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Summary. Let  X be a comple te  separable  bounded  metr ic  space and # a 
Borel p robabi l i ty  measure  on the space Con(X)  N of all N-tuples  of con- 
t ract ions of  X with the topo logy  of pointwise convergence.  Then  there 
exists a unique/~-self-s imilar  p robabi l i ty  measure  P~ on the space Y ( X )  of 
all non -empty  compac t  subsets of  X. Here  a measure  P on ogC(X) is called 
kt-self-similar if, for every Borel set B c SU(X), 

N--1 ) 
P(B)= St (Ko .... ,K -lt  U=oS (Ki)sB 

If, for #-a.e. (So, ... ,  SN_I) , each S~ has an inverse which satisfies a Lipschitz 
condi t ion then there is an c~>0 such that,  for Pu-a.e. K ~ ( X ) ,  the Haus-  
dorff  d imension  H - d i m ( K )  is equal to c~. If  X c P ,  ~ is compac t  and has non- 
empty  interior  and if /~-a.e. (S o . . . .  ,SN_I)  consists of similarities which 
satisfy a certain disjointness condi t ion w.r.t. X then c~ is de termined by the 
equat ion  

N - 1  

~ Lip(S~)~dl~(So .... , SN_I)= 1, 
i=O 

where Lip(Si) denotes  the (smallest) Lipschitz  constant  for Si. Under  fairly 
general  assumpt ions  the e-d imensional  Hausdor f f  measure  of  Pu-a.e. 
KeJ~/g'(X) equals 0. 

I f /~  and  X are chosen in a ra ther  special way then Pu-a.e. KeJ~(X) is 
the graph  of a h o m e o m o r p h i s m  of [0, 1] (or a curve or the graph  of a 
cont inuous  function). 

w 1. Introduction 

The te rm " f rac ta l "  was in t roduced  by Mande lb ro t  for sets with a highly 
i rregular  s t ructure including all sets of non- integer  Hausdor f f  dimension. Man-  
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delbrot and others have used such sets to model various physical phenomena 
(c.f. [-8] and the references there). In that context those fractals seem to be of 
particular interest which have the additional property of being either strictly or 
statistically self-similar. 

A theory of strictly self-similar compact sets has been developed by Moran 
[10] and Hutchinson [6]. A basic result of Hutchinson says that for every 
finite set of contractions S0,...,SN_J- of a complete metric space there is a 

N--1 
unique invariant non-empty compact set K, i.e. K = ~ Sp(K). Lately, Falconer 

p=0 
[4] and Mauldin-Williams [9] introduced and investigated general concepts of 
statistically self-similar fractals. In particular Falconer showed that 
Hutchinson's result has a probabilistic counterpart. (I came to know Falconer's 
results only after I had finished most of the following investigations.) 

The starting point for the considerations in the present paper was a scheme 
used by Dubins-Freedman [2] to generate probability distribution functions at 
random (see also [-5]) which is the prototype of the construction introduced 
here. Inspired by the work of Mauldin-Williams 1-9] a generalization of (parts 
of) Hutchinson's theory to the probabilistic setting is given which includes a 
slightly more general version of Falconer's result quoted above and makes it 
possible to answer a question of Mauldin-Williams concerning the Hausdorff 
measure of statistically self-similar fractals. As a byproduct the methods of 
proof used in this paper enable us to give new (and simpler) proofs for some of 
the results already contained in Falconer [4] and Mauldin-Williams [9]. 

Now we will give a more detailed preview of our results. 
In w 2 we describe a method to construct a compact set from a given N-ary 

tree of contractions of a metric space, thereby imitating the construction of the 
classical Cantor set. We also obtain lower and upper estimates for the Haus- 
dorff measures of the sets thus generated using the contraction (Lipschitz-) 
constants of the contractions involved. 

