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Summary. Let X be a complete separable bounded metric space and u a
Borel probability measure on the space Con(X)" of all N-tuples of con-
tractions of X with the topology of pointwise convergence. Then there
exists a unique u-self-similar probability measure P, on the space #'(X) of
all non-empty compact subsets of X. Here a measure P on % (X) is called
u-self-similar if, for every Borel set B< %' (X),

P(B)= [P ((Ko, Ky o)

N-1
_L_jo Sl.(Kl.)eB) du(So, .., Sy_ )

If, for p-a.e. (S,,...,Sy_y), each S, has an inverse which satisfies a Lipschitz
condition then there is an «=0 such that, for B-a.e. Ke#'(X), the Haus-
dorff dimension H-dim(K) is equal to a. If X <IR“ is compact and has non-
empty interior and if p-a.e. (Sgy,...,Sy_;) consists of similarities which
satisfy a certain disjointness condition w.r.t. X then « is determined by the

equation
q N—-1

{ > Lip(S)*du(Sqs ..., Sy_1)=1,
i=0

where Lip(S,) denotes the (smallest) Lipschitz constant for S;. Under fairly
general assumptions the o-dimensional Hausdorff measure of P-ae.
KeA'(X) equals 0.

If u and X are chosen in a rather special way then B-a.e. KeX (X) is
the graph of a homeomorphism of [0,1] (or a curve or the graph of a
continuous function).

§ 1. Introduction

The term “fractal” was introduced by Mandelbrot for sets with a highly
irregular structure including all sets of non-integer Hausdorff dimension. Man-
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delbrot and others have used such sets to model various physical phenomena
(c.f. [8] and the references there). In that context those fractals seem to be of
particular interest which have the additional property of being either strictly or
statistically self-similar.

A theory of strictly self-similar compact sets has been developed by Moran
[10] and Hutchinson [6]. A basic result of Hutchinson says that for every

finite set of contractions S,,...,Sy_; of a complete metric space there is a
N-1

unique invariant non-empty compact set K, i.e. K= U S,(K). Lately, Falconer

[4] and Mauldin-Williams [9] introduced and 1nvest1gated general concepts of
statistically ~ self-similar fractals. In particular Falconer showed that
Hutchinson’s result has a probabilistic counterpart. (I came to know Falconer’s
results only after I had finished most of the following investigations.)

The starting point for the considerations in the present paper was a scheme
used by Dubins-Freedman [2] to generate probability distribution functions at
random (see also [5]) which is the prototype of the construction introduced
here. Inspired by the work of Mauldin-Williams [9] a generalization of (parts
of) Hutchinson’s theory to the probabilistic setting is given which includes a
slightly more general version of Falconer’s result quoted above and makes it
possible to answer a question of Mauldin-Williams concerning the Hausdorff
measure of statistically self-similar fractals. As a byproduct the methods of
proof used in this paper enable us to give new (and simpler) proofs for some of
the results already contained in Falconer [4] and Mauldin-Williams [9].

Now we will give a more detailed preview of our results.

In §2 we describe a method to construct a compact set from a given N-ary
tree of contractions of a metric space, thereby imitating the construction of the
classical Cantor set. We also obtain lower and upper estimates for the Haus-
dorff measures of the sets thus generated using the contraction (Lipschitz-)
constants of the contractions involved.

In §3 a general scheme for producing statistically self-similar fractals is
introduced. To generate a fractal at random we start with a probability
distribution p on the set of all N-tuples of contractions of a given bounded
separable complete metric space X. We define a probability measure F, on the
space o (X) of all non-empty compact subsets of X in the following way: First

we choose an N-tuple (S, ..., Sy_,) of contractions at random with respect to
u and set N1
= s, (X).
p=0

For every pe{0,....,N—1} we independently choose an N-tuple
(8,05 ++»S,w—1) at random w.r.t. 4 and set

s (Gisen)

We continue this process. Then K = () A,is a typical P-random fractal.
nelN
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In §4 we show that the measure F, is characterized by the fact that
N-—-1
U S, (K p)eB})
p=0

for every Borel set B« #'(X). Under more restrictive assumptions this result is
already contained in Falconer [4].

In §5 we show that a non-empty subset A of J(X) supports P, provided
there is a complete metric d, on A whose topology is weaker than that
induced by the Hausdorff metric and provided p-a.e. (S, ..., Sy_,) satisfies the
following two conditions:

B(B)=p®(R) ({((S03"'JSN—1)>(K0’""KN-1))

N-1
() VK, ...,Ky_,€A: UOSp(Kp)eA,
p:

(i) 3ce(0,1) VKo, ....,Ky_€A VLg, ...,Ly_,€A:

N—-1 N-—1
d, (p!OSp(Kp), pyosp(Lp)) écogrf;g;ldA(K"’ L,).
This result is used to show that the probability measures introduced by Dubins
and Freedman [2] on the probability distribution functions are of the type P,
for a suitably chosen u. Moreover, conditions are stated under which P, is
concentrated on graphs of continuous functions or curves.

In §6 we investigate certain martingales connected with N-ary trees of
contractions. In particular we obtain an example of a martingale indexed by a
countable set which converges in every IP(co>pz=1) but whose pointwise
limsup is oo a.e. and whose pointwise im inf is O a.e. The results in this section
provide the basis for the determination of the Hausdorff measure and Haus-
dorff dimension of F-random sets.

§7 contains the main results. First we show that, under rather weak
assumptions, the Hausdorff dimensions of P-random sets equal a constant o F.-
a.e. Then we determine this constant « under the stronger assumption that X
cR?® and all contractions involved are actually similarities which satisfy a
certain disjointness condition with respect to X. Thereby we reprove results of
Falconer [4] and Mauldin-Williams [9]. Moreover, we show that, for P-a.e.
compact set K, the a-dimensional Hausdorff measure of K is zero provided u

does not satisfy N1

Y Lip(S,)*=1 p-ae.,
-0

P

where Lip(S) denotes the contraction (Lipschitz) constant of the contraction S.
This last result answers a question of Mauldin-Williams ([9], 3.8) in the
negative. Under the additional assumption that there is a ¢ >0 with Lip(S,)=c
(0=0,..., N—1) for p-ae. (S,,...,Sy_,) we prove that the following conditions
are equivalent:

N-1

@) Y Lip(S,*=1 for p-ae (Sp,-.., Sy_y),

p=0

(i) 0<H#*K)<oo for P-ae K

(i.e, K is an a-set in the sense of Falconer [3] for P-a.e. K).
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§ 2. Fractals Constructed from Trees of Contractions

In this section we describe a Cantor-like construction of a compact subset of a
bounded metric space X starting with an N-ary tree of contractions of X. Let
us first fix the basic notation and definitions which will be used in the rest of
the paper without further reference.

Let (X, d) be a complete separable metric space whose diameter diam(X) is
finite.

Foramap S: X—-X let

Lip(S)=sup {————d(s x,57)

d(x, y)

be the smallest Lipschitz constant for S which may be infinite. S is called a
contraction if Lip(S)< 1.

By Con(X) we denote the set of all contractions of X. Let #°(X) denote the
space of all non-empty compact subsets of X with the Hausdorff metric #, ie.

x, yeX, x=|=y}

n(K, Ly=sup({d(x, L)| xeK} U {d(K, y)| yeL}).

Then (£°(X), n) is a complete separable metric space. Let N denote the positive
integers and N, =IN U {0}. For NeN let

D=D(N)= | D,,(N)
where men

D, =D, (N)= @0{0,...,N—1}q

and {0,...,N—1}°:={@}, ie. D is the set of finite sequences in {0,...,N—1}
including the empty sequence.

If 6=(0, ...,0,) and t=(t,, ..., 7,) are in D then |o|=g+1 is the length of &
and o*1=(0y, ..., 0, Ty, ..., 7,) is the juxtaposition of ¢ and 7 (B*o=0 and ¢*0
=0).

Let C=C(N) equal {0,...,N—1}™ with the product of the discrete to-
pology on {0, ..., N—1}.

For gelN let C,=C, (N)={0, ..., N—-1}%

For ceDuw C(N) and neN, with n<|a| if geD let

gln=(0g,...,0,_)
We define a partial order on D U C(N) by
o<1 < 1l|o|=0.

We say that ¢ is preceding t.

A subset I'<D is called a covering, if, for each 7€ C(N), there is an element
oel preceding . If this ¢ is uniquely determined we call I minimal. Let Min
denote the collection of all minimal coverings in D. It is easy to check that
every element of Min is a finite set. We say that I'eMin is a refinement of
AeMin and write A<TI if, for every &[T, there is a (unique) ce4 with o <t.
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The elements of Q=Q(X, N)=(Con(X)")? will be denoted by
& =(%)gep

where %, =(S .05 s Squqy - 1,)€CON(X)".
For o=0 we abbreviate
F=(Sgs s Sy_1)-

Let Q,=0Q,(X, N) be the set of all & in &, such that, for every 6 =(c,),cn,

q
lim []Lip(S,;,)=0.

g= %0 n=1

2.1. Lemma. Let Fe€Q, be given. Then, for every ¢>0, there exists a q,eN such
that, for all g=q, and all ceC

q+1°
4q
HLip(Sa,n)<s.
n=1
Proof. For geN the set

U= {ae C(N)

ﬁIILip(Soln) < s}

is open in C(N). Since €, the sets (U,),.n form an open covering of C(N).
By definition U, U, and henc¢ the compactness of C(N) implies that C(N)
=U, for all sufficiently large g.

