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Summary. In this paper we prove that there exists a unique solution of the 
Skorohod equation for a domain in R d with a reflecting boundary condition. 
We remove the admissibility condition of the domain which is assumed in 
the work 1-4] of Lions and Sznitman. We first consider a deterministic case 
and then discuss a stochastic case. 

Introduction 

In this paper we investigate multi-dimensional Skorohod stochastic differential 
equations (abbreviated: SDE's) on a domain D with a reflecting boundary con- 
dition. If w is a given process in R d, our problem is to find a solution ~ of the 
equation ~(t)=w(t)+4(t) satisfying certain conditions (see (1.2) and (1.3) of w 1) 
so that ~ is a reflecting process o n / 5  (the precise definition of the equation will 
be given in w t). This equation is called a multi-dimensional Skorohod equation 
on the analogy of the one-dimensional case first discussed by Skorohod [-9] 
(see also [3, 5]). First we consider a deterministic version of the Skorohod 
equation. This kind of problem has been discussed by Tanaka [-10] when D is 
a convex domain and then by Lions and Sznitman [4] when D is a general 
domain satisfying Condition (A) and Condition (B) (see w together with the 
admissibility condition. Here the admissibility means roughly that D can be 
approximated in some sense by smooth domains. One of the purposes of this 
paper is to prove the existence and uniqueness of solutions of the Skorohod 
equation ~ = w +  ~b only assuming Conditions (A) and (B) (Theorem 4.1). We do 
not need the admissibility condition. To prove this result we employ the 
method of Tanaka [10]; more precisely, we approximate w by step functions 
{w,,}, consider the problem ~m =wm + q~,, which is easy to solve and then take a 
limit in m to obtain a solution of ~--w + qS. 

After completing this work the author came to know the recent work by 
Frankowska [2] in which a deterministic Skorohod problem was discussed by 
making use of techniques from viability theory; especially Theorem 3.4 of [2] 
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seems to contain our Theorem 4.1 as a special case. However, our method of 
proving Theorem 4.1 is elementary and quite different from Frankowska's, 
involving somewhat detailed estimates of the total variation Iq~lt and also of 
the modulus of continuity of ~ in terms of the modulus of continuity of w. 
These estimates are also used in discussion of our second problem, the Skoro- 
hod SDE. 

We also consider the Skorohod SDE. Let o-: /5 -~R~|  e and b : / 5 ~ R  ~ be 
bounded and Lipschitz continuous. Assuming that D satisfies Conditions (A) 
and (B) we consider the Skorohod SDE 

dX(t) = a(X(t)) dB(t) + b(X(t)) dt + dq~(t), 

which gives rise to a reflecting diffusion process, where B(t) is a standard d- 
dimensional Brownian motion. Lions and Sznitman [4] proved the existence 
and uniqueness of solutions of the above SDE assuming the admissibility 
condition plus another additional condition (Condition (C) of w 1). Our result is 
that we can remove both of these conditions to have a unique strong solution 
of the above SDE. 

In w we introduce some conditions on D and give the definition of the 
Skorohod equation. Several remarks related to the conditions and the main 
results are also stated in this section. In w 2 we give some lemmas which will be 
used in subsequent sections, and in w we estimate the total variation [~bm[ t. 
Solvability of the Skorohod equation is treated in w (deterministic case) and 
in w 5 (stochastic case). 

w 1. Formulation of the Problem and the Results 

Let D be a domain in R d and define the set ~ of inward normal unit vectors 
at x~3D by 

r > 0  

Y~,r={neR~: Inl=l ,  B(x - rn ,  r )~O=~},  

where B(z,r)={y~Re: lY-z l<r} ,  z~R a, r>O. In general, it can happen that 
= ~ .  Following Lions and Sznitman [4], we introduce two conditions on the 
domain D. 

Condition (A) (uniform exterior sphere condition). There exists a constant r 0 >0  
such that 

~=~AF~,ro:#~ for any x ~ D .  

Condition (B). There exist constants 6 > 0  and fl~[1, oo) with the following 
property: for any x~OD there exists a unit vector I x such that 

( l  x, n) > 1/fi for any n~ U Jv~. 
y ~ B ( x ,  6) c~ OD 

In what follows ( ' , . )  denotes the usual inner product in R e. 
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Remark 1.1. It is easy to see that the following two statements for a unit vector 
n are equivalent (cf. [--4], Remark 1.2). 

(i) n e.Ar~, r 

(ii) ( y - x , n ) + b l y - x l 2 > - O  for any y~/~. 

Remark 1.2. D satisfies Condition (B) if it satisfies the following condition. 

Condition (B') (uniform interior cone condition). There exist 8 > 0  and eel,0,1) 
with the following property: for any xeOD there exists a unit vector l~ such 
that 

C(y, lx,~)c~B(x, 3)~/5 , Vy~B(x,b)c~SD, 

where C(y, l~, ~) is the convex cone with vertex y, defined by 

C(y, lx,~)={zeRd: ( z - y ,  lx)>c~lz-yl}. 

Remark 1.3. Under Condition (A), there exists a unique fiE/5 such that I x - 2  I 
=dist(x,/5) for any xeR  d with dist(x,/5)<r0, and (~-x)/l~-xl~J4 if x6/5. The 
notation s is used in this sense throughout the paper (there will be no 
confusion with the closure/5). 

The deterministic problem is stated as follows, Denote by W(R d) (resp. 
W(/))) the space of continuous paths in R e (resp. 15) and consider an equation 

(1 .1 )  ~ ( t )  = w(t) + ~(0, 

where w~W(R d) is given and satisfies w(O)~/5; a solution of (1.1) is a pair of d 
and qb which should be found under the following two conditions (we often call 

a solution of (1.1)). 

(1.2) r ~W(/5). 

(1.3) (b is an Rd-valued continuous function with bounded variation on each 
finite interval satisfying 4)(0)= 0 and 

where 

t 

c~ (t)= Sn(s) d l~b ls, 
0 

-i 
0 

n(s)e>V~(s ) if ~(s)eOD, 

IqSl,=the total variation of q5 on [-0,/] 

=sup ~ I~b(6)-q~(tk_l)l, 
k = l  

the supremum being taken over all partitions 0 = t o < t  I < ... < tn=t .  
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Remark l.4. For weD(R+-- ,R d) with w(0)e/5, the problem (1.1) can be also 
posed if we replace W(.)  in the additional conditions after (1.1) by D(R+--~-), 
where D(R+---,R d) (resp. D(R+--~/5)) is the space of right continuous paths in 

R d (resp. /)) with left-hand limits. For instance, when w is a right continuous 
step function with small jumps, a solution of (1.1) can be constructed as 
follows: let w(t)=w(tk) , t k < t < t k + l ,  k=O, 1,--', where O=t o < t  I<- - .  and lim tn 
= oo and assume that sup [W(tk)--W(t k_ 1)[ <to. Put ~o~ 

k>=l 

= ~W(t), 0 = t < t l ,  

~(t) (~(TS_1)+W(tk)_W(tk_l) ' tk<=t<tk+ 1 (k>l) ,  

0, 0 < t <  h,  

r = O(t~_ 1) + ~(t~_ 1) + w(tk) -w(t~_ 1) 

[ - - ~ ( t k _ l ) - - W ( t k ) + W ( t k _ l )  , tk<____t<tk+ 1 ( k >  1). 

