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Summary. Stein's method is used to derive asymptotic expansions for 
expectations of smooth functions of sums of independent random variables, 
together with Lyapounov estimates of the error in the approximation. 

1. Introduction 

When considering the error in the normal approximation to the partial sums 
of stationary sequences, Stein (1970) introduced a new technique, by means of 
which differences of the form IEh(W)-IEh(~A/), for smooth functions h, could 
be directly estimated: here, ~/" denotes a standard normal random variable, 
and W denotes the random variable whose distribution is being approximate& 
The technique has a structure which lends itself in principle to iterative 
application, by means of which asymptotic expansions could be obtained, but 
the possibility seems not to have been exploited, owing to the apparent 
complexity of the procedure. In this paper, a simplification is found, which 
enables asymptotic expansions for the expectations of smooth functions of 
sums of independent random variables to be derived, together with Lyapounov 
loounds on the approximation error, at the cost of some analytic argument, 
concerning the smoothness and rate of growth of solutions of Stein's ordinary 
differential equation. The principal tool is a lemma which, for a random 
variable X with exponentially decaying tails, makes explicit the way in which 
the difference between IEh(X) and IEh(~Ar) depends on the cumulants of X of 
order greater than two. 

Asymptotic expansions for IEh(W), where h is smooth and W is a partial 
sum of independent random variables, were considered by Hsu (1945), yon 
Bahr (1965) and Bhattacharya (1970), and have more recently been discussed in 
Hipp (1977) and in G6tze and Hipp (1978). In the latter paper, asymptotic 
expansions are obtained by Fourier methods, under conditions which, although 
similar to those used here, are not equivalent, and their error estimates are 
more difficult to express: however, their results are proved for sums of inde- 
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pendent random vectors in IR d. The arguments used in this paper are under- 
standably simpler. 

An advantage of considering expansions only for expectations of smooth 
functions h of W is that, in contrast to expansions for distribution functions, 
there is no need to impose smoothness conditions on the distributions of the 
summands: the natural moment conditions are all that is required. However, 
the problem cannot be entirely avoided. Each extra term in the asymptotic 
expansion requires an extra derivative of the function h to exist, and the 
estimated error of the expansion depends on a Lipschitz measure of the 
smoothness of the highest required derivative of h. 

2. Main Results 

The essence of Stein's (1970) method is that, if h is any function for which 
IEIh(~A#)I < oo, then, for any random variable X, 

rV, h ( ~ ) -  IEh(X) = ~E { X g ( X ) -  Dg(X)}, 

where g=Oh is defined by 

(Oh)(x)= i e~(X2-t2){h( t)-IEh(JV')} dt 
oo 

oo 

= - ~ e-~<x2-t2~{h(t)-lEh(Y)} dr: 
x 

here, and subsequently, ~ denotes a standard normal random variable and 
Dzf the  ith derivative off.  Note that g satisfies the differential equation 

Dg(w) -  wg(w) = h(w) -  IEh(Jg'). 

Thus the closeness of the distributions of X and X can be estimated, if an 
estimate of I E { X g ( X ) - D g ( X ) }  is available, for an appropriate class of func- 
tions g. The following lemma provides a starting point for such estimates. 

Lemma 1. Let g be an l - 1  times differentiable function and X a random 
variable, and suppose that 

where 

L e t  K. r 

IN {IXl'u,_, (g; X)} < o0, 

u k(g; x) = sup ID k g (t) - D~ g (0)1. 
]tI < x 

denote the r m cumulant of X. Then 

1--1 
Ks+ 1 

s=O 
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where 

l~/k(g;X)l~ k ~J~c,+ll IEIXk-%(g;X)I] IEIX~+luk(g;X)l 
s! k! 