2.2. Theorem. For every & €€, the set

K=K(&):=() |J S,1°--280:1(X)

qE]N 66Cq+1

is compact. Moreover, for every family (K,),.p in A (X),
K(F)=1lim () S, 0...08,,.1(K,)

g0 0eCq4y

( where the limit is taken w.r.t. the Hausdorff metric ).

Proof. First we will show that

( U So'llo . 'OSa|q+1(Ka))qe]N0

o‘GCq +1
is a Cauchy sequence in (A (X), %).
Let ¢>0 be given. It is obvious that
q+1

diam(SaIlo...oSGIqH(X))g(UlLip(Sal,,)) diam(X).

By Lemma 2.1 there exists a q,€IN such that the right hand side is less than ¢
for all gzq, and all geC,,,. Now let r>g=q, be arbitrary. For every
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oceC,,, and every xeS, o...08 . (K,) we have

d(x, | Sepro---oS (K =d(x, S, 008, ,41(L)

teCr+1

where  L=S_ .1)°°Seueir_oKoseir_g) for some eC,_,.  Since
x€8,10..-08,,.1(X) we deduce

d(x,Syp10...08, (L) Sdiam(S, o...08, 4 (X)) <e.
Similarly we can show that

d( U Su‘}lo'--osalq-{—l(Ka)a y)<8

oeCy+1

for every ye [ ] S;yo...08,,,(K).

1eCy 41
This shows
7]( (L?_) So’llo"‘oSo‘lq+1(Ka)7 p Srllo"'osf|r+1(Kr))§8'

Hence our claim is proved.
Since (A#'(X), n) is complete

K'=lim (] S,0..08,,..(K,)
R g~ 6eCqqy
€x1sts.

For every gelN and every r= ¢ the set

U Srllo"'OSr\q-f—l(Kr)

teCr 1

is contained in the closed set

U Sa]lo"'OSa‘]q+1(X)'

aeCq+1

Hence the same is true for the limit K.
Since this holds for arbitrary g we obtain

K'eK=(} | Sg119--°8514+1(X).
gelN 6eCy+1

To show the inverse inclusion assume K'¢ K.

Then there exists an xe K\K'. By the definition of K there is a g€ C(N)
such that

XES, 1008, 441(X)

for all gelN.

For sufficiently large g we have

Ld(x, K')>diam(s, ;0.8 (X)).

Thus S,j;0...08,,, (K,) is contained in the bail with radius }d(x, K') and
centre x, which implies
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n(K, 1) Sypo...08,,,(K)=3d(x, K)>0

2€Cq+1

for all large g, a contradiction.
Thus K'=K={) |} &, S,14+1(X) and the theorem is proved.

gelN 6eCq +y

2.3. Remarks. a) It is easy to check that, for every ¥eQ,,

N U S,i00800e1X) = 1) ()Ss10...08,15.1(X).

gelN ceCyq 41 oeC(N) gelN

Moreover, for every oe C(N), the set

ﬂ Sa’[lo : "OScr|q+1(X)
geN
is a singleton and the map, which assigns to ¢ the single element of

ﬂsa|1°-~-°sa;q+1(X)
gelN

is a continuous map from C(N) onto

U Syp10-008,,01(X).

gelN 6eCy+4

b) The above construction generalizes a construction of Hutchinson [6].

Next we will give a lower and upper estimate for the Hausdorff measure of
the compact set constructed in the first part of this paragraph.

To this end we introduce some more notation.

Let EcX, 620 and =0 be arbitrary. Define

%“(E):inf{ Y diam(G,)|E<{JG,, G, open, diam(Gn)gé},

n=1

2 (E) :inf{ Y diam(E,)*|E< E,, diam(E,)< 5},
n=1

and B
H*(E)=sup H;(E)=sup #;*(E).
>0 >0

Then 4" is an outer measure on X such that all Borel sets are #*measurable.
H#* 1s called the o-dimensional Hausdorff measure. The Hausdorff dimension of
E is defined by

H-dim(E) =sup {0 0| #*(E) > 0} =inf {0 > 0| #*(E) < o0}.

For other basic properties of #;, #7, #* and H-dim we refer to Rogers [11]
or Falconer [3].

For reasons of completeness we include the following estimate of Hausdorff
measure obtained by using the natural coverings.

2.4. Theorem. Let S Q, be given. Then, for every a>0,

H*(K(F)) < diam(X)* sup 1nf{z H Lip(S,,)*| I'eMin, F>F}

IoeMin cel p=1
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Proof. Recall K=K(#)=() {J Sopie--08,,41(X).

geN 6eCy 41
Let >0 be arbitrary. According to Lemma 2.1 there exists a gelN such
that, for every ceD with |o| =g, we have

lo|
diam(X) [ | Lip(S,,,) < 9.

p=1

Let I'eMin, I'>> C, be arbitrary. Then

K CUQSUH" 08,14 (X)
and
lo|
diam(S,;o...05, ;1 (X)) < diam(X) [] Lip(S, ) <o.

n=1

Hence

HHK)S Y diam(S,qo...08, (X))
oel’
lo|

<diam(Xy Y. [] Lip(s,,"

oel n=1

Since I'> C, was arbitrary this implies

_ |a|
%“(K)ginf{diam(X)“ Y, [Lip(s,, )| FeMin, I'> CQ}

oel n=1

lo]
<diam(X)* sup inf{Z [T Lip(S,,,)*| '€ Min, F>IZ)}.

T'oeMin gel n=1

The last inequality holds for every 6>0 and, therefore, yields the statement of
the theorem.

For the statement of the next theorem let us recall that a similarity S:
X —X is a map such that there exists a constant ¢>0 with d(Sx,Sy)=cd(x, y)
for all x, ye X. Obviously we have ¢ =Lip(S).

The following result is closely related to Theorem 7.3 in Falconer [4].

2.5. Theorem. Let X cR? be a compact set with non-empty interior X. Let
S €Q, be such that for every oeD and all p,p'e{0,...,N—1} the map S,,, is a
similarity with

SsupX) 08, (X)=0  if pp. (%)

Then there exists a constant ¢>0 depending only on X and the dimension d such
that, for every a=0,

o]
¢ diam(X)* sup inf{ > Lip(S,)* [ ] Lip(S,,,)*| e Min, I“>-F0}
n=1

T'geMin cel

< H(K(S)).
Proof. Since X is compact we have K=K(#)=() |J S, 0...085,,,/(X).

geN oeCy 41
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Let >0 be arbitrary and let (U) <

1<v<m D€ an open covering of K with
diam(U,) <6 and U nK =0 for v=1, ..., m. Define

Fv={aeD|Sﬂ,lo.. S, 11(X)N KU, =+,

le]—1

diam(X) [] Lip(S,,,)= diam(U,),

n=1

i
diam(X) | ] Lip(S,,) < diam(Uv)}.

n=1
According to the last two conditions in the definition of I, we have neither
o<1 nor t<<¢ if g,7el are different. Due to condition (x) of the theorem this

implies ) .

Sei10++-085116(X) NS, 008, (X)=0 (1)

for all o, 7l with o =%1.
Since all the maps belonging to & are similarities we deduce, for gel’,
o]

diam(S,o...o8, /(X)) =diam(X) [ | Lip(S

n=1

)<diam(U]),

aln
hence
511098410/ (X) = {xeR"|d(x, U,n K) <diam(U,)}

< B, giamu,(%,)  for any x eUnK, 2

where B, (x) denotes the open ball of radius » and center x. Now let A* denote
the d-dimensional Lebesgue measure. Since all maps in ¥ are similarities we
have

lo]

Hmmo&wmhﬂmgmmw. (3)
Combining (1), (2), (3) and the definition of I, yields

(2diam(U,))* (B, (0)) = A*(By giamw,(%.))
Z v (S 11° o'||a'|(X))

W, (2) 6oF,

lo]

= Y 4(X) n Lip(S,,)*

(3) gel’y,
>y 24(X) diam(U,)* Lip(S,)
oel’y,
Hence
. 2474B,(0) 1
i< = 4
anglp(So') = ld(X) c ( )

Using the definition of the I’s we obtain
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m

Y diam(U,y = Z max diam(X)* HLIP(SUM)

v= v=1 o€l
> z (1/ 3, Lip(s) X Lip(s, diam(x)* [ Lip(s,
y= cely, gely, n=1

lo|

> c diam(X)* Z > Lip(S H Lip(S, )"

v=1 gel

IGI

= cdiam(X)* ) Lip(S,) H Lip(S,;,)* (3)

ceurl,

By Remark 2.3a it is easy to check that U I’ is a covering.

Define
I'={ceUL|VteUI,: 1<06 = t=0a}.

