d). This follows by estimating as follows: 

~el~l~ Q~,lklrc,,k_~(x)-n.~(x)l)p(dx)= 

< M {Sexp(k2k(l~,~(x)l-t-Ig,k_~(x)l))P(dx)} 2-~ 
k = l  

< l~i {5exp(2k2 k i~o~(x)l)p(dx)5exp(2k2kl~_,(x)l)p(dx)}Z-~ 1 
k = l  

which by (3.3) is < oo. 
To see (e) we use (3.2) to estimate 

C, so its 

k = l  

=< ~ 5k(l=~ + I=n~_,(x)l)P.(d~), 
k - - 1  

which is bounded uniformly in n. [] 

The following lemma is a corollary of a result of Yurinskii: 

Lemma 6. Under the conditions of Lemma 5 

limsup sup { 1 c} . . . . .  t ( t  logp~({x: Ixlo>t}): c<=t<]/n/ <0. 

Proof. If m ~ N, then 

oo 

fflxgp(dx)=m J ;~=-' p((x: Ixio>,K})d;~ 
0 

<m J e Ixl~ p(dx) ~ 2 m-t e-;" d)~ < m !j e Ixt~ p(dx). 
0 

Therefore p satisfies the condition (2.1) in [15] with H = I  and b~ 

= 2 ~ e Ixl~ p(dx). By Lemma 5 (e) one has I ]x[0 p*"(dx) = O(t/~). 
The statement of our lemma now follows easily from Yurinskii's 

Theorem 2.1. [] 

Proof of Theorem 3. We first assume that F is compact in B and satisfies 
F (F)<  oo. For any r > 0 ,  {x~B: ]XlH<r } is compact in B and therefore closed. 
Given e > 0  {xeB: I[x[~>F(F)-s} is open in B and contains F. Therefore, 
there exists a finite covering of F with open balls U~,... ,  U,, which satisfy 

�89 whenever x e  0 Uj. (We assume F ( F ) - ~ > 0 ) .  Let Cj 
j = l  

= {x: �89 lxI2<F(Uj)}, then C i is compact, convex and disjoint from U s. So there 
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exists a hyperp lane  separa t ing  C~ 

(3.4) 

So we obta in  

and Ui, i.e. there is a (p~ e B* with 

u j =  {x: ~0j(~) > 1} = {x: l l x l ~ > r ( u ~ ) } .  

(3.5) v,(tF)<= ~ v,~oT*((t, 00)). 
j = l  

By using a s tandard  a rgumen t  in one d imensional  large deviat ion theory,  this 

is easily seen to be < ~ exp(-nh3(t/l/n)) where hj is the en t ropy  funct ion of 
j= l  

v 0 rpj- 1, i.e. hj(x) = sup (2 x - log Sexy vo (P}- a (d y)). 
.a.sN 

As v o is centered, hj is smoo th  near  0 except when Vo(#7~({0})=l  in which 
case v,~071((t, oe ) )=0  for all t > 0 .  So this case doesn ' t  bo ther  us. 

In all o ther  cases, one has h j ( 0 ) = h ) ( 0 ) = 0  and h ) ' ( 0 ) = a 7 2  where cr f 
= ~ x 2 Vo ~0j- 1 (~/x) = r ( q ~ ,  ~oj). 

Therefore  there exists a 6 > 0  such tha t  for all j and  t/1/-s one has 

hj(t/1/n ) > (1 - ~) 1.2/2 (7 2 Ft. 

F r o m  the second inclusion in (3.4) one obtains  F(Uj)<I/2a 2. Using this, 
together  with (3.5), one obtains  

(3.6) v, ( tF)<mexp(- t2(1-e)(F(F)-e))  for t/l/;<a. 