_<_ d k IEIX k +* u k(g; X)I; 

k 
dk = Z ~Zs+l " ~=o s!(k~--s)(' 

and the universal constants (~)~>= 1 are defined by 

oq=2;  % = s u p ~  I~:*! "( 
r~L~tIEIY - IEY ]~S" 

Remarks. 1. In particular, d l = 3, d 2 = 5/2, d 3 = 5/3. 
2. If IEX=0  and IEX 2= 1, the conclusion may be rewritten in the form 

l - i  Ks+ l  
1E { X g ( X ) -  Dg(X)} = Z ~ IE {D s g(X)} +tll_ 1 (g; X). 

s=2 

In this case, since lc~ =0, we may take a~= 1 and hence d~ = d z = 2 ,  d3 =3/2. 

Proof From Taylor's theorem, 

D~g(x)- ~- 1-, ,. x l- 1-~ x ~ ,0,1< I I u~_~(g;x). 
v=O 

Hence 

E (Xg (x)) -y',=o'- ~ m(x~+r! ~) 

and 

IED~ g(X)-'-,.=o ~ ~-s IE(X~)r! 

D~g(0) <IE { t X > l ~ g ;  X)} 

- -  D~+~ g(0) <__ IE {IXl'-(l_ 1 - s) ! t  -~u,_ t (g; X)} 

But 

(1) 

, O < _ s < l - 1 .  

( l -  1 - s  ] 

r=o r. s=o s! ( r ~ o  r! 

z -  ~ ( I E ( X  "+ q IE(X . . . .  )~ 0 

The lemma now follows easily. [] 
In view of Remark 2, it can be seen that the closeness to zero of the 

cumulants of X of orders 3 to 1 would determine the closeness of X to the 
standard normal, provided that ~z-1 was also constrained to be small. How- 
ever, when IEX=0  and ]EX2= 1, ~h-1 has two terms which do not involve the 
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higher order cumulants of X, namely 

1 1 
(I_2)~IEIX~ 2uz_l(g;X)l and (l_l)!IElXZu~_,(g;X)l.  (2) 

It is tempting to suppose that these terms also could be estimated by cu- 
mulants of orders between three and (l+2), say; but no such estimate can be 
obtained, since there is a distribution 9.~, with the same moments as ~A~ of 
orders up to (l+2), which has atoms at exactly (l+3) points, and such an 
estimate would make the right hand side of (1) identically zero for ~z, which 
cannot be the case, since ~z is not normally distributed. However, Remark 2 
does show how closeness to the normal, expressed in terms of the expectations 
of smooth functions, can be established using the closeness of the higher order 
cumulants of X to zero. First, 1 has to be taken so large that the factorials in 
the denominators of the terms in (2) make their contributions to t h_,  small, 
and then the cumulants of orders 3 to l must also b~- small. The following 
corollary shows how this may be exploited. 

Corollary 1. Suppose X has a moment generating function with a non-zero radius 
of convergence, and let ge C~ satisfy 

sup IO k g(X)l < Cr k, k > 1, (3) 
x 

for some C > 0  and r <R, where R is the radius of convergence of the cumulant 
generating function of X. Then we have the identity 

E{Xg(x)}=s} ~ EVsg(X  

In particular, if IEX = 0 and IEX a = 1, 

(4) 

IE {Xg(X) - Dg(X)} = s~2 ~tc~+t IEDs g(X). (5) 

Remark. If (3) is satisfied with r > R ,  (4) holds with 2X in place of X, for all 
2<R/r .  

Proof. The radius of convergence of m.g.f. (X) exceeds that of c.g.f. (X). Hence, 
from the first estimate of the lemma, 

k ( s + l l  ( k - s + l )  (k+l)(k+2) '~ 
[F]k(g ; X)I ~ C' s_~ 0 ( ~ + -  (r,) k s+l [ ~ 

k + l  

_<_ C ' k  3 k ; ; !  , 

rk+ 1 

for any r < r ' < R  and for suitable constants C'. Thus lim Ir&(g;X)]=0. [] 
k~oo 

For sums of independent random variables and smooth functions g, the 
error term in Lemma 1 can be expressed more informatively in Lyapounov 
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form. For any function g, let 