Then I' is a minimal covering.
lo]—1 [l
Now define F={aeD. ]—[ Lip(S,,) 2, HLip(Saln)<5}.
n=1

Then T is also minimal w1th L<TI.
Thus (5) implies

i
Z diam(U,)* 2z c diam(X)* ) Lip(S,)* | | Lip(S,,,)*

v=1 oel n=1

[l
> c diam(X)* inf{ Y. Lip(S,)* | ] Lip(S,,)*| I"€Min, F’>I}}
oel” n=1

Since K is compact and (U,) is an arbitrary finite open covering of K with
diam(U,) <6 we deduce

H*(K)z #3(K)
> c diam(X)* 1nf{ Y Lip(S,)* 1—[ Lip(S,,,)*| "€ Min, F’>F} (6)

ogel’ n=

Let I;eMin be arbitrary. Since Lip(S,) >0 for all zeD there exists a 6>0 with

o]
é <min{ [1Lip(S,,,)| oe]})}.
n=1
Obviously this implies I <I.
Hence (6) yields the assertion of the theorem.

2.6. Remark. If (S, ..., S,4y_y)) satisfies condition (%) in Theorem 2.5 then
(Sggs > Sqexv 1)) satisfies Hutchinson’s open set condition ([6], pp. 735/736).

An analysis of the proof of Theorem 2.5 shows that the theorem remains
true under the following weaker assumption:
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X cR? is compact and ¥ €Q, is such that there exists a Borel subset W of
X of positive Lebesbue measure satisfying S,, (W)= W and S,, (W)nS,, (W)
=@ if p+p for all 6eD and p, p’e{0,..., N —1}.

This last condition is implied by the open set condition of Hutchinson.

a*p( oxEp

§ 3. A Probability P, on 5#°(X) Induced by a Probability u
on N-tuples of Contractions of X

As everywhere in the paper (X, d) denotes a complete separable metric space of
finite diameter. The space Con(X) of contractions of X will be equipped with
the topology of pointwise convergence. It is casy to check that Con(X) is a
separable metrizable space which is the countable union of completely metriz-
able subsets and hence a Suslin space. The function Lip: Con(X)—[0,1],
S—Lip(S) is lower-semicontinuous since it is the supremum of the continuous

d(Sx, S

(_'_—y)(x:':y7 X,yEX).
d(x, y)

For NeNN the space

functions S

Q=(Con(X)M)?

will be equipped with the product topology. Since D is countable the space Q2
is a metrizable Suslin space and the product of the Borel field of Con(X) is
equal to the Borel field of Q. In the following u is a Borel probability measure
on Con(X)¥. Let p® denote the corresponding product measure on Q
=(Con(X)™?. By (uP)¥ we denote the product of the u®s on Q.

3.1. Proposition. Define ¢: Con(X)" x Q¥ >Q by

@(Sps s Sy_ h (FO, L, FVV)) =,
where
S =(Sg, s Sy_1)
and
L. =L for geD, ne{0,...,N—1}.

Then ¢ is Borel measurable such that, for every Borel set B< £,
1P (@~ 1(B) = (B),

i.e. the image
p@(pPWop =t of u@WPY w.r.t. ¢ is equal to u®.

Proof. Obviously ¢ is Borel-measurable and the remaining assertion follows
from the elementary properties of the product measure u? (Fubini’s theorem).

3.2. Lemma. Let g: Con(X)¥ =10, 1) be Borel measurable. Then

Qg::{yeQWae CIN): T1 g8 pn-1)-0 "'5S(a'ln~1)*(N—1)):0}

n=1

is a Borel set with u”(Q,)=1.
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Proof. We have
Qg={yle€]N Voe C(N) dgeN:
4 1
H g(S(a;n-l)*Oa ey S(a|n~1)*(N—1))<E}-
n=1

Using the compactness of C(N) in the same way as in the proof of Lemma 2.1
we obtain

4 1
Qg:{mee]N JgeN YoeC,: ,Dlg(s(d'"_l)*o’ s S(a|n—1)*(N—1))<E}

-NUN e

meN gelN oeC,

q 1
Stoine 11507 <=2 S(gln_ 1yuy - 1) <—
nljlg( (6|n—1)%0 (o]n—1)x(N 1)) m}

which is a Borel set.
For a>0 set

Baz{yteﬂae C(N): 1 &0 ner1ye0s - S(Gln_l)*(N_l))ga}.
n=1

As above one can see that B, is Borel.

Define p: (0,1)—>[0, 1] by p(a)=u"(B).

Then p is a non-increasing function. We will show that p vanishes identi-
cally. Once this has been established the proof is complete because £,

—0\ | B,.

a>0

It follows from Proposition 3.1 that, for every a€(0, 1), we have
p(a)=p@P)"N ({((SO, v Sy_ ) (PO, L PN Tee C(N) Apef0, ..., N—1}:

g(SO; RS ] SN—~1) . n g(SEgin—l)*Oa "'sS$g)|n.~1)*(N—1))ga}>
n=1

N-1

= 2 KO <{«S°’ Sy (PO, ., SV IGeCN): 8(Sgr-.rs Sy_)
p=0
’ Ulg(szg1n~l)*07 ey Sgg'in—l)*(N—l))ga}>

SN u({(Sos s Sy_1)18(Sqs s Sy_1) = a}) p(a). n

Since g <1 there exists a be(0, 1) with
:u“({(507 '--9SN—1)|g(SO7 ---aSN—l)gb})<

It follows from (1) with a=» that

1
N

p(b)=0.
Define y=inf{ae(0, 1)| p(a)=0}.
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Assume #>0. Then there is an a># with ab<#. As before we deduce
N-1

plab)< Y u@EPy® ({((So, s Sk (PO, L, FE) [ Tge C(N):
p=0

8(Sos s Sy ) I—[lg(Sfﬁn—l)*0> s Smn—l)*(w—m)%ab})-

Since a># we have p(a)=0, hence

oo
(p) (p)
H g(S(gjn—mm ) S(g[n——l)*(N— 1)) =a
rn=1

for pP-a.e. ). This leads to

pab)=Nu({(So, - Sy_1)18(Sq5 ---» Sy_ )2 b}) p(ab),

which implies p(ab)=0, a contradiction.

Thus #=0 and p vanishes identically.

3.3. Theorem. The set Q, ={,76(COH(X)N)D|VGG CN): T1 Lip(SaIn)=0} is a
Borel set with pP(Q,)=1.

Proof. Define g: Con(X)¥—[0,1) by g(Sy,...,Sy_;)= max Lip(Sp) and use
Lemma 3.2. O<psN-1

n=1

34. Lemma. For every meN the map Con(X)"-Con(X), (So,...,S,_ )
Sgo...08, | is continuous.

Proof. 1t suffices to prove the lemma for m=2.
Let ¢>0, (S, ${?)eCon(X)? and xeX be given.
For every (Sg,S,)eCon(X)* with d(S,x, S(lo’x)<§ and  d(S,0oSx,

€
S8 x) <5 we get

d(Syo8; %, 80 SP x) <d(Sy0S8; x, S0 S x) +d(Syo S x, {0 S1% x)

<Lip(S,) d(S, x, S x)+§<s.

Thus the map Con(X)*—X, (S,,S;)—S,S,x is continuous. Since Con(X)
carries the topology of pointwise convergence this implies the lemma.

3.5. Lemma. The map Con(X) x A4 (X)— H#(X), (S, K)~ S(K) is continuous.
Proof. For S, TeCon(X) and K, Le#(X) we have

n(S(K), T(L) =n(S(K), S(LN +n(S(L), T(L)
<sup({d(Sx, S(L))|xeK} U {d(S(K),Sy)|yeL})
+sup({d(Sy, T(L))|yeL} v {d(S(L), Ty)|yeL})
<Lip(S)n(K, L)+sup({d(Sx, Tx)|xeL}).
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Let >0 be given and let TeCon(X) and LeX# (X) be fixed. Then there are
Xy, ..., X, €L such that
LeB,5(x) V... 0B, ;(x).

For every SeCon(X) with d(Sxp,Tx,,)<§ for p=1,...,k and every
xeLnB,;(x,) we deduce

d(Sx, Tx)=d(Sx,8x,)+d(Sx,, Tx,)+d(Tx,, Tx)
<Lip(S)d(x, x,)+¢/3+Lip(T) d(x,, x)
<e,

hence
sup{d(Sx, Tx)|xeL}<e.

Thus for every SeCon(X) with d(Sx, Txp)<§ (p=1,...,k) and for every
Kex'(X) with #(K, L)<e, we have

n(S(K), T(L))<2e.
Hence the lemma is proved.
The following result is well-known (cf. Kuratowski [7], Vol. I, p. 166).
3.6. Lemma. The map A (X) x A (X)—- A (X), (K, L)— K U L is continuous.
3.7. Theorem. Let Ke 4 (X) be arbitrary and define

Y Q- A (X) by

N U SypoeoS,mX),  Ze,

__JgeN oeCh+q
V(&)= K, LeQ,.

Then  is a Borel measurable map.

Proof. According to Theorem 2.2 ¥ is a well-defined map. It follows from
Lemma 3.4 through 3.6 that for every gelN and every family (K,),.p, in % (X),
the map
Q-A(X), S— CU Sei10--08410(K,p)
gely+1

is continuous. Thus Theorem 2.2 implies that, on ,, the map y is the
pointwise limit of a sequence of Borel measurable maps. Since Q, is a Borel set
by Theorem 3.3 this implies the assertion of the theorem.