Then if t ,< t<tn+ 1, we have 

IqSI, = ~ I{~(tk_ 1) "-~ W(tk) -- W(tk-- 1)}  - -  ~(tk-- 1) - -  W(tk) JV w(t e_ 1)1" 
k = l  

Since ~ (tk) ~ D implies ~b (tk) -- 0 (tk --) = 0, we have 

Iq~l~-- S ~o~(~(s))dl01. 
(o, tl 

where O(tk--)=limqS(t ). Therefore by Remark 1.3, we have 
t~tk 

4'(t)= j" n(s)dlOl~, 
(o, t] 

and (3, 4) is a solution of (1.1) for w. 
One of the purposes of this paper is to prove the following theorem. 

Theorem 4.1. I f  the domain D satisfies Conditions (A) and (B), then there exists 
a unique solution of  (1.1) for any given weW(R d) with w(O)~D. 

The above theorem was proved by Lions and Sznitman [4] under the 
additional condition that D is admissible. We must also remark that Theorem 
3.4 of the recent paper [2] by Frankowska contains the above theorem as a 
special case as can be verified by careful checks of the assumptions of Theorem 
3.4 of [2]. Here we give a direct and elementary proof of the above theorem. 

Next given 
a: /)--,Ra |  a, b: /3--*R a, 

we consider a Skorohod SDE on a probability space (f2, ~ P): 

(1.4) dX  (t) = a ( X  (t)) dB(t) + b (X (t)) dt + d#(t), 

where the initial value X(0)~/) is assumed to be an ~oo-measurable random 
variable and B(t) is a d-dimensional ~-Brownian motion with B(0)=0. Here 
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{~} is a filtration such that 0% contains all P-negligible sets and ~ =  (~ o~+~. 
e;>0 

A solution (X(0,~b(t)) should be found under the following conditions (1.5)- 
(1.7). 

(1.5) X(t) is a D-valued ~-adap ted  continuous process. 

(1.6) q~(t) is an R<valued ~-adapted  continuous process with bounded varia- 
tion on each finite interval such that ~(0)= 0, 

4'(0 = j n(s) d I~ls, 
0 

I~1, = Y ~.(X(s)) d I~1~. 
0 

(1.7) n(s)~#X(s) if X(s)acgD. 

Another main result of this paper is the following theorem. 

Theorem 5.1. Let D be a domain satisfying Conditions (A), (B) and assume that 
a and b are bounded and Lipschitz continuous. Then there exists a unique strong 
solution of (1.4). 

The meaning of the existence of a unique strong solution is the same as in 
[3], p. 149. 

The above theorem was proved by Lions and Sznitman ([41, Theorem 3.1) 
under the admissibility condition and the following Condition (C). See also 
Menaldi [6], Menaldi and Robin [7] for related problems. 

Condition (C). There exists a function f in C2(R d) which is bounded together 
with its first and second partial derivatives such that ~7>0,  VxEOD, Vy~O, 
Vn~Xx 

( 1 . 8 )  ( y - x , n ) + l - ( V f ( x ) , n )  [y-x[2 >0. 
? 

We can prove that if a domain D satisfies Conditions (A) and (B), then D 
satisfies the following condition. 

Condition (C'). There exist positive numbers 6' and 7 such that for each 
Xo~OD we can find a function f in C2(R d) satisfying (1.8) for any 
x~B(x o, 6') ~ ~?D, y~B(x o, 6') c~ O and newark. 

The above condition means roughly that D satisfies (C) locally. Theorem 5.1 
asserts that this local condition (C'), which is automatically satisfied under (A) 
and (B), is enough to have the existence and uniqueness of solutions of (1.4). 

w 2. Lemmas 

In this section we prepare some lemmas which will be used in the following 
sections. The proof of the first lemma is found in [1], pp. 167-171. 
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Lemma 2.1 ([1]). (i) Let fffCl(R) and 0 =(0t)t=> o be a function in D(R+--~R) with 
bounded variation. Then we have 

(2.1) df  (Ot) = f'(Ot_) dO t + A f  (Ot) - f'(Ot_ ) A Or, 

where Af(Ot) = f(Ot) - f(O t_), A 0 t = Ot - 0 t_, 0 t_ = lira 0~. 
s$t 

(ii) Let g, h be functions in D(R+--*R a) with bounded variations. Then we 
have 

(2.2) (g(t), h(t)> - (g(0), h(0)) = 5 (g(s), dh(s)) 
(o, t] 

+ ~ (h ( s ) , dg ( s ) ) -  ~ (Ag(s) ,Ah(s)) .  
(0,t] s<t 

Lemma 2.2.1 Let 0~D(R+ ~R) be a non-decreasing function with 0(0)---0 and f 
be a non-negative Borel measurable function on R+. I f  

(2.3) f ( t ) < = K l + K  2 ~ f ( s ) d O ( s ) < ~  , t>=O 
(o,t) 

holds with some non-negative constants K 1 and K 2 ,  then we have 

(2.4) f ( t ) N K 1  exp {K2 0(t)}, t___0. 

Proof It is enough to show (2.4) in the case Ka >0. By (2.3) we have 

K2f ( t )  
K I + K 2  ~ f(s)dO(s)  < K 2 ,  

t_~ O. 

(o, t) 

Integrating both sides with respect to dO over (0, t], we have 

K2f(u) 
(2.5) ~ dO(u)<=K 2 O(t), t>-O. 

(0,t] K I + K  2 ~ f (s)dO(s)  
(0,u) 

If we set 
F(x)=log(x /K O, x>0 ,  

Ot- -KI+K2  ~ f(s)dO(s), 
(0, t] 

then an application of (2.1) yields 

dF(O,) = F'(O ,_) dO, + A F(O u) - F'(O,_) A 0 u 

-- K2f(u)dO(u)  + l o g { l +  K2f-(u)A-O(u)- ; 
K I + K 2  ~ f(s)dO(s)  K t + K 2  ~ f (s )dO(s)J  

(0, u) (0, u) 

K2f (u)  AO(u) < Kz f (u)dO(u)  

K I + K  2 ~ f ( s ) d O ( s ) = K l + K 2  ~ f(s)dO(s) '  
(O,u) (0,u) 

1 When  ~ is continuous,  this is well-known as Gronwall 's  lemma;  notice that the interval of the 
integration (2.3) should be open in case ~ has jumps  
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because log(1 + x ) - x < O ,  x>O. Therefore we have 

log(O]K 0 = F(O,) 

<- ~ K2f(u)  d~(u)<K 2 ~(t), 
- ( o , q K l + K 2  ~ f(s)d~(s) 

(0, u) 

by (2.5), that is, Ot<K 1 exp{K 2 ~(t)}. Thus by (2.3) we have 

t > 0  

f ( t )<Ot<K ~ exp{Kz 0(t)}, t>0 ,  

completing the proof. 