This proves  T h e o r e m  3 in this case. I f  F(F)= oe then the p roo f  is similar. 
Let  now F be closed. 
L e t ]  Io be cons t ruc ted  according to L e m m a  5 (for v). Fo r  D , = { x :  Ix lo>t}  

1 
we have by L e m m a  6 a = l i m s u p  sup7 log v,(Dt)<O , the sup being over  those 
t, n with c<t<_lfn/c, c-+oo 

For  any r > 0 one has 

1 ( 1 
l imsup sup 75 log v,(tF) < max  l imsup sup ~- v ,( t (F c~ D~)), 

c - + ~  \ c - * ~  

c--~ oo t 

< m a x  ( - F ( F  a D;), r 2 a) < m a x  ( - F(F),  r 2 a). 

Let t ing r--+oo the t heo rem is proved.  [ ]  

w 4. Proof  of  the Theorem 1 and 2 

I f _ x = ( x l ,  ..., x,)cB", we write s.(x) or for short  just  s , =  ~ x v Then  
i = 1  

(4.1) E(exp (n cb(S,/n))) = f exp (n ~(s,(x)/n)) #"(d_x) 
= exp (n (log M(D ~(x*)) - D ~b(x*) [x*]  + qS(x*))) 

�9 S exp (~(~(s./n) - ~(x*) -D ~(x*) [s./n - x*3)) v~ 
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The factor before the integral is just exp(n(~b(x*)-h(x*))) .  We split the integral 
into three parts: 

Let  Al(c 1 , n)=  {x ~B~: [sJn - x * l  < c l / V ~  } 

Az(ca, c2, n)= {x eB": c l / ] fn< Is,/n - x * l  =<c2} 

A 3 (c z, n) = {x e B": c 2 < [sJn - x *  f} 

and we write the integral in (4.1) as 

= S + ~ + ~ =I t (c l ,  n)+Iz(cl ,  c2, n)+I3(c2, n). 
A~. A2 A3 

We shall prove:  

(4.2) /1 (c l ) - -  lim I i (c l ,  n) exists for all but  countably  many  c 1 >0 .  
n---> oo 

(4.3) lim ['t(cx)=~ exp((1/2)D 2 ~(x*) [y2] )7(dy) .  
C l i O 0  

(4.4) lira supI2(cl ,  c2, n ) = 0  for small enough c z. 
Cl  --+ oo tl 

(4.5) lira 13 (c2, n) -= 0 for all c 2 > 0. 

F r o m  (4.2)-(4.5) the Theo rem 1 clearly follows. 

Proof of  (4.2) and (4.3). If x ~ B then 

(4.6) @(x + x*) - ~(x*) = D �9 (x*) [x]  + (1/2)D 2 ~(x*) [x 2] 

+ (I/6) D 3 ~(x* + Ox) Ix 3] 

where 0 < 0 < 1. Therefore  

n(q~(x + x*) - cb(x*) - D~b(x*) [x]) = (1/2) D 2 ~b(x*) [ ( ] /nx)  2] + 0 (1/I/n) 

uniformly in x as long as ]xl <cl/] /n.  
By the central limit theorem 

lira 11 (cl, n) = S exp ((1/2) D 2 ~b(x*) [y2]),/(dy) 
n--, oo l y l < c l  

except for countably  many  c~. F r o m  this (4.2) and (4.3) follow. 

Proof of  (4.4). If e >0 ,  let A~ = {x EB: ( l /2)D 2 ~b(x*) [x 2] + e  ix[ 2 > 1}. We claim 
that  for sufficiently small e > 0  one has F(A~)>I .  To prove this, let B r 
= { x e B :  [xl2>r} and A 0 = { x ~ B :  (1/2)D2Cb(x*)[xa~>l-cS}. Then A~ 
c B r u Ar and so 

(4.7) F(A~) >= min (F(Br F(Ar~)). 

As {xeB:  Ixl~__<c} is compact  in B, it follows from Remark  c) following the 
proof  of L e m m a  1 that  F(Ao) > 1. If fi > 0 then 

F(A~) = inf {(1/2)tx[ 2" (1/2) D 2 q~(x*) [x 2] > 1 - 6} = (1 - 6) F(Ao). 