3.8. Definition. For a Borel probability measure u on Con(X)V let P, be the
image measure of y” wurt ¥, ie for every Borel set Bc#'(X), F,(B)
=uP (Y 1(B)).

3.9. Remark. a) It follows from Theorem 2.2 that a B-random set can be
constructed as follows:

Take an arbitrary set Ke#'(X). Choose an N-tuple (S,,...,Sy_,) at ran-
dom w.r.t. the measure p. Form the set Sy(K)u...uSy_,(K). Then, for p
=0,...,N—1, choose independently an N-tuple (S, ,,...,S, y_;) at random
w.r.t p
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Form the set
So(So,1(K)U ... U8y y_1(K)U... uSy_1(Sy_ 1, o(K)U...uSy_1 y_1(K))

Continue this process. The limit w.r.t. the Hausdorfl metric is a typical P-
random object.

b) The result described in a) is a stochastic version of a result of Hutchin-
son ([6], p. 725).
§ 4. Characterization of P, as the Unique y-Self-Similar Measure on " (X)
4.1. Definition. Let u be a Borel probability measure on Con(X)". A probabili-

ty measure P on J (X) is called p-statistically-self-similar (or u-self-similar) if,
for every Borel set B< #(X),

P(B):H®PN ({((So: "'7SN~1)7 (KOa ""KN—l))
p@o Sp(Kp)eB}) .

The following lemma is an immediate consequence of this definition.

4.2. Lemma. Let ¢: #(X)—~R, be Borel measurable. Then, for any p-self-
similar measure P on A (X),

eCon(X)N x A (X)V

[pdP={[¢ ( QOSP(KP)) APY(K gy vy Ky 1) di(Sos s Sy )

4.3. Definition. For a Borel probability measure u on Con(X)" define

T,: P(H (X))~ P(H (X))
by

[Tu(Q)] (B):,U®QN ({((So’ s Syo1) (Ko, o, Ky _y))

el

where (A (X)) denotes the Borel probability measures on % (X).

4.4. Remark. A probability PeZ?(# (X)) is p-self-similar if and only if T,(P)=P,
Le. if P is a fixed point of T,.

4.5, Theorem. Let u be a Borel probability on Con(X)". Then P, is the unique u-
self-similar probability measure on A (X). Moreover, for every QeP (A (X)), the
sequence (T.}(Q)),.x converges to P, in the weak topology.

Proof. First we will show that T,(E)=PF, i.e. that P, is p-self-similar.
Define @: Con(X)N x A (X)¥ - A '(X) by

B(Sor s Sy 1) (Kow oo Ky )= U 8,(K,).

By Lemma 3.5 and 3.6 the map ¢ is continuous.
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Moreover T,(Q) is the image measure of u®QY w.rt. ¢ for any Qe
P(H (X)),

Now consider the map ¢: Con(X)¥ x Q¥—Q as defined in Proposition 3.1
and the map : Con(X)¥ x Q¥ Con(X)" x A" (X)" defined by

Y((Sqs -res Sy_ 1) (L, ..., FE-1)
=((Sgs ooy Sy_ 1) (WL, .. g (FEDY),

where  is defined in Theorem 3.7.

Then it is easy to check that poyf =yoq.

Next we note that the image of ,u®(yD)N w.r.t ¥ is u@PY.

According to Proposition 3.1 the image of u®(u”)" w.rt. ¢ is u”. Since P,
=uPoyy~! we deduce, by combining these results, that T,(B)=PF,

Next we will show that lim T;(Q)=F, for any QeZ(H#"(X)).

B— O

Let A=A’ (X) be a closed set. Using induction on # it is easy to prove

[T Q)] (A)=p" @0 ({(£ (K )yep)ER X A (X)|

U Sope-o8,(K Jed)).
Hence we obtain
lim sup[T}/(Q)] (4)
=inf sup 1O, (K hyen)| L) Sopae-.-=S1a(K )€ 4}
<1 ®0"() U (% (Kool U S, ; oS, (K )e4})
<P @O (S (K )pen)e x%&mhm U S,110--98,(K,JeAD).

n— o oeCy,

By Theorem 2.2 and the definition of y this last expression equals
1P RQP({(Z (K )pep)EQo x H (X)P|Y(F)eA})

which, in turn, is equal to u?(y ~1(4)).
Thus, by the definition of P,, we have shown

lim sup [T;(Q)] (4) = E,(4).
Since this is true for an arbitrary closed subset A4 of #(X) we deduce that
(T;(Q)),e converges to B, in the weak topology. This last fact also implies that,
except for B, there is no fixed point for T,.
Hence the theorem is proved.

4.6. Remark. The preceding theorem was mainly inspired by the techniques
used in [5]. It has independently been proved by Falconer [4] in a slightly
more restrictive case: Falconer defined a metric on #(X) such that the corre-
sponding topology is stronger than the weak topology and such that T, is a
contraction w.r.t. this metric provided there is a c¢<1 such that, for p-a.e.
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(Sp»---»Sy_;)eCon(X)", Lip(S))<¢ (p=0,...,N—1). Moreover, Falconer
showed that under this condition P, is the unique fixed point of T,.

4.7. Problem. Is there a natural property which characterizes those probabilities
on X' (X) that are p-self-similar w.r.t. some u?

4.8. Remark. If p is a point mass &g, . r, , then u” is also a point mass.
Hence it follows from the definition of P, as image of x” that P, is a point
mass, ie. B,=e¢, for a compact set K. It follows from Theorem 4.5 that K
=Ty(K)u...uTy_,(K). Thus Theorem 4.5 contains Hutchinson’s result ([6],
p. 724) as a special case.

§ 5. Sets Supporting the Measure P,

In this section we give a sufficient condition for a subset of #°(X) to support
the measure P,. We use this condition to show how one can use the con-
struction described in §3 to generate random curves and random homeomor-
phisms,

In the following p is always a Borel probability on Con(X) .

5.1. Theorem. Let A=A (X) be a non-empty set and d, a bounded metric on A
such that (4,d,) is a complete metric space whose topology is not stronger than
the topology induced by the Hausdorff metric. Suppose that for p-a.e.
(Sgs---»Sy_1)eCon(X)N the following two conditions are satisfied:

N-1
(i) VKo, ...,Ky_jed: | ) S, (K )eA.
p=0
(i) 3¢e(0,1) VK, ..., Ky_,€4 VL,,...,Ly_,€A:
N-—-1 N-1
d, ( U s, (K,) U Sp(Lp)) <c¢ max d,(K,,L).
p=0 p=0 0=p=N-1
Then E, is supporied by A, i.e. A is P-measurable and F,(A)}=1.

Proof. Let WcCon(X)¥ be a Borel set with u(W)=1 such that for all
(Sos---»Sy. ;)€ W conditions (i) and (ii) are satisfied. Define g: Con(X)¥—[0, 1)

w (s s

K), (L N L
g(So, > Sy_y) = SUP max d,(K,,L) (Ko (Ljed’, (K (L)
0<psN-1
for (Sq, ..., Sy_eW,
0, elsewhere.

Since d,: A x A—R is continuous with respect to the product of the topology
induced by the Hausdorff metric it follows that the restriction of g to W is
lower-semi-continuous. Since W is a Borel set this implies that g is Borel
measurable.
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Let V, be the sct of all FeWP such that, for all ce C(N),

e 0]
H g(s(aln—l)ma e So‘[n—l)*(NAl)):O‘
n=1

By the choice of W as a set of full y-measure it follows from Lemma 3.2 that
D
w (V)=
Let KeA be arbitrary. We will show that, for #€V,, the sequence

( U So‘llo"'OSafq+1(K))qu
0eCq41
is Cauchy in (4, d ).
Let #eV, and ¢>0 be given. As in the proof of Lemma 2.1 it can be seen
that there exists a g,eN with

40
Voe Cq(): H g(S(o'In—l}:xO’ st S(a]n—l)x:(N—l))<8'
n=1

For g>m=gq, we deduce

A( U 19- o']m+1(K) U Sallo"'OSa|q+1(K))

GCyy + 1 geCq+1

N-1
=dy | U Sa( U Snio1n®--2Snaopm (K U Sa( U Sn*(a]l) 08 uioig(K)
n=0 0eCm

(_i—<i_)g(So’ s Sy_p) max d( U Spiiorny e S *(a]m) U Sn*(o’ll) n*(a]q)(K))'

0=n=N-1 geCpm

By induction it follows that there exists a te C,,,; with

dA( U So‘ll"'Scrlm+1(K)7 U S OSo‘]q+1( ))

66Cm +1 6eCq+1

m+1

§ Ulg(smn)*o’ ""S(rln)*(N—l))dA(K’Kep_ S(z|q+l)*x(K))§8diamA(A)

where diam {A4) denotes the diameter of the metric space (4,d,). Hence our
claim is proved.
Since (4, d ) is complete the sequence

( U Sa]l"'Sa|q+1(K))qu

geCq+1
converges in (4, d ).