Lemma2.3. Suppose D satisfies Condition (A). (i) Let w, w ' ~ D ( R + ~ R  a) and 
(4,(9), (~',(9') be solutions of the Skorohod equations 4 = w + ( 9  and 4'=w'+(9' ,  
respectively. Then we have 

(2.6) d4(t)-4'(t)lZ<lw(t)-w'(t)12 + 1- ~ t~(s)-4'(s)lZ d(i(gl~+J(9'ls) 
ro (o, t] 

+2 ~ (w(t)-w(s)-w'(t)+w'(s),d(9(s)-d(9'(s)}.  
(0, tl 

(ii) Let w, 4, (9 be as in (i). Then we have for 0 <-s <_ t, 

(2.7) 14 (t) - 4 (s)l 2 ~ I w(t )  - w(s)l 2 

1 + -  ~ I~(u)-~(s)12dl(gl.+2 ~ <w(t)-w(u),d(9(u)}. 
ro (s,~l (s, t] 

Remark2.1. In the case of a convex domain D the inequalities (2.6) and (2.7) 
are reduced, respectively, to the inequalities in (i) and (ii) of Lemma 2.2 of [10]. 

Proof of Lemma 2.3. The proof is similar to that of Lemma 2.2 of [10]. (i) By 
(2.2) we have 

i 4 ( t ) -  4'(t)i 2 = rw( t ) -  w'(t)r 2 + 1 ( 9 ( 0 -  (9'(t)l 2 + 2 ( w ( t ) -  w'(t), (9(t)-  (9'(0) 

- I w ( t ) -  w'(t)l 2 + 2 S ((9(s) - (9'(s), d(9(s) -d(9'(s)) 
(o, tl 

- ~ IA (9 (s) - A (9'(s)12 + 2 {w( t )  - w'(t), (9 ( t ) -  (9'(t)}, 
s<~t 

(w(t)-w'(t), (9(t)-(9'(t)>= ~ (w(t)-w'(t),d(9(s)-d(9'(s)) 
(o, t] 

= ~ (w(t)-w(s)-w'(t)+w'(s),d(9(s)-d(9'(s)) 
(o, t] 

+ ~ <w(s)-w'(s),d(9(s)-d(9'(s)}. 
(0, t] 
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Therefore 

(2.8) [~(t)-  ~'(t)l 2 __< Iw(t) - w'(t)l 2 + 2 ~ (~(s) - ~'(s), d~b(s) -d~b'(s)) 
(0, t] 

+ 2  ~ (w(t)-w(s)-w'(t)+w'(s),dO(s)-d(o'(s)). 
(O,t] 

By Condi t ion (A), (1.3) and Remark  1.1, we have 

< 1  ~ i~(s)_~,(s)lZd(14~l,§162 ) [" ('~(s)-~'(s)'db(s)-d4)'(s))=2ro <o,~} 
(o , t ]  

and hence we obtain (2.6). 
(ii) By a method  similar to (i), we have 

re(t)-  r = Iw(t)-  w(s)l ~ + [ r 1 6 2  2 (w(t)-  w(s), r  r 

= l w ( t ) - w ( s ) t  2 + 1 4 ' ( 0  - 4~(s)l 2 + 2 [. ( w ( t ) -  w(s), d~(u)). 
(s, t] 

Using (2.2), 

Iq~(t)-%b(s)[2=2 ~ (42(u)-4(s),ddp(u))- ~ IA~(u)[ 2 
(s, tl s < u < t  

<=2 [. (~)(u)-q~(s),dq)(u)), 
(s, t] 

[~(t)-~(s)12<=lw(t)-w(s)12+2 (. (c/)(u)-(o(s),d~)(u))+2 [. (w(t)-w(s),dq)(u)) 
(s, t] (s, t] 

----Iw(t) -- W(S)I 2 + 2 ~ (4~(U) --  qS(S), dqa(u)) 
(s, t] 

+ 2  ]" (w(u)-w(s),d4(u))+2 S (w(t)-w(u),d~)(u)) 
(s, t] (s, 0 

=fw(t)--w(s)I2+2 [, (~(u)-~(s),d4)(u))+2 (. (w(~)-w(u),d4(u)).  
(s, t] (s, t] 

By Condi t ion (A), (1.3) and Remark  1.1 we have 

[. <4(u)-~(s),d4)(u)> <=2@ ~ ~ I~(u)-d;(s)lZ dl~l. 
(s, t] (s, 0 

and hence we obtain (2.7). The proof  of L e m m a  2.3 is finished. 

w 3. Estimate of [~bmlt 

Let D be a domain  in R a (not necessarily bounded) satisfying Condit ions (A) 
and (B). For  w~W(R d) define wmeD(R+-+Rd), m >  1, by 

(3.1) w,,(t)=w(k2-'~), k2-m<=t<(k+l)2 - ' ,  k>=O 
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and consider the following Skorohod equation for win' 

(3.2) ~m(t)=wm(t)+dPm(t), t>O. 

For simplicity we assume that w is uniformly continuous in [0, oo) for the time 
being (this assumption is not essential since we shall consider (3.2) for 0_< t_< Z 
T being arbitrary but fixed). Since %, is a step function, a solution (~m, ~bm) of 
(3.2) can be constructed explicitly as follows provided that m is sufficiently 
large (see Remark 1.4). 

= ~w,~(0), 0__<t<2-% 

(3.3) ~m(t) (~m((k-1)2-~)+Awm(k2-m) ,  k2 -~<=t<(k+l )  2-m, 

0, 0__t<2 -m, 

(3.4) ~bm(t)= ~m((k-1)2-m)+~m((k-1)2-m)-}-Zlwm(k2 -m) 
k - m  - ~ , , ( ( k - 1 ) 2 - m ) - A w m (  2 ), k 2 - " ~ < t < ( k + l ) 2  -~. 

Here Awm(t )=w~( t ) -w,~( t - ) ,  Wm(t-)=limwm(s).  Notice that ]Awm(t)l<r o for 
s ' f t  

sufficiently large m because of the uniform continuity of w and hence 

~m((k - 1) 2 -'~) + A w,, (k 2-")  

is uniquely defined (see Remark 1.3). 

Remark 3.1. Under Condition (A), it is easy to see that for large m (3.4) implies 

A ]q~mlt = ]AOm(t)] <= [Awm(t)]" 

Throughout the paper we use the following notation: for w,q~eD(R+-~R a) 
and s, t with 0 < s < t we set 

A~,~(w)= sup lw(t2)-w(tl)[,  
s<=t~ <t~N~ 

As, t,h(W)=SUp{[w(t2)--W(tO]: S<t  1 < t  2 <t,  ]t 2 --tl] <h}, 

]lw[It= sup ]w(u)l, 
O<_u<_t 

i s I~ t=lr162 (the total variation of r on (s,t]). 