In w a general scheme for producing statistically self-similar fractals is 
introduced. To generate a fractal at random we start with a probability 
distribution /~ on the set of all N-tuples of contractions of a given bounded 
separable complete metric space X. We define a probability measure P~ on the 
space JY"(X) of all non-empty compact subsets of X in the following way: First 
we choose an N-tuple (So,. . . ,  S N_ J-) of contractions at random with respect to 
# and set 

N--J. 
A1 = U Sp(X). 

p=o 

For every p ~ {0 . . . . .  N - 1} we independently choose an N-tuple 
(Spo . . . .  , Sp(~_l) ) at random w.r.t. # and set 

A 2 =  U sp spk (x  . 
p=O k 

We continue this process. Then K = ~ A, is a typical P ; r andom fractal. 
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In w 4 we show that the measure Pu is characterized by the fact that 

P~(B)=#| N ((So, . . . ,SN_I),(Ko . . . .  , K  N_ Sp(Kp)~B 

for every Borel set B ~v~('(X). Under more restrictive assumptions this result is 
already contained in Falconer [4]. 

In w 5 we show that a non-empty subset A of ~ ( X )  supports Pu provided 
there is a complete metric d A on A whose topology is weaker than that 
induced by the Hausdorff  metric and provided #-a.e. (S O . . . .  , SN_I) satisfies the 
following two conditions: 

N-1  
(i) V K  o . . . .  ' K N - I ~ A :  U So(Ko)~A, 

p=O 

(ii) 3c~(0,1) V K o , . . . , K N _ I ~ A  VL o . . . .  ,LN_I~A: 

d A So(Ko), So(L p <c max dA(KR, Lp). 
P P O<=p<N--1 

This result is used to show that the probabili ty measures introduced by Dubins 
and Freedman [2] on the probabili ty distribution functions are of the type P, 
for a suitably chosen #. Moreover, conditions are stated under which P~ is 
concentrated on graphs of continuous functions or curves. 

In w we investigate certain martingales connected with N-ary trees of 
contractions. In particular we obtain an example of a martingale indexed by a 
countable set which converges in every L P ( o o > p > l )  but whose pointwise 
lira sup is o~ a.e. and whose pointwise lim inf is 0 a.e. The results in this section 
provide the basis for the determination of the Hausdorff  measure and Haus- 
dorff dimension of Pu-random sets. 

w contains the main results. First we show that, under rather weak 
assumptions, the Hausdorff  dimensions of P~-random sets equal a constant c~ P~- 
a.e. Then we determine this constant c~ under the stronger assumption that X 
c N e and aI1 contractions involved are actually similarities which satisfy a 
certain disjointness condition with respect to X. Thereby we reprove results of 
Falconer [4] and Mauldin-Williams [9]. Moreover,  we show that, for P~-a.e. 
compact  set K, the e-dimensional Hausdorff  measure of K is zero provided # 
does not satisfy N-1 

L i p ( S y  = 1 #-a.e., 
p=0 

where Lip(S) denotes the contraction (Lipschitz) constant of the contraction S. 
This last result answers a question of Mauldin-Williams ([9], 3.8) in the 
negative. Under the additional assumption that there is a c > 0  with Lip(Sp)>c 
(p = 0 . . . . .  N - 1 )  for #-a.e. (So,. . . ,  SN_ 1) we prove that the following conditions 
are equivalent: 

N--1 
(i) ~ L i p ( S y =  1 for #-a.e. (S 0, . . . ,SN_I), 

p=0 

(ii) 0 < ~ ( K ) < o e  for Pu-a.e. K 

(i.e., K is an c~-set in the sense of Falconer [3] for P;a.e. K). 
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w 2. Fractals Constructed from Trees of Contractions 

In this section we describe a Cantor- l ike construct ion of a compact  subset of a 
bounded  metric space X starting with an N-ary  tree of  contract ions of X. Let 
us first fix the basic nota t ion  and definitions which will be used in the rest of 
the paper wi thout  further reference. 

Let (X, d) be a complete  separable metric space whose diameter diam(X) is 
finite. 

For  a map  S: X--,X let 

~d(Sx,~y) x,y~X, x , y }  Lip(S) = sup [ d-(~, 

be the smallest Lipschitz constant  for S which may  be infinite. S is called a 
contraction if Lip(S) < 1. 

By Con(X)  we denote  the set of all contract ions of X. Let Y ( X )  denote the 
space of  all non-empty  compact  subsets of X with the Hausdorf f  metric r/, i.e. 

t/(K, L) = sup({d(x, L) lxeK} w {d(K, y) lyeL}). 