Therefore,  F(Ao)> 1 for small enough c5>0. 
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As {x~B: Ixl2n<c} is bounded  in B we have F(Br)~oo for r ~ o o .  So we 
conclude f rom (4.7) that  P(A~)> 1 for small  enough e > 0 .  

Using (4.6) one obtains  for small  enough c z 

I2(c1, c2, n ) =  ~ exp{(1/2)D2~(x*)[y(x) 2] 
cl < ly(x)l _<c2 Uffn 

+ (1/6 Vn)  D 3 ~ (x*  + 0 y (_x)/V~) [y(X)3]} v"(d_x) 

where y(x)=tSn(s ,(x) /n-  x*). 
For  given e > 0  we can choose c 2 small enough in order  tha t  

ID 3 ~b(x* + Oy(_x)/l/~ ) [y(~)3]/6 l//n [ < e ly(_x)l 2 
in the domain  of integration.  Therefore  

12<= ~ exp((1/2)DzcP(x*)[Y2]+elYl2)vn(dx_) 
c l  < lyl < e 2  l / n  

= ~ e'v"({_x" (1/2)D2~(x*)[y~)2]+ely(_x)[2>t, 
- - o o  

cl < lY~)I <c2t/n})dt  

= ~ etv"({x_" y~)~] /~A, , c  I <ly~)l<c2l//-n})dt. 
- o o  

According to T h e o r e m  3, we find c < oo and  q > 1 such that  

v"({_x: y(x)~.V~A~})<exp(-qt)  

whenever  c < t <l/n/c. We choose c 2 small  enough such that  

v"({y cl  < y-_< c21/ }) = o 

if t > ]/~/c. Therefore,  if d > c then 

d oo 

12<= ~ etv"(y>cl)dt+ ~ ete-"'dt.  
--  oo d 

oo 

So l imsup s u p I 2 ( c l ,  c 2, n) < ~ e-(q-1)t dt. 
cl--* oo n d 

By letting d--* o% (4.4) follows. 

Proof of (4.5). If  c3>c 2 then 

exp (n( ~(s./n) - cb(x*) - D qb(x*) Is.In - x*])) v"(d_x) 
~2< I~d~-x*l-_<o3 

converges to 0 exponent ia l ly  fast as n ~ o o  by s tandard  large deviat ion results 
(see [2] and [5]). ( R e m a r k  tha t  the sum in the square  brackets  remains  
bounded  in the doma in  of integration.)  
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So it remains to estimate I3(c3, n) for arbitrary large c 3. There is an M > 0  
such that 

13 (c a, n) < S exp (M Is, I) v"(d_x) 
[s.m-x*l >-c3 

_-<(S exp (2M Ls,,I) v"(dx) v"(lsffn -x*[  > c3)) ~- 

<(~ exp (2M Ixl) v(d x)) "/z v"(ls ffn - x*l > c3) -~. 

Using Lemma 4 and standard large deviation results, one sees that the second 
factor goes to 0 exponentially fast with an arbitrary large exponential rate if c a 
is chosen sufficiently large. So lim 13(C3, r t ) = 0  follows and so (4.5), 

n - ~ c o  

Therefore, Theorem 1 is proved. [] 

Proof of  Theorem 2. We only sketch the proof as it is straightforward from the 
method in the proof of Theorem 1. 

First of all, it follows from the proof of (4.4) that 

lim sup E (e"(h(x*)- ,(x*)) e" * @) 1 (I ~(s . / , -  x*)10 _-> ~/) = 0. 
t--+ o~ n 

 equonce o  aws under are 

using the same method as in the proof of Theorem 1, one obtains for 2 e IR 

lira E(e izo(g~(s"/"- ~*)) e"e(s"""))/E(e "e @)) 
n 

= Z -  1 ~ eia~o(,)+ D2e(x*)r,21 y(dx) 

with Z=ye~D~(~*)E~2~y(dx) and this, by Leml"na 2, equals ye e'~(~') y'(dx). 
So Theorem 2 is proved. [] 

Acknowledgements. The author thanks the refree for suggesting a number of improvements and 
pointing at an error in the original manuscript. 
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