The purpose of this section is to prove the following proposition which 
plays an essential role in the proof of Theorem 4.1 in w 

Proposition 3.1. Let T > 0 be any f ixed time. I f  the domain D satisfies Conditions 
(A) and (B), then for sufficiently large m we have 

( 3 . 5 )  I(~,.l~<KAs_2_~,(w), O < s < t < T ,  

where K is a constant depending only on the constants to, fi, 6 in Conditions (A), 
(B), T, []wllr and the modulus of uniform continuity of w on [0, T]. 
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Before prov ing  the proposi t ion,  we prepare  some l emmas  under  the same 
assumpt ion  as in Propos i t ion  3.1. Define 

r~,o = i n f { t  >=0: ~,~(t)~3D}, 

tm , .= in f { t>  T~n,n 1: ]~m(t)-~m(Tm,n-1)[>=6/2}, 

Tm,~=inf{t >=t~,.: ~,~(t)eSD}. 

Not ice  that  Tin, n_ 1 < t .... but  it can happen  that  t,.,~ = Tin,.. 

L e m m a  3.1. For sufficiently large m, we have 

(3.6) [4)m[s~<fi{A,,,(~m)+As, t(wm)}, s, t e [Tm, ._~ , t~ , . ]w( t  . . . .  Tin,.). 

Proof  If  T,.,._ l < s < t < t  . . . .  then by Condi t ion  (B) we have 

(1, ~ (  t) - ~,.(s) ) -- (1, w~( t) - w.,(s) ) + (1, 4)re(t) -- d) ,.(s) ) 

>_ ( t, w , . ( t ) -  w,.(s) ) +[3 - ~ I ~ l~ ,  

where l=ir . . . . .  ~) and m is t aken  to be sufficiently large so that  I~m(t) 
- ~ , . ( r . , , n _ l ) [ < 6  holds for Tin, ~ l < t < G ,  .. Therefore  

[r t(w~)}, r~.,._~ <s<t<=t. , , . .  

Since q~m is constant  in the interval  (t ..... T,.,.), we have 

IOmlT<fl{A~,~(GJ+A~,,(wm)}, s, t~[Tm,.-1, tm, n]U(t . . . .  T~,~). 

L e m m a  3.2. Let T > 0 be any f ixed  time. Then for sufficiently large m we have 

(3.7) A~,,(~,~)<l/2{(l+a-~)A~,~(w,.)+zl4.~l~}.exp(~[O,.l~), O < s < t < T ,  

where 7 = (r0)-1 and e is an arbitrary positive number. 

Proof. By (2.7) we have 

]era(t)-  ~m(S)l 2 ~ IWm(t) - -  w,.(s)] 2 + Y ~ I~,~(u)-- ~,.(s)] 2 d 14ml. 
(s, t] 

+ 2  ~ (w~(t)-wm(u),ddPm(U)) 
(s, t] 

<=A~,,(w~)+2A~,t(wm) 14=1~+7 S [r 2 d 14~1. 
(s, t] 

=A~,t(wm)+ 2A~,dw.,)lq~l~ + Y S Ir z d I~b~l. 
(s, t) 

+ y IG~(t) - G.(s)l 2 A 14~&. 

Since A I O~l,<lAw,~(t)l < r o / 2 = ( 2 7 ) - ~ ,  0 < t <  T, for sufficiently large m by Re- 
mark  3.1, 

ICe(t) - ~m(s)l 2 < 2 A ~,,(w.,) + 4 As,t(w,. ) I q~,. 17 
+ 2 y  ~ [~,~(u)-G.(s)12dl~.,k,  

(s, t) 
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and hence, using L e m m a  2.2, we have 

(3.8) I~m(t)-~m(S)12<2{A~(wm)+2As, t(w,~)l~l~}.exp(2714ml~). 

Therefore for any e > 0, 

I r - ~,. (s)l 2 < 2 {(1 + e-  2) A~,,(w~) + e2 (1q5.,1~)2} �9 exp(2 714~m I~), 

that is, 

Ig,n(t)-g~(s)l<l/2{(l+e-1)As,,(w,.)+elOml~}.exp(yl4,.l~), 0 < s < t < T .  

The p roof  is finished. 

L e m m a  3.3. Let T > 0 be any f ixed time. Then, for sufficiently large m we have 

(3.9) A~,t(~)NK'As,  t(w,.), s , t~[Tm, ._l , tm, .Ju( t  . . . .  Tin, n) , 

provided that T,.,. N 7;, where K' is a constant depending only on the constants 
ro, fl,6 in Conditions (A), (B), T and IIW/IT- 
Proof (3.7) combined with (3.6) implies 

A,,t(~m) =1 /2  {(1 + e - l + f l e )  As,~(wm)+flEA~,~(~)} 

"exp[flT{As,t(~.,)+As, t(w.~)}], s, te[Tm,._l,tm, J .  

If we put  r/=As, t (~) ,  then 

(3.10) r/< 1/2 {(1 + e -~ + fl e) A s,, (W,n) + fie ~/}" exp [fi 7 { t /+ As,, (Wm)} ], 

s, te[T~,n_ l,t~,.].  

Since 0 < r / < 2 6  for s, te[Tm,._~,t,.,.], we have 

q < ] / 2  {(1-4-/3 -1 +f le )  As, t(Wm)-}-flCl']}, exp {2fl 7(6 + Ilwll r)}. 

If we take e as 0<e<( l / / 2 f l )  -1 exp { -2 f i~ (c5+  Ilwllr)}, 

t l< l f } ( l  +e -  ~ + fle)As,t(w.,) 'exp{2fiT(6+ Ilwllz)), 
1 - 1/2 fie. exp {2 fl 7 (5 + ]l w IIr)} 

and hence 

(3.11) 

where 

As,t(~m)~K~As, t(Wm), s, te[Tm, n_l,tm,n], 

1~(1  + e -  1 + fie)- exp {2 fl7(5 + I]wll r)} 

K s -  1 - V ~ f l e - e x p  {2fi7(c~ + rlwll r)} 

If tin,.< Tin, ~, by the definitions of t . . . .  T,.,., we have 

As, t(~m)=As, t(Wm), s t e [ t . , . ,  T m .). 
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Therefore, 

and hence 

where 

As,,(r <_ A~,,~,.(r + A, . . . .  ,(r 

< K~A~,tm,.(w,.) + At .... t(Wm) 
<(K~+I)A~,t(W,,,), Tm, ._ l~s<tm, .<t<rm, . ,  

As, t(~-,.)<K'A~,,(Wm), s , t~[T,~, .-1, t , . , .]u(t  . . . .  Tin,n), 

K ' = i n f [ K ~ +  1: 0<~ <(~/2]3) -1 exp{ - 2 f i 7 ( 6 +  IIw110}3. 

The proof of Lemma 3.3 is finished. 
Now we are going to prove Proposition 3.1. (3.9) combined 

implies 
I~bml~<~(K'+l)As,t(w,.), s,t~[T~n.n_f;tm,.]W(tm, n, Tm.n), 

and hence 

(3.12) 14r. I~<=K" LI~,~(W,~), s, te[T~,._~,T., ,J,  

where K " = f l ( K ' + I ) + I .  By (3.9) we have 

6/2 < [~m(t~,,) - Cm (T~,,_ 1)1 < K'A T ..... ~,t,~, ~(Wm), (3.13) 

and hence 

(3.14) 

Y. Saisho 

with (3.6) 

d _-</I T . . . . . .  ,~,.(wm), 

where A = 6/(2K'). Since w is continuous, there exist an integer m 0 > 1 and h > 0 
such that for any m > m0, 

AO, T,h(Wm)<Z~. 