If, in addition, ¥€, then the above sequence converges w.r.t. the Haus-
dorff metric # to Y(¥). Since the topology induced by d, is not stronger than
the topology induced by # it follows that the two limits agree, hence that
Y (F)ed for pP-ae. & Since Q=(Con(X)")? and #'(X) are Suslin spaces and
since ¥ is Borel measurable this implies that 4 is measurable w.rt. pPoy—1
=F, and satisfies P(A4)=1L.
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5.2. Corollary. The support of the measure P, is equal to the intersection of all
non-empty  closed  subsets A of Z/(X) such  that, for p-ae.

(Sos ---» Sy_1)€Con(X)N and for all (K,,...,Ky_,)eA",
N—-1
U S, (K, )ed.
p=0

Proof. By Theorem 5.1 each closed set 4 with the properties stated in the
corollary supports F,. Thus the assertion of the corollary follows.

3.3. Examples. a) Random continuous functions.

Let E be a compact subset of R? and [a,b] a compact non-trivial interval
in R. Let X=[a,b]xE carry the Euclidean metric d. Consider the space
%([a,b], E) of all graphs of continuous functions from {a,b] to E with the
supremum metric. Let (4, d,) be a non-empty closed subspace of €([a, b], E).

Suppose that u is a probability on Con(X)¥ such that p-ae.
(Sgs -+, Sy_)eCon(X)" satisfies the following conditions:

(i) S,=5, xS, where S’ »Ja, bD)nS,.(Ja, b[)=0 for p+p,

1

(i) VKo, ..., Ky_,€4: US JEA.

Then E, is supported by A.

Proof. The metric d, generates the same topology on 4 as the Hausdorff
metric # (Kuratowski [7], Vol. I, p.223). Morcover, (4,d,) is obviously a
bounded complete metric space. To apply Theorem 5.1 it suffices, therefore, to
show that condition (ii) in that theorem is satisfied. Let

(Kp)oépé,\,_1 and (Lp)og)él\,ﬂ1 in 4 be given.

We will prove that

(NUIS (K,), US L)>< max Lip(S,) max d WK, L)

0=p=N-1 O0=<p=N-—

N—-1 N—-1

provided (S, ..., Sy_,) satisfies (i) and (ii). Since | S,(K,) and {J S,(L,) are
p=0 p=0

N-1
graphs of continuous functions on [a, b] by (ii) and since () S',(Ja, b) is dense

p=0
N-1

in [a,b] it is enough to show that, for every xe U S’.(la, b[), every y with
(x, y)eUS (K,), and every z with xz)eUS (L,) we have |ly—z|
p=
<max Llp(S maxd, (K, L, (where || | denotes the Euclidean norm). Suppose
p

xeS’(]a b[). Then (i) implies (x,y)eS,(K,) and (x,z)eS,(L,). There exists a
(u, u)eK with S, (4, v)=(x, y). Since L, is a graph there exists a unlque weE

with (u,wjeL,. Then S (u, w)=(S,(u),S,(w))=(x, S, (w)). Since U S;(L;) is a
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graph this implies S (w)=z. Then we deduce

ly =zl =1S5(0) =S, W =[S, u, v) =S, (u, w)|
=Lip(S,) [ (u, v)—(u, w)| SLip(S,) d,(K,, L,)

which proves our claim.

By Theorem 5.1 we conclude that P, is supported by A.

To give a brief specific example let [a,b]=[0,1]=E and let A4
={fe%([0,1],[0,1]{f(0)=0, f(1)=1}. Let v be the normalized Lebesgue mea-
sure on 4= {(x,, x,)€[0, 11%|x, +x, <1}. For (x,x,), (¥, y,)e4 define contrac-
tions Sg*#v¥2 | by

S, 0) = 0x, 1 (1=3,5) o),
Sy ey, vy =00, + (1 —u){l = x; —xo), 1=y, + (1 =0} (y; + ¥, — 1)),
SPFeIIe(y p)=(1—x,+ux,, y+o{l —y,)).
Let u be the image of v&®v with respect to the map
(06 2), (02 72) = (S5, Sy, S,

Then u obviously satisfies (i) and (ii). Hence the corresponding measure P, is
concentrated on A.

b) Random curves joining two points.

Let EcR? be compact with the Euclidean metric. Let y be a probability
measure on Con(E)® such that there are a,beE and, for u-ae.
(Ty, ..., Ty_eCon(E), Ty(a)=a, Ty_,(b)=b, and T,(b)=T,, (a) for p
=0,...,N—2. Then P-ae. KeX'(E) is a curve (i.e. continuous image of [0,1])
joining a and b.

Proof. Let X=[0,1]x E be equipped with the euclidean metric. Define ¢:
Con(EYN —-Con(X)¥ by

Ty, oo, Ty_1)=(Sgs s Sy_1)
with

1 P
S, (x,y)= (NerN—, pr).

Then ¢ is continuous. Define i=puog 1 If

A={fe?([0,1], E)|f(0)=a, f(1)=b}

then A is easily seen to satisfy condition (i) and (ii) in the preceding example
for f-a.e. (Sy,...,Sy_;)€Con(X). Hence P, is supported by 4. Now define ¢:
A (X)— A (E) by

E(K)={yeE|3xe[0,1]: (x,y)eK}.

Then £ is Borel measurable and - using Theorem 4.5 - it can be checked that
1‘1 = Bioé_l'

Hence P, is supported by {£{(K)|KeA} and each {(K) is a curve joining a
and b.
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Remark. The present example is a stochastic version of Hutchinson’s con-
struction of parametrized curves ([6], pp. 730-731).

¢) Random homeomorphisms.

Let X =0, 1]*> be equipped with the Euclidean metric. Let H<#(X) be
the set of all (graphs of) increasing homeomorphisms from [0, 1] onto itself.
Define

dy(Gr(h), Gri)=|h =W, + A~ =0,

where | ||, denotes the supremum norm and Gr(h) the graph of the ho-

meomorphism h. Then the topology of (H,dy) coincides with the topology

induced by the Hausdorff metric. Moreover, (H, dy) is a complete metric space.
Define ¢: (0, 1) x (0, 1)~ Con([0, 1]%)* by

p(x,y)=(S,,,, T, )
ey, v)=(xu, yv)
T‘c,y(ua U)z(xa y)+((1 -x) u, (1 _y) U).
Then ¢ is continuous.

For all (x, y)e(0,1) x(0,1) and all &, h'e H we have Sx,y(Gr(h))uTx,y(Gr(h’))eH.
Moreover
dy(S, (Gri)V T, (Gr(h)),S, (Gr(g)v T, (Gr(g))
<max{x,y, | —x, 1 —y} max{d,(Gr(h), Gr(g)), dx(Gr(K), Gr(g")}.

with

and

Let v be any probability measure on (0, 1) x(0,1) and g=veep~". Then Theo-
rem 5.1 implies that P, is supported by H.

Remark. The measures B, of the present example have been introduced by
Dubins-Freedman [2]. A detailed investigation of some of these measures can

be found in [5].

§ 6. Probabilistic Tools for the Investigation of P,-Random Fractals

It is the purpose of this section to develop the tools for determining the
Hausdorff dimension and Hausdorff measure of F-random sets. To a large
extend our results and techniques are inspired by the work of Mauldin-
Williams [9].

In this section g: Con(X)—[0, 1) is a Borel measurable function. Recall that
Q=(Con(X)")?. For I' =D and B>0 define f;. ,: 2—R, by

[o]

Jro@)=2 ]_[g(S,,,,,) S =1,

el n=
and abbreviate fc by f, 5
As always, u is a probability measure on Con(X ).

6.1. Theorem. The function R, >R _, | Z g(S,)Pdu(S,, ..., Sy_,) (where 0°:
=()) is decreasing.
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N-1
If ng(S )°du(Sg, ..., Sy_,)>1 then there exists a unique o>0 with

f z g8, du(Se, -, Sy_1)=1.

p=0
Proof. The first part of the theorem is obviously true. The second part follows
from the fact that the map

b1 T &S, du(So, .Sy )

is continuous and strictly decreasing with

N-1

lim | Y g(S,)du(Se, ..., Sy_,)=0.

Bow p=0

6.2. Deﬁnition Let a=oa(g) denote the « in the conclusion of the preceding
-1

theorem, ie. | Z g(S Y du(Sy, ....Sy_y)=1.

p=
The followmg theorem was proved by Mauldin-Williams [9] in a more
general setting. Due to the special situation we are considering we are able to
give a simple proof here.

6.3. Theorem (Mauldin-Williams [9]). Suppose

N—-1

§ Y g(S,)°du(Sos .. Sy_y)>1.

p=0
Let a=a(g). For qeN let W, be the o-field of all Borel subsets in Q
=(Con(X)")’ depending only on coordinates from D,= U {0,...., N—=1}".

Then, for every PeN, (f, Jgew is an LP-bounded martmgale wrt to (W)
which converges puP-a.e. and in LF(Q) to afunctzonf f@.
If, for p-a.e. (Sy, ..., Sy_y), g(S,)>0 for p=0,...,N—1 then { >0 uP-a.e.

Proof. Clearly (f, )qe]N is a martingale w.r.t. (2 ), . By induction on pelN we
will prove that ( fq Jqen 18 IP-bounded. Since f, ,20 and (f, ,);en is @ martingale
it is obviously I*'-bounded.