5f(g:p, ~)= sup {]g(x)-g(y)l/[Ix-yl~(1 + Ixl~+ lylP)]}, 
x=#y 

and define the function g~ by g=(x)=g(z+x). Let (Xi)/u=l be independent 
N N 

random variables with zero mean, such that ~ IEX 2 = 1' set W =  ~ X~ and W~ 
~__W_Xi" i = 1  i = 1  

Lemma 2. Let g be k -  1 times differentiable, for some k >= 2, and suppose that 

G=S(Dk-  1 g;P, c0< oo, 

for some p>O, 0<~ <_ 1. 7hen, ifIEIX/+P+~< 0% 1 <_iNN, 

k ~ 2  t C s + 2 ( W )  IE{Ds+lg(W)}+ek-1, (6) IE {Wg(W)-Dg(W)}--  ( s+ l ) !  
S = I  

where 

N 

lek-11 <= dk- ~ ~ lie IXfUk- ~ (gw, ; XDI 
i = 1  

N 

<(2P + R)2Padk_ l ~ IE{lX~lk+~(1 + IX,l~ + ~lWlO}, 
i = l  

In particular, for p <= 2, 

lek_ 11 <48Gdk_ 1 

Proof It is immediate that 

Now 

N 

E(IX,l~+~O +IX, lOb 
i = 1  

N 

IE{Wg(W)-Dg(W)}= ~ 1E{X, gw,(X,)-Dgw~(X31EX2}. 
i = 1  

u~_ 1 (gw~; xi)  __< G JXy { 1 +IW, f p + (J W~f + JXil)P}, 

and so, since W/and X i are independent, 

IE {IXilkG- a(gw, ; Xi)} < GIE {IX~lk+ ~(1 +(2P+ 1) 1E I W~lP + 2pIX~10} < oo. 

Hence, from Lemma 1, 

k 1 N 

s = 2  S[ i=1  

the lemma now follows by noting that 

1El W~I~ <2~{IEIWI~ + EIXy}. [] 

(7) 
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Now, if Xi= Yi/1/N, where the N (Yz)~= t are i.i.d, with mean zero and variance 
1, the cumulants of Wsatisfy 

lCs+ 2 ( W ) =  N s/21s 2(Y1) , s~O,  

so that (6) represents an asymptotic expansion for the quantity 

IE{Wg(W) -Dg(W)} 

in descending powers of N ~. Thus, by Stein's argument, Eq. (6), with g = Oh, is 
an asymptotic expansion for the discrepancy IEh(JV)-IEh(W). However, 
the expansion involves expectations taken with respect to the distribution 
of W, rather than the standard Normal distribution, and transforming (6) into a 
true asymptotic expansion for IEh(./V)-IEh(W) involves applying (6) to its 
own right hand side - converting each W-expectation to an JV-expectation with 
further errors - and then applying (6) to the new set of W-expectations, and so 
on until the required order is reached. The result is as follows. 

Theorem. In the setting of l_emma 2, suppose that, for some 2<_k<K and for 
some 0<c~_< 1, 

(i) h is k - 2  times differentiable, and 

or 
H1 = ~(Dk-  2 h; p, e)< oo 

(ii) h is k - 1  times differentiable, and 

H2= ~'~(Dk- 1 h; p+ 1, ~)< oo. 

Then, ifIEhXihk+P+~< co, 1 <-_iNN, it follows that 

IEh(W)=Eh(JV)+ y, ( - 1 )  r t%+2(W) '~IESH'D O)h(d) +tl, (8) 
(k-2) ( S j j ~ T  S ~J l=ll~" sj+l 

where ~ denotes the sum over r>l;s j>l , l<j<__r:  s j < k - 2  , 
(k-- 2) j_ 

N 
I~1< c~uj ~ IE{IX~l~+~+[xil ~+p+~} 

i~i 

(j = 1 for case (i), j = 2 for case (ii)), and Cj = Cj(p, k, ~) are universal constants. 