Note that T, , . ,<T implies Tm,,-T,,,~_l>=h for m>=m o. In fact, if T,~.n 
- Tin, , -  1 < h, we have 

AT . . . .  1,tm,,~ (Wm) ~ 'dT  . . . . . .  Tm, n (Wm) ~ Ll o, T,h (wm) < /l' 

which contradicts (3.14). Therefore if m>=m o, Tin,,> T for n>  T/h. By (3.12), 

I~,,l~<(T/h+l)K"As,~(wm)<KAs_2-m,~(w), O<s<t<T ,  

where K = (T/h + 1)K". The proof of Proposition 3.1 is finished. 

w 4. Solvability of the Deterministic Problem 

In this section we prove the following theorem. 

Theorem4.1. Suppose that a domain D in R e satisfies Conditions (A) and (B). 
Then for any w~W(R a) with w(O)~b there exists a unique solution ~(t, w) of the 
equation (1.1), and ~(t, w) is continuous in (t, w). 



Stochastic Differential Equations with Reflecting Boundary 467 

Proof The uniqueness was proved in Theorem 1.1 of [4], under  Condi t ion (A) 
only. In fact, the uniqueness follows immediate ly  from (2.6). 

We prove the existence. Let  T > 0  be any constant.  In what follows m is 
assumed to be so large that  (3.5) holds. First  we notice that  there exists a 
constant  C, depending only on the constants  r 0, fl, ~ in Condit ions (A), (B), 
T, IlWllr and the modulus  of uniform cont inui ty  of w on [0, T],  such that 

](~,,It<C, O<t<_T; 

in fact, it is enough to take C=KAo, r(w ) where K is the constant  in (3.5). For  
m < n and 0 _< t_< T we see that  

I w . . ( 0 -  w.(t)l _-< d o,,, 2 re(w), 

(Wm(O- wm(s)- w,(t) + w,(s),dOm(s)-d~n(s)} <4 C Ao,t,2_m(w ). 
(o,t] 

Then by (2.6), setting 7 = fro)-1, we have 

I~ ( t )  - ~,(t)l 2 < ]w,,(t) - w,(t)] 2 + 7 S I~m(s) -- ~n(S)l 2 d(10,~ls + 14.1~) 
(o,t] 

+ 2  ~ (wm(t)-wm(s)-w.(t)+w.(s),dr 
(o, t] 

< A  z = o,,,2-~(w)+7 ~ I~,,(s)-r247 
(o, t) 

+ ~ I r  ~.(t)[ 2 A(14m I~ + Iq~.l,) + 8 CAo, . 2- ~(w). 

Since Remark  3.1 implies 

A(lOmlt+ldp,,lt)<ro/2=(27) ~, O<t<<_T 

for sufficiently large m and n, we have 

I~,.(t) - r 2 < 2  Ao2,,, 2-.-(w) + 16 CAo,~, 2 re(W) 

+ 2 7  ~ [~m(S)-~.(s)lZ d(l~bml~+l~b.[s) . 
(o,t) 

Hence by L e m m a  2.2, we have 

] r - ~, (t)] 2 < 2  {A o,,, 2 -re(W) § 8 C} A o,t, 2-  re(w)" exp {2 y( l~mlt  § ]qbnlt) } 

< 2 {Ao,~,2-~(w)+ 8 C} Ao,,,z-~(w)'exp(4 C 7), 

which tends to 0 as m-~ oo. Therefore  ~ and qS,, converge uniformly on [0, T]  
as m--+ oo. We denote  the limits by ~ and 0 respectively. Then  it follows 
immediately from Proposi t ion  3.1 that ~ and q5 are cont inuous in t. Therefore  
all we have to show is the following: 

(4.1) I~1~ = j" ~oD(g(s))dl4)ls, 
(0, tl 

(4.2) 0 ( t ) =  5 n(s)dl4)ls, n(s)e~(~) ,  ~(s)e~D. 
(o, tl 



468 Y. Saisho 

By R e m a r k  1.1 and (1.3), 

1 
(4.3) j <rl(s)-~,(s),d~(s)5 +~tS-~r ~ j [rl(S)-~.(s)12 dl4),l~>=O, 

( o , t ]  o ( o , t ]  

for any t/~.W(/)), 0< t_<T.  Put  

~ =  j <~(s)-~.(s),clr 
(0, tl 

12-- .[ Irl(s)-~,(s)ledl4J~. 
(0 ,  t l  

We now prove  the following 1 ~ and  2 ~ 

1 ~ l i m l l =  ~ <rl(s)-~(s),d4(s)>. 
n ~ c o  (O,t]  

Proof. We write 

I1= j <~(~),dl),(s)>+ ~ <~(s)-~,,(s),dr 
(0, t] (0, t] 

=Ii+lT, 

where ~(s)=rt(s)-~(s). Then  t 1' is domina ted  in modu lus  by CIl~-~.ll~, which 
tends to 0 as n -*oo .  To  handle  I[ let 0 = t 0 < t  l < . . . < t ~ = t  be an equi- 
par t i t ion (tk--tk_l=t/m) of [0, tJ and  set ( " ( s )= ( ( tk )  for tk<sNtk§ k 
=0,  1, ...,m--1. For  any fixed e > 0  we take m so that  ] ] ( - ~ ] ] t < e  holds. Then  

I j <C(s)-~m(s),dq),(s)>l<Cllr 
(o,t] 

and similarly 

I J <~(s)-~m(s),dO(s)>l<=Ce 
(o, tl 

because Iq~l~< l im 14,1~. Therefore  we have 
n ~ o o  

I I i -  J <~(s),dO(s)>l 
(o ,  t] 

<1 [, <~(s)-~m(s),d@,(s))[+] ~. <~(s)-~(s),d~(s)>l 
(0 ,  t] (0 ,  tl  

m -  1 m -  1 - -  ( / ) ( t k ) }  
+ ~, [(tk){~b,(tk+i)--~(tk)}-- ~ ~(tk){q~(tk+l) 

k=O k=O 

--<_2 C~+o(1 ) ,  n-+ c~, 

p rov ing  that  lira 11 = l im 1' 1 = ~ (~(s),d~(s)>. 
n ~  ov n ~  oo (0 ,  t] 

Let da, be any weak limit on [0, T]  of  d l~b,I, as n--+ov via some 
subsequence n I < n 2 < .... 

2 ~ l im I 2 =  ~ Irl(s)-~(s)[2das if t is a point  of cont inui ty  for a, ,  where the 
(o ,  tl  

limit is t aken  as n--, oo via n 1 < n 2 < - - . .  