Now assume p>1 and that, for m<p, (f, J,n I8 L"-bounded. Define
M=sup{||f, .I.lqeN, m<p} where | [|,, denotes the ["-norm. Then M < co.
We claim that (f, ), is I7-bounded. By the definition of f, ., , we have

qu+1.a” j q+1¢x
if ( T g(sp)“fq,w(ﬂ’))pd(uD)N(%‘”, s PED)Au(S,, o Sy )
p=0

Il

p! B
= > Fg(So)os-...-g(Sy_y)
v '

!
Vot . Fvn-1=p YO - YN_

R ISR [ PN i idu(s s Sy_y)
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= J(g(So)"*+ .. +8(Sy_ ) du(Sgs -, Sy_ ) [ fall}

p’ voo VN -1
b e a0 S (S
N—-1"

vot . tvyo1=p LYg: -+ V
V0> iy VN -1 <P
W allve - gl

Using backward induction on ¢ this leads to

I frral =L 8(S)"*+ ... +8(Sy_ )" du(So, -, Sy_ )1 [ f1.al15

p‘ yoa VN -1
+ X [———J‘g(so) e (S ) dp(S,y, .
Vol .o vy_{!

Vo+...+tVN-1=D
VO, s VN1 <P

| T e sy an(S,s Sy

: qu‘p,au:g-...-qu_,,,af\::i;]

<[ g(So)?+ ... +8(Sy_)*dp(Sos . Sy_ )11 /1,403
+MP[(g(So)*+ ... +8(Sy_ )P du(So, ... Sy_,)

g—1

: Z (j(g(So)Pa‘f' e8P AulSy, ... Sy_ o))

Since 0= f, , <N, and by the choice of o,

[gSo)yP*+ ... +g(Sy_ )P du(S,, ..., Sy_) <1

we deduce that (| f, ,112),cn 1s bounded. This proves our claim.

379
,SN_J]
Sy )

By the martingale convergence theorem there is an f with fel?(Q) for all

peNN, such that (f, ), converges to f pP-a.e. and in IP(Q).

It remains to show that f>0 uP-ae provided g(s,)>0 for p-ae.

(Sos s Sx_ )

We will postpone the proof until we have proved the following lemma.

6.4. Lemma. Let the assumptions of the preceding theorem be satisfied and let f

be as in that theorem.
For geD let 7 be defined by
F1=9,

[

(teD).

Then, for uP-a.e. &, the following conditions are satisfied:
(i) For every geD, lim f, (&)= f(F").
g—

(ii) For every minimal covering I' < D,

|o|

f&)=% 11868,/

oel n=1

Proof. Since (f,

)
4,%/q
mediately from the fact that D is countable.

converges to f uP-ae the first statement follows im-
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Let I' be minimal and let & eQ satisfy (i).
For every gelN with I'< C, we obtain

fo

Jod )= 2 ﬂg (Sq 1)

geCqy n=
o] a—|o]

—z Z Hg(Saln) n g a-*(rlp)a

o€l 1€Cq— o) N=

il 9= |0
= Z ].—_[ g(SG'|I1) Z 1_[ g o'*(r|p))
oel n=1 1€Cq-10) p=1
[
- Z ng(so'ln) f;1 |al, a(ya
oel n=

Taking the limit over g yields the assertion of the lemma.

Continuation of the Proof of Theorem 6.3. We will show that >0 uP-ae.
provided g(S,) >0 for u-a.e. (Sq, ..., Sy_y)
Using Proposition 3.1 and Lemma 6.4 we deduce

WS f(9)=0}) =@ ()" ({«So, o Sy (SO, L N

N-1
Y g(Sp>af(9(p>)=0})

p=0

=u®@WY* ({(Sqs -, Sy_ ), (LO, ..., FE-y
Vp=0,...,N—1: g(Sp)af(y(p))ZO}).

Since g(S,)>0 for p-a.e. (S, ..., Sy_;) we deduce
AL f(A)=0 =P {Z1f(F)=0})".
This implies u?({L| f(¥)=0})=0or =1.
Since | fduP= [, ,du”=1 we get
L1 f(F)=0})=0.
Thus the proof of Theorem 6.3 is completed.

N_1
6.5. Corollary. Suppose | Z g(S,)°du(S,, ...,Sy_;)>1. Let a=a(g). Then

p=0

sup inf{f}. (&) 'eMin, I'>I}} <oo
I'oeMin

for pP-a.e. FeQ.
Proof. For pP-a.e. & we have

sup inf{f (&) 'eMin, ['>I;} <sup inf f, (¥)=Ff(F).

ToeMin q0eN g2 g0

Since | fdu® < oo by Theorem 6.3 the corollary is proved.
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Our next aim is to obtain a lower bound for

liminff., provided B<ul(g).

FeMin

N-1

6.6. Lemma. Suppose | Z 2(8,)°du(S,, ..., Sy_,)>1. For f<a=a(g) and u"-a.e.
S eQ there exists an me]N such that, for every ceD with |6|=m,
ol
H g8, f(F) = H g(S,,)',
(where f=f'® is defined in Theorem 6.3).
Proof. Let 6eD and pelN be arbitrary. Then, by Cebyshev’s inequality,
|a}
W ({9 [1 5.2 179 1{)
n=1

o}

<[ [186S, """ Pdu>(F) | f(F) duP(F).

Taking the union of the sets on the left-hand side when o runs through C,
yields

0 ({waaecq: f[g(56|n)“‘ﬁf(9°)>1}>
Jol

<Y [186,)Pe P duP(&) | (L) duP(S).

geCq n=1

For pelN with p(a— ) >a we have

N-1
§ 2 esyrePduS,,...,Sy_)<l.
p=0

Since
o]

S TS au)=[1°S e, autso 5y

geCqn=1

and,

{fPduP <o by Theorem 6.3, we deduce

i e ({y 13oeC,: Iig(Sa,n)“‘”f(y“) > 1}) <o

By the Borel-Cantelli lemma this yields

melN gzm

/w(ﬂ U {5”|30‘€Cq: Iﬁlg(sa'”)u~ﬂf(5pa)>l}):0.

Taking the complement of the set on the left-hand side leads to the conclusion
of the lemma.
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N-1

6.7. Theorem. Suppose ng(S )°du(Sy, ..., Sy_)>1. Let a=0(g). For f<ua
and pP-a.e. FeQ,

sup inf{f z(A)|'eMin, I'>1} 2 f(S).

T'oeMin
Proof. Let &€ satisfy the following conditions

lo| ol

ImeN VoeD: |ojzm=[] &S, ) /(¥ []8(S,.)° (%)
and - o "
VIeMin: f(#)=Y ﬂg(s f(&°). ¥

Then we obtain, for every I'eMin with I'>C,,

lo|
JN=Y1 [leSr &)=} Hg(Sm) =Ir,s(Z);

. ocel n=1 oel n=
1.e.
S(&£) £ sup inf{f ,(£) | TeMin, I'>1}.
I'geMin
By Lemma 6.6 and Lemma 6.4 pP-ae. ¥eQ satisfies conditions (x) and ).
Thus the theorem is proved.

6.8. Theorem. Suppose that, for p-a.e. (S, ..., Sy_;)eCon(X)¥ and p=0,...,N—1,
g(S,)>0. Let B<oc=oc(g) and deN be arbitrary. Then, for yP-a.e. &,

supmf{Zg S )dﬂg(Salnﬁ]FeMm F>F}>O

ael n=
N-1
Proof. Since | Z g(S Y du(S,, ..., Sy_,)>1 there exists an #>0 such that, for 4
={(Sg, > Sx_ 1)|g(S)>nf0rp 0,....N—1},
N-1
I Y g8,y duS,,....Sy_)>1. (%)
4 p=0
Define g,: Con(X)—[0, 1) by
0, g(§)<n
S =
) {g(S), gS)zn.

Then (x) implies «(g,)> B. Let f® stand for f. For all #€Q we have

o] o]
sup inf ) g(S,)* H g(5,,)° >Sup inf ) g,(S,) T1 2,5,
I'o I'>Io ger I'>Io gell n=1

|o

=n?sup inf ) ﬂg,,(Saln .

I'o I'>To gel n=
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By Theorem 6.7 the last expression in the above inequality is greater or equal
to f(F) for pP-a.e. & Since, by Theorem 6.3, [ /™ du®>0 we deduce that

|a]

sup inf » g(S )“H g(S,n ¥ >0 (&

I'o I'>To gel' n=

with positive probability.

To complete the proof we will show that the left-hand side in (¥) is either 0
with probability 1 or >0 with probability 1.

By Proposition 3.1 we have

Iz ({V

=u® Wy ({((SO, s Sy ) (PO, L, W1y

sup inf ) g(S,) H (S, -—O})

To I'>To ger

o]
sup inf 'S ¢(5,0 ¥ a5y T] st =0l
o I'>To p=0 r n=1

p*as

=@ ({((SO, ey Sy (PO, L N1y

Z—:1 (S )13 Sup inf zg(s(p) H g(Spri)n 0})

p=0 Ir>I' ger n=

sup inf Y g(S, Ulg(Saln)zo})]N;

I'>I' ger

et

since g(S,) >0 for p-a.e. (Sy,...,Sy_y)-
This implies our claim and the theorem is proved.