Then (X(X) ,  t/) is a complete  separable metric space. Let  N denote the positive 
integers and N O = N u  {0}. For  N e N  let 

D=D(N)= U Dm(N) 
where m a n  

D,n=Dm(N)= U {0 . . . .  , N - l }  q 
q = 0  

and {O,...,N-1}~ i.e. D is the set of  finite sequences in { 0 , . . . , N - I }  
including the empty sequence. 

If a = ( a o ,  ..., aq) and z = ( z  o . . . .  , "or) are in D then Io-[ = q +  1 is the length of 
and o-* z = (ao, ..., aq, zo, ..., Zr) is the juxtaposi t ion of a and z (0 .  a = o- and a*~) 
= 0"), 

Let C=C(N) equal { 0 , . . . , N - I }  ~% with the produc t  of the discrete to- 
pology on {0, ..., N -  1}. 

For  q a N  let Cq = Cq(N) = {0 . . . . .  N -  1} q. 
For  a~D w C(N) and n ~ N  0 with n < la[ if a~D let 

I n = ( ~ 0  . . . .  , ~.-0. 

We define a partial order  on D u C(N) by 

We say that  a is preceding ~. 
A subset F~D is called a covering, if, for each zeC(N), there is an element 

crEF preceding ~. If  this a is uniquely determined we call F minimal. Let Min 
denote the collection of all minimal  coverings in D. It is easy to check that  
every element of Min is a finite set. We say that  F e M i n  is a refinement of 
A e M i n  and write A-<F if, for every z~F, there is a (unique) aeA with ~r~v. 
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The elements of f2= Q(X, N)=  (Con(X)N) D will be denoted by 

where ~ = (So, o , . . . ,  S~,(N _ 1))eCon (X) N. 
For a = 0 we abbreviate 

= (So, ..., SN_ l). 

Let f2 o = ~2 o (X, N) be the set of all ~ in f2, such that, for every o-= (an)n~No, 
q 

lim I~ Lip(S~jn):O. 
q--* oo n = l  

2.1. Lemma. Let ~ f 2  o be given. Then, for every e>0,  there exists a qoeN such 
that, for all q> qo and all o ~ : C q + l ,  

q 

[ l  Lip(S~I,) < e. 
n = l  

Proof. For q~N the set 

Uq={a~C(N) ~__ILip(Se,~)< @ 

is open in C(N). Since SPef2 o the sets (Uq)q~ N form an open covering of C(N). 
By definition Uqc Uq§ 1 and hencd the compactness of C(N) implies that C(N) 
= Uq for all sufficiently large q. 

2.2. Theorem. For every J e f 2  o the set 

K=K(&~) : = ~  U Seit . . . . .  Selq+l(X ) 
qeN t ~ e C q  + l 

is compact. Moreover, for every family (K~)e~ D in ~(X),  

K ( ~ ) =  lim ~) S~I 1 . . . . .  Sofq+~(K~) 
q-+o0 ffECq+ 1 

(where the limit is taken w.r.t, the Hausdorff metric). 

Proof. First we will show that 

( U Sell . . . . .  S~lq+l(Ka))qeiNo 
e ~ C q  + 1 

is a Cauchy sequence in (Jf((X), t/). 

Let ; > 0  be given. It is obvious that 

/q+l \ 
diam(Sol ~ . . . . .  Selq+l(X)) < { ~ Lip(S~l~) ~ diam(X). 

\ n =  1 / 

By Lemma 2.1 there exists a qo~N such that the right hand side is less than e 
for all q>qo and all a~Cq+ 1. Now let r>q>=qo be arbitrary. For  every 
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crr and every xES~I 1 . . . . .  Salq+l(Ka) we have 

d(x ,  U Sz]l . . . . .  S r 1 6 2  , S~I 1 . . . . .  S~lq+l(L)) 
"c~Cr + i 

where L=S~,(r ) . . . . .  Sa,(zlr_q)(Kc~,(vlr_q)) 
x~S~l 1 . . . . .  Solq+I(X ) we deduce 

for some "c~ Cr_ q. 

d(x, S~l 1 . . . . .  S,dq+l(L))~=diam(Sr 1 . . . . .  Solq+l(X)) <e.  