Stochastic Differential Equat ions  with Reflecting Boundary  469 

Proof We have 

I]' I~(s)-4.(s)l~-dl4).ls - f. Irl(s)-g(s)12 dasl 
( 0, t] ( 0, tJ 

<[ ~ I~l(s)-~.(s)12 dl4>.l~ - ~. I~l(S)-~(s)l~ dl4>.l,I 
(0, tJ (0, t] 

+1 f I~(s)-g(s)12 dl4>.l~ - [. Io(s)-g(s)t2 da, l. 
(0, tl (0, q 

If t is a poin t  of cont inui ty  for a , ,  the second te rm tends to 0 as n ~  oo via 
n, <n z < . . . .  I f  we put  ~ , ( s )=*/ (s ) -{ , ( s ) ,  then the first t e rm is domina ted  by 

sup I{lr162 - C, 
O~s<=t 

which tends to 0 as n-+ oo. Thus  the p roof  of 2 ~ is finished. 
N o w  we are going to complete the p roo f  of  the theorem by mak ing  use of a 

me thod  similar to that  used in the p roof  of T h e o r e m  1.1 of  Lions and 
Szni tman [4]. F r o m  [4>[~___< lim [qS[~ and the definit ion of the measure  da~, we 
have .~ m 

(4.4) dl4>l <=d% 

and hence there is an Re-valued bounded  measurab le  funct ion h s such that  

(4.5) d4>(s) = h~ da s. 

M a k i n g  n tend to ~ in (4.3) and then using 1 ~ 2 ~ and (4.5), we have 

1 
Iq(s)-d_(s)12das~O, 0~<t_< T, (4.6) (o,S t2 (q ( s ) -~ ( s ) , h , )  da, §  ( , o 

or equivalent ly 

1 
(4.7) (tl(s) - ~(s), hs) + ~ I t/(s) - ~(s)l 2 > 0, 

Define a cont inuous  funct ion Z (0<)~<1)  on R d by  

das-a.e. 

Since 

we have 

10 on a compact  set included in D, 
Z = on R e \ D .  

15 z(g(s))dl4>.[s- ~ Z(g.(s))dl4>.lsl 
(o, t] (o, t] 

< sup [Z(~(s))-Z(~,,(s))l" C--,O, 
O<_s<~t 

n - +  oO~ 

O = l i m  5 )~({.(s))dl4>.ls = l i r a  ~ Z(g(s))dl4)nls 
(0, t] (0, t] 

= ~ z ( ~ ( s ) ) & , > o .  
(o, t] 
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Hence 
have (0, t] 

(4.8a) 

7,(~(s))dG=O. Letting X increase to the indicator function ]lo, we 

~o(~(s))dG =0,  
(o, t] 

or equivalently 

(4.8b) ~(s)~VD, da~-a.e. 

Thus ~(s)e~VD in (4.7). Therefore by Condition (A) and Remark 1.1 there exist 
O(s)>O and n ( s ) ~ ( s )  (if ~(s)e3D) such that hs=O(s)n(s ), das-a.e. Then (4.5) 
implies that d Iq~ls=lhsl dG=O(s)d  G and hence 

d d) (s) = h s d a s = 0 (s) n (s) d a s = n (s) d [ ~ I~, 

which is nothing but (4.2). Now (4.1) is also clear. (4.1) and (4.2) mean that ~ is 
a solution of (1.1). The continuity of ~ in (t,w) follows from Remark 4.1 below. 
The proof of Theorem 4.1 is finished. 

Theorem 4.2. I f  (4, ~) is the solution of  (1.1) for wEW(R d) with w(O)~D, for any 
finite T > O, we have 

[~bl~ <KA~,dw), O<=s<t<=T, 

where K is a constant depending only on the constants r o, fi, b in Conditions (A), 
(B), T, ][WHT and the modulus of  uniform continuity of  w on [0, T]. 

The proof is immediate from Proposition 3.1. 

Remark 4.1. Let (~, ~b) and (~', ~b') be the solutions of the Skorohod equations 
= w + ~b and ~' = w' + ~b', respectively. 

(i) By (2.6) and Gronwall's inequality, we immediately have 

I~ (t)-~'(t)Iz < {lw(t)-  w'(t)lz + 4(lr + lO'lt) l lw- w'll3 

- exp {(l~b I~ + 14; 13/to}, 0<t_< T. 

(ii) Similarly, (2.7) and an application of Gronwall's inequality yield 

[~(t)-~(s)12<{lw(t)-w(s)12+2lq)lTA~,Aw)} .exp(lq~lT/r0), O<s<t<T.  

(See also Lemma 1.1 of [4] for similar inequalities.) 
Finally, we assume that the domain D satisfies the following Condition (D) 

and study the Lipschitz continuity of the solution ~ of (1.1) in w with respect to 
the total variation in the w-space. 

Condition (D). Condition (A) is satisfied and there exist constants C1>0,  
C2e(0,ro) such that 

L~-Yl =<(1 + C1 e)Ix - y l  

holds for any x, y e R  d with ]X--Y~]NC 2, [y-~jl<=C2, where e = m a x { [ x - g ] , ] y  
-Yl}. 

Let w,w'eW(R d) with w(O),w'(O)~D and (~,~b), (~',~') be the unique so- 
lutions of the Skorohod equations ~ = w + ~b and ~'= w '+  ~b', respectively. Then 
we have the following proposition. 
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Proposition 4.1. Under Conditions (B) and (D), we have for each T > 0  

(4.9) t~(t)-~'(t)l<K{lw-w'l,+lw(O)-w'(O)l}, 0_<t<T,  

where K > 0  is a constant depending only on the constants CI, C2, ro, fl, (~ in 
Conditions (B) and (D), T,{do, r,h(W), 0 < h G T }  and {A0, T,h(W'), 0<h_<T} .  

Remark4.2 .  (i) We can take K = e x p ( 2  CC~) where C and Cz are the constants 
in Proposi t ion 3.1 and Condi t ion  (D), respectively. 

(ii) Any convex domain  satisfies Condi t ion (D) with C 1 = 0  and hence (4,9) 
holds with K = 1. 

(iii) In mos t  applicat ions w is supposed to be a Brownian path in which 
case [w[t= oo, but  (4.9) will be of some use if we consider the Skorohod  

t 

equat ion ~(t) = w(t) + ~ b(~(s)) ds + ~(t) with Lipschitz cont inuous  b. 
0 

Proof of Proposition 4.1. Define w~, ~,, and ~b,, by (3.1), (3.3) and (3.4) respec- 
tively and define also urn,/ ~ ,  and qS~ similarly. Then  by Condi t ion (D), 

j{m(k 2 -=)  - {m(k 2-=)]  

= [{~( (k  - 1) 2 - " )  + w , ~ ( k 2 -  In) - w ~ ( ( k  - 1) 2 -  In)} 

- { ~ ((k - 1) 2 -  In) + w~. (k 2 -  m) _ W~, ((k - -  1) 2 -  In)}[ 

_< [1 + C l {I q~in G - - ~  ~ -~ + ,.~.,~ ~_ , . l ~ '  i~k- . ~ -  ~ ; j  

�9 { l ~ , , ( ( k  - 1) 2 - ' )  - ~ ' ( ( k  - 1) 2-m)l 

+ I Win (k 2 -  In) - -  win ((k - 1) 2 - ' ~ )  - w "  (k 2 -  m) + w, m ((k - 1) 2 In)t}. 