6.9. Definition. For ' <= D let

IF=max{lo|: gel’}.
N-1
6.10. Lemma. Suppose [ Y g(S)°du(S,,...,Sy_)>1. Let a=a(g). For neN
define h,: Q—-R _ by p=0

h,(#)=inf{f; (%) [ eMin, I'+{0}, | <n}.

Then (h,),.n is a non-increasing sequence of Borel measurable functions with the
Jollowing properties

(i) VreN Y&eQ: h, (¥)= Z g(S, )y min(1, h,(¥7)).
() hi=inth— inf f, 20,

nelN FeMin\{{®}}
(ii1) The following properties are equivalent:
a) h>0 on a set of positive uP-measure.
b) h>0 uP-a.e.
N-1

c) Y g(S,)y=1 pae
p=20
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Proof. By definition (h,),. is a decreasing sequence of Borel measurable
functions.

(i) For I'eMin and pe{0,..., N —1} let
I'(p)={oeD|pxgel}.

It can be shown that I'(p)eMin for p=0,..., N —1.
Obviously, for every %,

N-1
Jr, )= 2 88 ) fripy. ol L7
p=0

Using this last identity we obtain
h, . (L)=inf{f1, (F)|TeMin, I+ {0}, |[<n+1}

N-1
= Y 8 P inf{fr(), S eMin, I'+ {9}, [T sn+ 1}
=0

N-1

= Y. g(S,” min(1, inf(,,,(9")| AeMin, A+ {§}, 4] £n}
i
= ¥ g(8,) min(1, (7).
=0

(ii) is obviously true.
(iii) a)=>c). It follows from (i) and (i1) that
N-1
W)=Y g8,y min(1, h(?) ()
p=0
for all FeQ.
Since g <1 Eq. (1) implies that h is bounded by N, hence uP-integrable.
Using Proposition 3.1 and (1) yields

N-1

[hduP= | Z g(S,)* min(1, h(FP)) d(EPY (L, ..., FE=D)du(S,, ..., Sy_y)
ij (S, du(So, ..., Sy_y) f min(L, (&) du>(S).

Since, by the definition of «,

N1
> jg(Sp)“d,u(SO,...,SN_l):l.
=0
we deduce g
fhdy”z {min(1, h)dpu®
and, hence,
h<1 pP-ae. )
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Let # be the essential supremum of h. Using (1) and Proposition 3.1 another

time we obtain
N-1

2. &S, h(F )<y 3)
=0
for u-a.e. (Sy, ..., Sy_,)eCon(X)V and (u°)¥-ae. (FO, ..., FN-V)ecQV,
By our assumption #>0. Thus dividing the last equation by n and observ-
ing that A<y pP-ae. yields

N-1
Y g(s)r<1 @

for p-a.e. (Sq,....,Sy_1)-

N-1
Since [ ), g(S,)*du(S,, ..., Sy_,)=1 this leads to
p=0
N-1

> es,)r=1

p=0
for p-a.e. (Sy,....Sy_1)
N-1

o)=b) If Y Lip(S,)*=1 for p-a.e. (S, ..., Sy_,) then
p=0

hy=1 uP-ae.
and, therefore, by (i)
h,=1 uP-ae
hence
h=1 pP-ae

b)=-a) is trivial.
N-1

6.11. Theorem. Suppose | Y g(S,)°du(Sy,...,Sy_)>1. Let a=u0(g). Then the
p=0

Jfollowing conditions are equivalent

N-1
@ Y g(s)y =1 for p-a.e. (Sy,....Sy_y)
p="0
@) sup inf{f; (&) TeMin, I'>I;} >0.
TpeMin
for uP-a.e. &

(ifi) LP({ |sup inf fy,(#)>0})>0,
I'o I'>TIo

N-1
Proof. (i)=>(ii): Under the hypothesis that Z g(S, =1 p-a.e. it is easy to check
that, for every I'e Min, p=

fr.=1 uP-ae
This implies

sup inf fr,=1 uP-ae.
Ip I'>Io
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(it)=>(iii) is obviously true.

(iif)=(i): Let IyeMin be given. For I'’>I; and o€l let I, ={teD|g*1el}.
Then I eMin, and for every e, we obtain

mf fr L= inf Y [(ﬁﬂ&m)) > ﬁg Soxcln) ]

I'>Io gelg L \n=1 tely pei
=3 [(Heoar) or 3 ster]
=3 [t e s i)

6;0 (lﬁ g(Ss) ) min(1, h(F9)),

where h is defined in Lemma 6.10.
According to (iii) there is a Borel set B<Q with u?(B)>0 such that, for
every S €B, there exists a I, with inf f (¥)>0. By the preceding consider-
I'>rop

ations this implies that, for every ¥ eB, there is a I,eMin and a cel;, with
F°)>0. For geD let Q(o)={F|h(¥’)>0}.

S1nce Bc UQ(O’ we get uD(U Q(0))>0. Hence there exists a oeD with

1P (Q2(c)) > 0. Slnce WP (o)) = ({5” |h(#)>0}) Lemma 6.10 yields condition (i)
in the theorem.

6.12. Remark. Using the techniques developed in this section it can be shown
N-1

that, if ) g(S ,)=1 does not hold p-a.c., then for every pelN, (f Jrcmin 1S an
p=0
I’-bounded martingale with a countable index set satisfying

limsup fr,=o0 pP-ae
I'eMin
and
liminf f. ,=0 pP-ae.
FeMin
Another example of a martingale with a countable index set which is not a.e.-

convergent has been given by Dieudonné [1].

§ 7. Hausdorff-Dimension and Hausdorft-Measure of P,-Random Fractals

In this section we prove that - under rather weak conditions - there is a
number acR | such that P-a.c. compact set has Hausdorff dimension . Under
more restrictive assumptions we calculate the number «, thereby reproving
more general results of Mauldin-Williams [9] and Falconer [4] in our special
situation. Moreover we show that in most cases the a-dimensional Hausdorff
measure of P-a.e. compact set is 0. This result answers a question of Mauldin-
Williams [9] in the negative.
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7.1. Lemma. Let feR, and 6>0 be given. Then the following maps from X (X)
to R are Borel measurable.

(i) K>H#F(K).
(ii) K>#*(K).
(ii)) K — H-dim(K).

Proof. (i) Let K e (X) and ¢>0 be arbitrary. Then there exists a finite open
covering (G,), of K, with diam(G,)<¢ for all n and

Y diam(G,) < AL (K,)+e< 0.

Let G= U G, and & =d(K, X\G)>0. For every KeX (X) with n(K,, K}<d we

have K =G and, therefore, (G,), is an open covering of K, hence

HPK)< Y diam(G,)f < #P (K o) +e.

Thus, the function K —#(K) is upper-semi-continuous, hence Borel measur-
able.

(ii) Since #*(K)=sup #7(K) the second assertion follows immediately
from the first one. neN - n
(iii) For BeR, the set

{KeX (X)| H-dim(K)> B}

equals 1
U {Kex (X)) #" " "(K)>0}.

neN
Hence (iii) follows from (ii).

The following 0—1-law does not seem to be an immediate consequence of
one of the classical 0 —1 laws.

7.2. Theorem. Suppose that, for u-a.e. (Sg,...,Sy_;)eCon(X)¥ and every
pe{0,...,N —1}, there exists a ¢>0 with d(S,x,S,y)Zcd(x,y) for all x,yeX.
Let Bz0 be given. Then F, has the following properties

() P({Ked (X)|#*(K)=0})=0 or =1.
(i) B({KeA (X)|#*(K)=o0})=0 or =1.

Proof. (i} According to Theorem 4.5 we have
P({K|#*(K)=0})=u®(E)" ({((So: s Sy (Kos - Ky )

o (I:Q:sp(Kp)) =0})

:#®BLN({((SO7 "'?SN—l): (K05 ""KN—I))|
HPS,(K,)=0 for p=0,...,N—1}).
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According to our assumption we have, for p-a.e. (S,,...,Sy_;) and every p,
that ##(S (K ))=0 if and only if #*(K )=0. This yields

P{K|#*(K)=0})=(B,({K|A*(K)=0n)"
which proves (i).
(i) is proved in the same way.

7.3. Corollary. Let the assumptions of Theorem 7.2 be satisfied. Then there exists

an 020 such that
H-dim(K)=a

for Pra.e. Ke A (X).
Proof. Define a=inf{f=0|#”(K)=0 for B-a.e. KeX'(X)}. If a=c0 we ob-
viously have H-dim(K)Zo for F-a.e. Suppose x<co. Then there exists a
sequence f,|o such that #”~(K)=0 for P-a.c. K and all neN. This obviously
yields H-dim(K) <« for P-a.e. Ke A (X).

If «=0 then the corollary is proved. Suppose o>0. Let (f,), be sequence in
(0, ) with 8,7o. By Theorem 7.2(i) and the definition of & we have ##+(K)>0
for P-a.e. K and every neIN. This implies H-dim(K)z « for B-a.e. K.

The following theorem gives an upper bound for the Hausdorff-dimension
of P-random fractals. It has been proved by Mauldin-Williams [9] in a more
general context.