Remark. The expansion of Theorem 1 is not obviously the same as the 
expectation of h with respect to the usual signed measure given by the Edge- 
worth expansion to k - 2  terms. However, the equivalence may be proved as 
follows. First, if IDsg(x)l<G{l+Ix]P} for some G,p>O, integration by parts 
shows that 

IE {Hm(Y ) D. g(JV)} = IE {Hm+ s(JV) g(~)},  

where (H.,)..=> ~ are the Hermite polynomials, and 

IE{H~(Jg')Og(~U)}=-lE{(g(;U)-g)~oH~(x)dx }. 
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Hence 

IE {H,,,(M/)Ds+ , Oh(M/)} 

1 

Thus, iteratively, 

r r - 1  

IE(j~=l(Dsj+lO) h(,~/')}=(-1)rj~l(i~j(si-~-2) ) IN { H v  + 2r (J l / ' )  h ( JV')},  

where v = ~ sj. The equivalence of (8) and the integral of h with respect to the 
j = l  

Edgeworth density, expressed as usual in terms of Hermite polynomials, now 
follows by a combinatorial argument. 

Proof In order to prove the theorem, we use several analytical lemmas, 
relating estimates of the derivatives of a function h to those of Oh. These are 
stated and proved in the next section. 

Iteration of (6) leads to the statement of Theorem 1, with 

 k_2) j=l (sj+ 15V., J 

�9 [ IG~+2(W)I d 1 ~ IE Xaiul(O (] (Ds~+lO)hw;Xi) 
I_ (s ,+l)!  ~=~ ~ j=~ 

. XSr+2U + d s + l i = l E  i sr+l Ol-I(Dsj+lO)hw~;Xij=l ' k > 3 ;  

N 

Irll<dl ~ IElX~ul(Ohw,;X~)[, k--2; (9) 
i=1 

where ~ '  denotes the sum over r > l ; s j > l ,  l<j<r" s j=k-2  . Now, as 
(k - 2) j = 

in the proof of Lemma 2, 

t--1 

__<lx[~{1 +(2~+ 1)lwl~+2,1xlq 2 ~ (D~+, O)h;p, ~ , (10) 
j = l  

and each term in (9) involves a quantity of the form estimated in (10), with 

~ vj=k-2. j=l 
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Under condition (i), apply (44) of Lemma 6 with g=h ,  q = k - 1  and r=p,  
t 

obtaining, whenever ~ v~ = k -  2, 
j = l  

(' ) LP H(Dvj+lO)h;p,c~ <KH1, 
\j= 1 

for a universal constant K = K ( c q  p, t, (vj)}= 1). Thus, as in the proof of Lemma 2, 

for i vj=k-2, 
j = l  

t - 1  

]EXV~ (Oj~=l(Dvy+lO)hwi;Xi) 

--< 2 p (2 p d- 2)  KH 1 I F  { I X  il vo + 2 + ct (1 + IXilP At- ]F'] WIP)}  �9 (11)  

Note also that 
N N 

I~=+ 2(W)l = i=~1/~s+ 2 ( E l )  ~--~~ 2 i~=1 ]tIxi[s+2' (12 )  

and that because, for any random variable Y, the function log IEIYI = of s >  1 is 
convex, 

N N N N 
IEIXil =+2 ~ IEIXjlS'+2---_ ~ IEIX,I *+='+2 y~ IEIXjI z 

i = l  j = l  i=1  j = l  
N 

= E IEIX,I *+r (13) 
i=1  

Taking (11), (12) and (13) into (9), we conclude easily that, under condition (i), 

N 
I•1 < C', g 1 ~ IE{IX,Ik+~'(1 +IE[WI"+ IX,f )}  (14) 

Under condition (ii), apply (45) of Lemma 6 instead of (44) to estimate 

5~ (D~j+l O)h;p,c~ , obtaining 

N 
It/I <= C' 2 H 2 ~ ]F_,{lXilk+c~(1 + ]ElWf -k [XilP)}. (15)  

i=l 

Estimates (14) and (15) establish the theorem for p <2.  
To complete the proof in the case p > 2 ,  take h(w)= Iw[ v. Then, writing p = r  