If we put  

then 

- -  - - m  / - - I n  Xm,~-LG~(k2 )--~m(k2 )l, 
rh (k-x)2-'~ff- rh' ( k-1)a-m am,k = ~'m k2 -m ]'f'm k 2  - ~ '  

bm,~ = twin (k 2-  ~) - win ((k - 1) 2-'~) - w~ (k 2 -  m) + w~, ((k - t) 2 In)I, 

xm, k _<-(1 + c l  a.~,k)(x,.,k_ ~ +bin,k) 

<exp(C1  am, k)(X~,k- t +bin. k) 

< exp(C1 am,k) {exp(C1 am, k_ ~)(xin,k_ 2 + bin,k_ 1)+ bin,k} 

<exp{ C~(%,k +am,k_ l)}(Xm,k-2 +b,,,k +bm, k_ l) 

k 

<exp(Ct  ~ain, i) (xm, o+i~= bm,i ). 
i = 1  

Since ~-m, qSm and w,, are constant  in [k2 ", (k + 1 ) 2 - ' ) ,  we have 

P~m(t) - ~,(t)t < exp { C 1 (]q~m ]r + IG,  I~)} �9 {Iwin - w;,I, + Iw(0) - w'(0)l}. 
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By Proposition 3.1, we have for any T > 0 ,  

, < Iq~mlt + Iq~,,l~=2 C, O<t<r ,  

and hence, for 0 < t < T, 

[ ~,,(t) - ~ (t)[ < K {Iw m - w m l, + ]w(0) - w'(0)[}, 

where K = e x p ( 2  CC1). Letting m---~ ~ ,  we have (4.9). The proof is finished. 
Before closing this section we state an interesting example, due to Saisho 

and Tanaka [8], of a domain satisfying Conditions (A) and (B). 

Example. We write x=(x~ ,x2 ,  . . . ,x,)  for a point of R "e, where each x k denotes 
a point of R d. Let D be a domain in R "d defined by 

D={(Xl,XZ,'",Xn): IXi--Xj]>p for l < V i < V j < n } ,  

where p is a given positive constant. Saisho and Tanaka [8] proved that D 
satisfies Conditions (A) and (B). Suppose we are given wl,w2, . . . ,w,  eW(R d) 
and write w=(wl ,w2,  .--,%). We assume that w(0)e/), that is, Lwi(O)-wj(O)l> p 
for l < V i < V j < n .  Then by Theorem 4.1 there exists a unique solution of the 
Skorohod equation ~(t) = w(t) + q~(t) for the domain D. When 
wl(t),w2(t),...,w,(t ) are independent d-dimensional Brownian motions, ~(t) 
=(~l(t),~a(t), ..-, ~,(t)) descrives the motion of n mutually reflecting Brownian 
balls of diameter p in the space R d. For  details see Saisho and Tanaka [8]. 

w 5. Solvability of the Skorohod SDE 

Let D be a domain in R d satisfying Conditions (A) and (B) and suppose that 
we are given coefficients 

satisfying 
a: / 5 ~ R d |  ~, b: /5--~R ~ 

la(x) -a(y)[<Llx-y l ,  Ib(x)-b(y) lNLlx-yl ,  

La(x)[ N L, Ib(x)l<=L 

for any x, ye / )  with some constant L>O. Let (~?,~,P) be a complete probabili- 
ty space with a filtration {~}t~o such that each ~t contains all P-null sets and 
4 =  ~ ~+~.  In this section we study a Skorohod SDE 

e > O  

(5.1) dX(t) = cr(X(t)) dB(t) + b(X(t)) dt + de(t), X(0) e/), 

where B(t) is a d-dimensional fft-Brownian motion and X(0) is Yo-measurable. 
The main result is the following theorem. 

Theorem 5.1. There exists a unique strong solution of (5.1). 

Remark5.1. From the proof below we see that the existence of a (not nec- 
essarily strong) solution of (5.1) holds only under the assumption that a(x) and 
b(x) are bounded continuous. 
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The meaning of a strong solution is the same as in Definition IV-1.6 of [3]. 
To prove the theorem we first consider a Skorohod SDE 

(5.2) dX .  (t) = a (X .  (h. (t))) dB(t) + b (X.  (h. (t))) d t + d~.  (t), 

with initial condition X.(O)= X(0), where 

h.(0) =0, 
h . ( t ) = ( k - 1 ) 2 - " ,  ( k - l ) 2 - " < t < = k 2 - " ,  k = l , 2 , - . . ,  n > l .  

By Theorem 4.1, we have a unique solution of (5.2); in fact, once X.(  0 is 
obtained for O < t < k 2 - " ,  X.( t )  for k 2 - " < t < ( k + l ) 2 - "  is uniquely determined 
as the solution of the Skorohod equation: 

X .  (t) = X ,  (k 2 - ") + a (X .  (k 2 - ")) { B (t) - B(k 2 -  ")} 

+ b (X .  (k 2-  ")) (t - k 2 ") + ~ .  (t). 
Put 

t l 

(5.3) Y.(t) = X(0) + ~ a(X.(h.(s))) dB(s) + S b(X.(h.(s))) ds, 
0 0 

and denote by P~ the probability measure on C([0, T]--+Rd x R e) introduced by 
the process {(B(t), Y.(t)), 0 < t  < T}, where T is an arbitrarily fixed time, 

Lemma 5.1. The family {P., n => 1 } is tight. 

Proof It is easy to see that for 0 < e < l / 2  

i y . ( t ) _ L ( s ) ] > , ] _ , ,  
(5.4) lira sup P sup 

; ~  .~a o__<~<t~<r } t - s l  ~ z ; - - u .  

In fact, denoting by M~(t) the i-th component of 

M,(t)  = i a(X,(h,(s))) dB(s), 
0 

we have 

- i -M.(s)]  sup [M. ( t ) -  M.(s)l < sup JMi"(t) i 
o<s<,__<r I t - - s t  i:1 0_<s<t-<r I t - s]  t 

Since Mi. is a continuous martingale and its quadratic variation process 
i Mn) t is dominated by const, t, we have 

IMi.(t) - Mi.(s)l I W(t) - W(s)l 
sup <d const, sup , 

O<s<t<_T I t - - s ]  e O < s < t N T  I t - s t  

where W(t) is a 1-dimensional Brownian motion and "=<a" means the stochas- 
tic domination, that is, X <  a Y if and only if P ( X > x ) < P ( Y > x )  for any xeR.  
Therefore the martingale part M.(t)  of Y.(t) can be handled by using a well- 
known result of L6vy on the modulus of uniform continuity of Brownian paths. 
The bounded variation part can be treated directly. The tightness of {P.} 
follows from (5.4). 
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By Lemma 5.1 there exists a subsequence n l < n 2 < . - ,  such that P,~ con- 
verges weakly as k-+ oo. To simplify the notation we assume that P~ itself 
converges weakly as n--+ oo. Then by Skorohod's realization theorem of almost 
sure convergence we can find, on a suitable probability space (f~,o~P), a 
sequence of processes (/~,(t), !?~(t)), n > 1, satisfying the following two conditions. 