N-1
7.4. Theorem. Suppose | 3 (Lip(S,))°du(S,, ..., Sy_,)>1 and let a=a(Lip), i.e.
p=0

-1
"y Lip(S,)*du(Se, ---» Sy_1)=1.
p=0

Then #*(K)< oo and, in particular, H-dim(K)< « for P-a.e. Ke A (X).

Proof. Let y: Q—->A(X) be as defined in Theorem 3.7. By definition F,
=uPoy~1. To prove the theorem it is, therefore, enough to show #*(y (%))
< oo for uP-a.e. & According to Theorem 3.3 and Theorem 2.4 we have

AP (L)) <diam(X)*sup inf f, (&)
ro I'>To

for pP-a.e. & By Corollary 6.5 this last expression is finite u-a.e.

As the following example shows it may happen that H-dim(K)= g for B-
ae. K and f<a=a(Lip). (This holds for the graphs of most of the random
homeomorphisms constructed in Example 5.3c¢.)

7.5. Example. Consider X =[0, 1]*> with the Euclidean metric.

1 3
Define TO: XX by TO(X, y) = (Ex’ gy)

nd T X=X by Ty )= (4 ﬂ)+(1 (1_6) )

22\
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Let u=gq, 1, be the Dirac measure on Con(X)® concentrated in the point
3
(T, T;). Then we have Lip(To)zg and Lip(T))=1%.

Hence a=a(Lip) is determined by the following equation:
= [ (Lip(So)*+Lip(S,)*) du(S,, Sy)

) . 3\ /1
=Lip(T,)*+Lip(T))*= (]/7) + (—?:)
which yields x=2.

But according to Example 5.3¢) we know that P-a.e. Ke#'(X) is the graph
of an increasing homeomorphism of [0, 1] onto itself and, therefore, has
Hausdorff dimension 1.

The following theorem states conditions which ensure that a=ua(Lip) is
equal to the Hausdorff dimension of P-a.e. compact set. It is a special case of a
result of Mauldin-Williams [9]. The result of Mauldin-Williams has also
independently been proved by Falconer [4] under the additional assumption
that the Lipschitz constants of the maps involved are all uniformly bounded
away from zero. In the deterministic case B=tg s ) the following result
was first proved by Moran [10]. Another dimension formula for deterministic
self-similar sets can be found in Ruelle [12].

7.6. Theorem (Mauldin-Williams [9], Falconer [4]). Let X <R be compact
with X+0. Let d be the Euclidean metric on X. Suppose that, for u-a.e.
(So» > Sy_,)€Con(X), the following conditions are satisfied:

a) Vpe{0,...,N—1}: S, is a similarity
(i.e. 3r>0 Vx,yeX: d(S,x,S,y)=rd(x, y)).
b) Vo, p'e{0,... N=1}: p#p'=S,(X)n5S,(X)=0.

Let 220 be such that
-1

JZ Lip(S, du(Sg, .--» Sy_) = 1.
Then H-dim(K)=u for El-a.e. Kex'(X).

Proof. By Theorem 7.4 we have H-dim(K)=<o for P-a.e. KeX (X). To prove
the converse inequality it suffices to show that, for all f<a,

HP(K)>0 for P-ae KeA'(X). (1)
By the definition of P, this is equivalent to
AP (L) >0 for pP-ae. (2)

where 1 is defined in Theorem 3.7.

According to conditions a) and b) we know that the assumptions of
Theorem 2.5 are satisfied for pyP-a.e. & Hence Theorem 2.5 yields that there
exists a ¢>0 such that

c diam(X)? sup inf Y Lip(S,)* H Lip(S,,)f £ AP (Y (&) 3)

I'o I'>TIo ger
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for uP-a.e. & By assumption a) we have Lip(S,)>0 (p=0, ..., N—1) for u-a.e.
(So>---»Sy_,)eCon(X)*. Thus Theorem 6.8 is apphcable and yields that the
first expression in (3) is positive for uP-a.e. & Hence (2) is proved.

In the following theorem the a-dimensional Hausdorfl measure of P-a.c.
KeX'(X) is determined, where a=a(Lip). The theorem answers a questlon of
Mauldin-Williams ([9], Question 3.8) in the negative.

7.7. Theorem. Let the assumptions of Theorem 7.6 be satisfied. Suppose

N-1
[ ({(SO, s Sy_o| Y Lip(S,y+ 1}) >0

p=0

Then, #*(K)=0 for E-a.e. Ke A (X).
Proof. By the definition of P, we have to prove

H*W(F)=0 for uP-ae. . (%)
By Theorem 2.4 and Theorem 3.3 we deduce

|a|

A (F) =diam(X)*sup inf 3 []Lip(S,,)"

To I'>I'o gel n=1
for uP-a.e. & Hence Theorem 6.11 implies (x).

7.8. Theorem. Let the assumptions of Theorem 7.6 be satisfied. Suppose that there
exists a 0>0 such that Lip(S)2d6 for p=0,...N—1 and p-ae
(Sos > Sy_,)€Con(X). Then the following statements are equivalent :
N-1
(i) ) Lip(S,)*=1 for p-a.e. (S,,....Sy_;)eCon(X) .
p=0
(i) #*(K)>0 for P-a.e. KeA'(X).
(i) B,({KeX (X)|#*(K)>0})>0.
Proof. (i)=(ii). By the definition of P, we have to prove
HY(F) >0 for pP-ae & 1)

By Theorem 2.5 and Theorem 3.3 we know that there is a ¢>0 with

¢ diam(X)* sup inf ) Lip(S,)* ]_[ Lip(S,,)* = A* (W (), 2

I'o I'’>To el

for pP-a.e. & According to our assumptions this yields

|o|
¢ 87 diam(X)*sup inf ) T[] Lip(S, ) =AY (7)) (3)
To I'>To geI' n=1
for uP-a.e. & Thus (1) follows from Theorem 6.11.
(i) = (iii) is trivial.
(iif)=-(i) follows immediately from Theorem 7.7.
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7.9. Remark. It remains open whether the implication (i)=>(iii) in Theorem 7.8
is true without the assumption that, for p-ae. (S,,...,Sy_,)eCon(X),
Lip(S)24 (p=0,..., N=1).

7.10. Examples. a) The following example is a random version of the classical
Cantor set (see Mandelbrot [8], p. 210 and Falconer [4], Example 11.2).

Start with the unit interval I. Remove the first, second or last third of I at
random with equal probability 1. For each of the remaining two intervals of
length 1/3 proceed in the same way. Continue this process. What remains of I
is a random Cantor set.

In our language the above construction amounts to the following: Let T,
T,, T, be affine orientation preserving maps of IR onto R mapping I onto the
first, second and last third of I respectively.

Let p=3%&x,, 19+ 3810, 12T 561, 1o Then the random Cantor set described
above is a B-random set.

It follows from Theorem 7.6 that the Hausdorff dimension of P-ae Ke
A'(I) is equal to o, where

1= [ Lip(So)*+Lip(S,)* du(S,, ;)
=3(Lip(Ty)* + Lip(T,)") + 3(Lip(Ty)* + Lip(T))")
+3(Lip(Ty)* + Lip(T,))
=20,
1
hence oc=0i2.
log3
Since Lip(S,)*+Lip(S,)*=1 p-a.e. it follows from Theorems 7.4 and 7.8 that

0<H#*(K)< oo for P-a.e. KeA (I).

b) The construction of the following random Cantor set is given by Maul-
din-Williams [9] who also calculate its dimension. The construction is as
follows: Choose a point (x,y) from A={(s,1)e[0, 1]*|s<t} at random with
respect to normalized Lebesgue measure on 4. Set J,=[0,x] and J, =[y, 1].
Suppose J_ has been defined for every ceD(2) with |g|Sn. If J =[a,b] choose
(x,y) from 4 at random with respect to normalized Lebesgue measure on 4
and set J,,,=[a,x(b—a)], J,.,=[a+y(b—a),b]. Then the corresponding ran-
dom Cantor set is

K=\ U J,.

nelN oe{0, 1}

We translate this construction into our setting. Let

S§% 87 [0,11-[0,1]
be defined by
S =x1t
and
SPr@)=y+{1 -yt

Then we have Lip(Sy?*)=x and Lip(§}”)=1—y. Let yu be the image of normal-
ized Lebesgue on 4 w.r.t. the map 4—Con(I)?, (x,y)—(S%?, S7?).
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According to Theorem 7.6 the Hausdorff dimension of B-a.e. KeA'(]) is v,
where ) '
1= [ Lip(So)* +Lip(S,)*dp
11

=2(§) JIx*+ (1 —yyldydx,

hence a=%(}/17—3).
Since obviously Lip(Sy)*+Lip(S,)*+1 for p-a.e. (S,,S;) it follows from
Theorem 7.8 that #*(K)=0 for B-a.e. KeX ().

7.11. Remark. Mauldin-Williams [9] and Falconer [4] give a series of examples
of random compact sets most of which can easily be translated into our
setting. The random compact sets constructed in Examples 4.3, 4.4, 4.6, 4.7, 4.8
of Mauldin-Williams [9] and Example 11.4 of Falconer [4] all have a-dimen-
sional Hausdorff measure O with probability one, if o is their Hausdorff
dimension.
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