+~,  where r =  [p], it follows that h is r - 1  times differentiable, and satisfies 
condition (ii) with k = r and p = 0, since S ( D  r_ a h;1, c~)= H < oo. It thus follows 
from (15) that, for this function h, 

N 
Irll<3C'2 H y' EIX~[ p 

i=1  
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Hence, from (8), (12) and (13), 

r - -2  N N 

n lwl <-X,o + E E _ IEIX~I +2p,r-, Z IEIX,15 (16) 
m = l  i=1  i=1  

r--1 for universal constants (2,j)j= 0. But now, from (13), for t>2 ,  

N N N 

2 IgIX/~ IgIX~12+~__< ~ IEIX/+m. (17) 
i = l  i=1  / = l  

Using (16) and (17) with t=k+cq it follows that 

N 

X E{IX~lk+~( 1 +IEIWiP + IXY)} 
i=1  

and the convexity of log IEIYI t implies that this in turn is no greater than 

N 

K" ~ IE {IX~lk+~'(1 + IX~lp)}. 
i = 0  

The theorem now follows from (14) and (15). [] 

Remarks I. The difference between conditions (i) and (ii) lies in the trade-off 
between growth rate and smoothness of the functions h. Using condition (ii), 
functions h(x) growing as fast as possible can be considered: that is, if 
lElX/lt<oe, l<_i<_N, functions h such that h(x)=O(lxl ~) are feasible, whereas, 
using condition (i), the maximum growth rate is O([xlt-2). On the other hand, 
functions h with an /-th derivative which is Lipschitz continuous with index c~ 
give an expansion up to 1A [ t - 2 1  terms using condition (i), but only up to 
(1-1)^ I t - 2 1  terms using condition (ii). 

2. Taking h(x)= [x[ r for r >  2, let k =  [rl, the greatest integer strictly smaller 
than r, and set ~ = r - k .  Then ~ (Dk_ lh ;1 ,  e ) is finite, and the theorem ex- 
presses IEIW[ r in terms of an asymptotic expansion, involving the cumulants of 
W up to order k, and an error term no greater than a universal constant times 

N 

IE[Xy. This, as a weak consequence, gives an inequality of Marcinkiewicz- 
i=1  

Zygmund (1937) form, 

s Xir--< t N /N 2\r/2) 

] g  i L i = I  \ i = 1  ) 

3. Subsidiary Analytic Results 

Lemma 3. Let h be l - 1  times differentiable, with D~h(0)=0, O<_s<_l-I, and 
satisfy 

H =  L,%~ (Dl_ 1 h; L -  l, cQ< oQ (19) 
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for some 0 <-- c~ <_ 1 and L > l. Then 

{ix  ,x[<l  [DsOh(x)l<KoH [L+ . . . .  2 I X L > I  

for 0 <- s <- l - 1, for universal constants K o = K o (L, l, s, ~). 

Proof. It follows from (19), by integration, that 

r ( = + l )  1_s{ 1 
]Dsh(x)i<C(c~+l_s]Hlxl~+l- +ix[ L-'} 

< 2F(c~+ 1) 
H(I+Ix IL - I - s+"} ,  O<s<l - -1 .  (20) 

= f(c~ + l - s )  

Thus also/~=IEh(~A/') satisfies 

<2F(c~+l) HIE{I+[yIL+~ 1}, (21) 
= r ( c ~ + l )  

where  ~ is a s tandard n o r m a l  r a n d o m  variable .  
We consider only the case x > O, starting from the equation 

~o 

0 h(x) = - ~ e ~(x2- t2) {h(t) - h} dt: (22) 
x 

for x < O, the argument is similar, based on the equation 

Oh(x)= i e~X~-t~){h(t) - ~ }  dt. (23) 
- c~o 

Changing variable in (22) gives 

Oh(x) = - ~ e . . . . .  2/2 {h(z + x ) -  h} dz, 
0 

from which it follows easily that 

S m (m) -zl . . . . .  