(5.7) For each n the process (/~,(t), I/,(t)), 0 < t < T ,  is equivalent in law to the 
process (B(t), Y,(t)), 0 < t < T. 

(5.8) /~,(t) and Y,(t) converge uniformly in te[0, r ]  (a.s.) as n--+ oo to some 
processes/~(t) and Y(t) respectively. 

Let ()?,(t), q5 (t)) and (Jr(t), ~(t)) be the solutions of the Skorohod equations 

(5.9 a) 2 , (  0 = Y,(t) + go,(t), 

(5.9 b) 2 ( 0  = Y(t) + ~(t), 

respectively. Then the continuity result in Theorem 4.1 implies that 
(Jfn(t),q5 (t)) converges to (2(0, ~(t)) uniformly in tel0,  r-] (a.s.) as n--+ o0. From 
(5.3) and (5.7) it also follows that 

(5.10) ~,(t) = 2(0) + i a(2,(h,(s))) d~,(s) + i b(2,(h,(s))) ds. 
0 0 

Lemma 5.2. ()?(t), ~(t)) is a solution of the Skorohod SDE 

t t 

(5.11) 2 ( 0  = 2(0) + S ~(2  (s)) d~(s) + ~ b(2  (s)) ds + 4~(t). 
0 0 

Proof. It is enough to prove 
t t 

~(t) = 2(0) + ~ ~(2(s)) d~(s) + ~ b(2(s)) ds. 
0 0 

But this follows from 

t 

i ~(2,(hn(s))) dBn(s)-~ S ~(2(s))dfl(s) in probability, n - ,  0% 
0 0 

which can be easily proved by approximating stochastic integrals by Riemann- 
Stieltjes sums for each fixed t. 

In the rest of the paper to, fi and c5 are the constants appearing in 
Conditions (A) and (B). 

Lemma5.3 (cf. [4], Remark 3.1). D satisfies Condition (C') of w with 7 
=2r0fi -1. 

Proof. Let l=lxo be the unit vector appearing in Condition (B). Then the 
assertion of the lemma holds with f (x)  = (l, x -Xo) .  

Let X t and X' t be solutions of (5.1) with the same initial value. Suppose that 
the supports of the coefficients cr and b are included in B(xo,6 ) for some 
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xo~OD. Then by Lemma 5.3 we have 

1 
( X ,  - X;, d ~  - d ~ )  - ~ fX~ - X;I ~ (t,  d ~  + d ~ ; )  

=-{(X's-X~,dq~s>+~[Xs-X;{2(l ,d~>} 

- { (X~-X ' s ,  dqY~) +~,X~-X;[2 (l, dq~'~) } <O. 

Therefore, employing a method similar to [4], pp. 524-525, we can prove 

E{HX - X'H~} < const, i E{IlX-X'II2} ds, 
0 

which implies X, = X;, t > 0. Thus we have the pathwise uniqueness of solutions 
of (5.1) under the restricted condition on a and b. Combining this with Lemma 
5.2, we have the following lemma by an argument similar to [3], Theorem IV-  
1.1. 

Lemma  5.4. Suppose that the supports of a and b are included in B(x o, c5) for 
some Xo~OD. Then there is a unique strong solution of (5.1). 

LemmaS.5.  For any XoeOD , the pathwise uniqueness of solutions of (5.1) with 
initial value x o holds for O<_t<_~, where z is the exit time of B(xo,r), 0 < r < 6 .  
More precisely, if Xi(t), i = 1 , 2  are ~.~t-adapted solutions of (5.1) and if zi= 
in f{ t>0 :  Xi(t)(~B(xo,r)}, i=1 ,2 ,  then r l - - - r  2 a.s. and Xt(t)=X2(t  ) for O<_t<_zl, 
a .s .  

Proof For  0 < r < 6  we define Lipschitz continuous functions 8: / ) - -~Rd|  d 
and 6:/5--~ R d such that 

atx) = ~0 

F)(x)={bo (x) 

if xeB(xo,r)c~D, 
if xsB(xo, 6)~ ~15, 

if x~B(xo,r)c~D, 
if xsB(x o, 6)~ c~D, 

and then consider the following Skorohod SDE: 

(5.12) d Y (t) = ~ ( Y (t)) dB(t) + b( Y (t)) d t + d T(t). 

Lemma 5.4 implies that (5.12) has a unique strong solution. Let X(t) be a 
solution of (5.1) starting at x o and put ~ = i n f { t > 0 :  X(t)(EB(xo,r)}. We may 
assume ~ < 0o a.s.; otherwise, it is enough to consider r A n. Next, define /~(u) 
=B(z+u)-B(~) and ~ -  ~ +  u = ~  { A ~ :  Ac~{T+u<t}~,,= V t_> 0},_ u_>0._ Then 
it is easy to see tha t /3  is an ~ - B r o w n i a n  motion and that "~ = t -  ~/x t is an ~ -  
stopping time for each fixed t >  0. Since (5.12) has a unique strong solution, 

(5.12') Y (t) = X (z) + i ~( ~ (s)) dB(s) + i b(~(s)) ds + T(t) 
0 0 
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has a u n i q u e  ~ - a d a p t e d  so lu t ion .  W e  p u t  

~ ' "  fx(t), t<z, 
(t) = ~ r -- z), t > z. 

Then,  the u n i q u e n e s s  asser t ion  in  the l e m m a  follows f rom the pa thwise  un ique -  
ness for (5.12) once  we p rove  tha t  Y is a so lu t ion  of (5.12). Set )~(t) 

=iS(Y(s))dB(s)" T h e n ,  a p p r o x i m a t i n g  the  s tochas t ic  in teg ra l  by  a R i e m a n n -  
0 

Stieltjes s u m  a n d  n o t i n g  tha t  -~ is a n  ~ , - s t o p p i n g  t ime,  we have  

a n d  hence  

where 

~1(~ <t} 3~r(-8) = 11{~ <,3 7 1~ <s__<t} 8(Y(s)) dB(s), 
0 

Y (t) = 11~,<=~ Y (t) + lt{,> ,} Y (t) 
t t 

= Xo + ~ ~(r(s)) dB(s) + ~ 6(Y(s)) ds + ~(0, 
0 0 

t < 

( ~'(t- ~) + r  t > z. 

Thus Y solves (5.12). The proof of Lemma 5.5 is finished. 
F r o m  L e m m a  5.5 we c an  easi ly p rove  the  fo l lowing  l e m m a .  

L e m m a  5.6. The pathwise uniqueness of solutions of  (5.1) holds. 

U s i n g  L e m m a  5.2 a n d  L e m m a  5.6 we can  f ina l ly  p rove  T h e o r e m  5.1 by a 
m e t h o d  s imi la r  to [-3], T h e o r e m  I V - I . 1 .  
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