0 m = 0  

0 < s _< l -  1. (24) 

Now direct calculation shows that, for m~Z +, 

z"e . . . . .  ~/2dz<min {1/~ IEI ,~1"; m! x - " -1} ,  (25) 
0 

and that, for m,n~Tl+ and 0__<fi<l, 
oo 

zm(zA_x)n+~e . . . . . .  /2dz 
0 

1 / ~ -  ~o r  I E { I ~ [ " + j ( ' ; [ +  1)~}' O<x-< l  
=< J = (26) 

x n + f l - m  1 n ' 4 - 1  
~=0 J (m+j)!,  x > l .  

Hence easily, from (20), (21) and (24), the statement of the lemma follows. [] 
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Lemma 4. Suppose that the conditions of Lemma 3 hold. Define 

~1 (x, y)= IxD~_ a Oh(x) - yD z_ 10h(y)l/[lx - yl~(1 + IxlL-I + lylL- z)] " 

~2(x, y)= IDa_ 1 Oh(x) - D  l_ 10h(y ) l / [ l x  - yl~(1 + [xl c-~- 1 + lylL z- 1)]. 

Then 
supe i ( x , y )<KiH , i=1 ,2  (27) 
x4-y 

for universal constants KI= KI(L, l, ~), i= 1, 2. 

Proof We estimate el first: without loss of generality, take Ixl >IYl throughout. 
All constants of the form K), j > 1, are universal. 

If I x -y l  _->�89 it follows that 

~1 (x, y) < {IxDt_~ Oh(x)l + iyOt_~ Oh(y)l}/[(�89 [xl)"(1 + Ixl L- ~)]. (28) 

Note that the function 7/defined by 

T( t )={ t ,  O_<t_<l 
t L - l+~ ,  t > l  

is non-decreasing in t whenever L >=l and c~_>_ 1. Hence, using Lemma 3, 

IxD~_ 10h(x)l + lyDz- 1 Oh(y)[ <_ 2Ko(L , l, l -  1, c 0 H~P(lx[), 

and it now follows easily from (28) that, for [x-y l  >_-�89 

el(x, y)<2~+ l Ko(L, l, l - l ,  a)H. (29) 
X 

For Ix-yl<�89 take, without loss of generality, 0 < ~ < y < x .  Then (24) 
yields 

[xDz_ 1 Oh(x) -yD~_ 10h(y)l 

< Sz"e-Z2/21xe X~Dt 1 -~h ( z+x) -Ye -Y~Dz- l -mh( z+y) ld z  
r n = 0  0 

+ f l  ~ zl- 1 e-~2/2 Ixe . . . .  ye-rZl dz. (30) 
0 

Now, from the mean value theorem, 

Ixe- ~ -  ye-Y~ I < ( x -  y)e-Y~(1 + xz) 
< ( x -  y) e-XZ/2(1 + xz), 

and so, from (20), (25) and (26), for 0_< m_<l-1,  
oo 

z~e-~/2lxe  . . . .  ye Y~I IDl - l -mh(z+x) ldz  
0 

< 2F(c~+ 1) 
= F(c~ + m + 1) H o ~ z~e-=~/2-=/2(x-y)(1 + xz)(1 -I-(Z"l-x)L-l+c~+m)dZ 

, ( 1 ,  x _ < l  
< K 1 H ( x - y ) ~  - (31) ~ X L - l + a - 1 ,  x > l ,  
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for a universal constant K' 1 =K'~(L, l, m, o O. From (21), a similar estimate holds 
easily for the term involving h. It thus remains to estimate 

z"e-~/2ye-r~]Dt-  1-m h(z + x)--D1- 1-,,, h(z +Y)I dz, 
0 

O<-m<_l-1. (32) 

For 1 < m < I -  1, using (20), 

]O,_ h ( z + x ) - D t _  1 ~h(z+y)l <2(x-y)r(~ 
1-,. = F(c~ +m) 

H {l +(z + x)r - l -  a +"+~}, 

and hence, using (25) and (26), (32) is bounded by 

, f l ,  x__<l (33) 
K 2 H ( x - Y ) I x L  I+~- l, x > l ,  

for K'2=K'2(L,I,m, oO, a n d  it r e m a i n s  to t rea t  the case m = O .  Here ,  f rom (19), 
(25) and (26), 

c o  

j ye -rz zZ/2[Dl_ 1 h ( z + x ) - D l _  1 h(z+y)ldz  
0 

co  

< H  ~ ye-Y~-~2/2(x- y)~{1 + 2(x + z) r-t} dz 
0 

, (1, 0 < x < l  
K 3 H x  (x - y)~ ~x L_ l-  1 (34) 

, x > l ,  

for K;  = K;  (L, l, ct). x 
Hence, using (31), (33) and (34), we have, for 0<~-<y__<x<l ,  

K~ H (x  (x - y)~ + (x - y)} / ~ . . . .  
e 1 (x, y) = - ~ z a  4 n ;  (35) 

( x -  yf' 
X 

for O < ~ - < y < x  and x > l ,  we have 

el(X, y) <K,s H {xL_ Z(x_ y)~ + (x _ y) xL-t+~- 1} 
= ( x  - y)~' x L -  l 

= K ; H { 1  + (1 Y \l-~'l ' - x )  ~ < 2 K s H .  (36) 

Inequalities (29), (35) and (36) complete the estimate of ~ .  
The estimate of e= is rather similar. For Ix-yl_-<�89 proceed in a manner 

X 
similar to that used for el, yielding, for 0 < ~ < y < x ,  

]O,_ ~ Oh(x)--Ol_ ~ Oh(y)[ 

< K,6tl f ( x -  - y)~, O<-x < 1 
[(x--y)xL-I+~-Z +(x--y)~xr-I-1,  X>I ,  



Asymptotic Expansions in the Central Limit Theorem 301 

and hence 

< ' <�89 (37) az(X,y)=2K6H,  Ix-y]  

For Ix-y l>�89 and 0__<ly[<lxl<l, make estimates in a similar manner, 
replacing e y~ by e ~ instead of e -~/2. All the integrals converge because of the 
factor e -~2/2, yielding easily, in this range 

IDt ~ Oh(x)-D~ x Oh(y ) l=K,TH((x -y )+(x-y )~) ,  

from which 

e2(x,y)<2K'TH, O~lYl<lx l~ l .  

Finally, for Ix-yl~�89 and Ixl> 1, use the estimates of Lemma 3 directly: 

and 

and so 

IDt_ 10h(x)l 

Ix_Yl~Kl+lxlL-~-~+lYlL-~-13 ~ K ~ g  
IxI L + ~  I - -  1 

Ixplx[ L-,-~ - K ' s H  , 

1, lyl_<_l 
IDz-1Oh(y)l <K9 H l+rx l  L+~-z-~ 

Ix--yI=[I+IxIL-~-~+IYlL-~-~J = IXI=[I+IxIC_z+I], lYI> 1, 

(38) 

~(x ,y )~K'~oH,  I x - y l ~ l l x l ~ 2  ~. (39) 

The second part of the lemma follows from (37), (38) and (39). [] 

Lemma 5. Under the conditions of Lemma 3, Oh is l times differentiable, and 
satisfies 

sup {ID s Oh(x)l/[1 + IxlL+~-s3} __< g~(g,  1, s, ~) H, 0 < s <= l; (40) 
x 

furthermore, 

(D t 0 h; L - l, c~) < K ~  (L, l, 1 + ~, cQ H. (41) 

The constants K4(L, l, s, cr are universal. 

Proof The inequalities in (40) for 0_<s_<l-1 are already implied by Lemma 3. 
Then, since 

DO h(x) = xO h(x) + h(x), 

it follows, differentiating l - 1  times, that 

D~ Oh(x)= xD~_ 10h(x)+(l  - 1) D~_ 20h(x)+Dl_ ~ h(x). (42) 

Inequality (40) for s = 1 now follows from (20) and Lemma 3. For  the last part, 
(42) implies that 
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ID, Oh(x) - D, 0 h(y)l/[Jx - yJ=(1 + [xl g-* + lyl L -  z) l 

< {]xDi- 1 Oh(x) - yDl_ 1 0h(y)l + (1-1)ID z_ 2 Oh(x) - Dr_ 2 Oh(y)] 

+ LD, 1 h ( x ) -  01_ 1 h(y)l}/Ulx - y[=(1 + Ix] L-1 + [yl L- l)3. (43) 

The first term in (43) is estimated using Lemma 4, and the last term by (19). 
For the second, 

]Dz_ 20h(x)-Dl_ 20h(y)L < Ix-y]  [DI_ I Oh(u)], 

for some u between x and y, and Lemma 3 now completes the argument. [] 

Lemma 6. Let g be any ( q - l )  times differentiable function such that 
G l = s  cO<oo. Then, for any t > l  and vj>-_l, l < j < t ,  such that 

~ vj=q -1 ,  
j = l  

c~ (D~j+lO)g;r,~ <G, K4(r+qj, qa, qj+c~,cO, (44) 
j = l  

where q j= 1 + ~ v~. I f  g is q times differentiable and G2= ~(Dq g; r +  1, c0< 0% 
then ~ - i  

t ) S ~(D~j+lO)g;r ,e  
\ j =  1 

t - 1  

<G2K2(vt+r+3,v~+2, ct) [ I  K4(r+qj+2,q~+t,qj+l+c~,~ �9 (45) 
j = l  

Proof. We prove (44) by induction on t. Note first that since, for the Hermite 
polynomials, we have 

OHm 

any polynomial re of degree m 

m - 1 .  Hence, if deg(~z)<2t+ 
j = l  

t 

j = l  

For t = l ,  we have v , = q - 1 .  

={0  m = 0  

- H m _  1 re>l,  

is converted by 0 to a polynomial of degree 

Vj~ 

O){g+re} = ILl (Dr,+* O)g. 
j = l  

Take 

q--1  

re(x)=- ~ xJDjg(O)/j!, (46) 
j = O  

and apply Lemma 5 to (g+n) with l=q: it follows that D~l+lOg exists, and 
that 

~(D,I+  1 0g; r, e) _-<K4(r + q, q, q+  c~, c 0 G 1. 

This establishes (44) for t =  1, and for any g and q such that g is (q -1)  times 
differentiable. Now assume that (44) is true for products with up to t - 1  
factors, and for any g and q such that g is ( q - l )  times differentiable. We 
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analyse 5 ~ (Dvj+lO)g;r,a as 50 (D~j+t0)(Dvl+10(g+~));r,~ , w h e r e z  
\j= 2 

is defined as in (46) and, as above, from Lemma 5, 

Y(Dq_~_ 1 {D~I+ 1 0(g+ ~)} ; r, ~)< G 1Ka(r +ql, ql, q~ +cq c~). 

By the induction hypothesis, this implies that 

50 1 0 ) g ; r , ~  
j = l  

<GI K4(r +qt, ql, ql +c~, c~) (I  K~(r +qj, q), qj+:t, ct) 
j=2 

as required. 
To establish (45), first use (44) with q + l  for q and r + l  for r, to deduce 

that 
I--1 

50 (D~+I I~ (D~j +1 O) g; r + 1, c~) 
j = l  

t--1 

~G2 I~ K~(r +qj+ 2, qj+ l, qj+ l +ct, c~). 
j = l  

t - - i  

Applying (27) of Lemma 4 to ]7I (D~j+~0)g+~* with i=2,  l = v t + 2  and 
L - 1 = r + 1, where J= ~ 

vt+l ( t - t  O)g}(O)/j!, 
7~* (x)= - j~_o XS D j l E  (D v,+ l 

it follows that 

50 D~j+lO)g;r,c~ 
j = l  t--1 

<G2K2(vt+r + 3 , vt+2 , c~) t~ K4(r +q~+ 2, qa+ 1, q~+ 1 +c~, a), 
j = l  

as required. D" 
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