Similarly we can show that 

d( 0 Sail . . . . .  Solq+l(K~),y)<e 
a~Cq+l 

for every y s  ~ S~I 1 . . . . .  Sr 
Z ~Cr + 1 

This shows 

Since 

1"]( U So-I1 . . . . .  Salq+l (Kr  U S-oil . . . . .  S v ] r + l ( K z ) ) ~ , "  
GECq+I ~:~Cr + 1 

Hence our claim is proved. 
Since (2C(X), t/) is complete 

K ' =  lim ~) Scrl l  . . . . .  Sajq+l(Ka) 
q~o0 (~Cq+ 1 

exists. 
For  every q e N  and every r>q the set 

zeCv+l 

is contained in the closed set 

S<1 . . . . .  S<q+I(X ). 
(7~Cq + 1 

Hence the same is true for the limit K'. 
Since this holds for arbitrary q we obtain 

U . . . . .  
qeN aeCq + 1 

To show the inverse inclusion assume K ' . c  K. 
Then there exists an x ~ K \ K ' .  By the definition of K there is a a~C(N) 

such that 
x~S~l 1 . . . . .  S~I~+I(X ) 

for all q~N. 
For  sufficiently large q we have 

�89 K') > d i a m ( S ~ j  1 . . . . .  S~jq+ I(X)). 

Thus Sdl  . . . . .  Sa]q+t(Ka) is contained in the ball with radius �89 and 
centre x, which implies 
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tl(K', U S'~tl . . . . .  Sr162189 
"C ~eq + 1 

for all large q, a contradiction. 

Thus K'=K= ~ U s~11 . . . . .  S~lq+~(x ) and the theorem is proved. 
qEN aeCq + t 

2.3. Remarks. a) It is easy to check that, for every SP~f2 o, 

(~ U S~r]l . . . . .  S ~ [ q + l ( X ) =  U (~ sa[1 . . . . .  s ~ z l q + l ( x ) .  
q~N aeCq + 1 ~raC(N) q~N 

Moreover, for every ere C(N), the set 

(~ Sa i l  . . . . .  S a[q+ l ( X  ) 
q~N 

is a singleton and the map, which assigns to a the single element of 

(~ Sail . . . . .  S a t q + l ( X  ) 
geN 

is a continuous map from C(N) onto 

q~N aECq + 1 

b) The above construction generalizes a construction of Hutchinson [6]. 

Next we will give a lower and upper estimate for the Hausdorff  measure of 
the compact  set constructed in the first part  of this paragraph. 

To this end we introduce some more notation. 
Let E c X, 6 => 0 and c~ > 0 be arbitrary. Define 

Jfa~(E)=inf{,~=fiam(G.ylEcUG., G, open, d i a m ( G . ) < @ ,  

~a~(E)= inf {.~ldiam(E y , E  ~ U E ., d i a m ( E . ) < @ ,  

and 
~f~ (El = sup ~ ( E )  = sup ~ ( E ) .  

6>0 6>0 

Then ~ is an outer measure on X such that all Borel sets are ~4~-measurable. 
~f~ is called the :t-dimensional Hausdorff measure. The Hausdorff dimension of 
E is defined by 

H-dim(E) = sup {c~ > 0 [ ~ ( E )  > 0} = inf{c~ => 0 ] Y F~(E) < oQ}. 

For  other basic properties of ~ ,  ~f~, ~ and H-dim we refer to Rogers [11] 
or Falconer [3]. 

For reasons of completeness we include the following estimate of Hausdorff  
measure obtained by using the natural coverings. 

2.4. Theorem. Let 5f ~O o be given. Then, for every c~>0, 

} 3r ~ sup inf ~ ]7I Lip(S, ipYIFeMin , F>-F  o . 
FO~ Min Ijr~F p=l 
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Proof. Recall K=K(SP)=  ~ ~ S~I a . . . .  oS~Iq+~(X ). 
q~N aeCq + 1 

Let c~>0 be arbitrary. According to Lemma 2.1 there exists a q e N  such 
that, for every aED with [a[>=q, we have 

diam(X) [ I  Lip(S~Ip)< 6. 
p = l  

Let FeMin,  F;~ Cq be arbitrary. Then 

and 

Hence 

K = ~ S ~l ~ . . . . .  S ~ll~l(X ) 
aeF 

diam(Sr ~ . . . .  o S~ I1r (X)) < diam(X) I ]  Lip (Set.) < 5. 
n = l  

~;,'~(K)_<_ ~ diam(Sr 1 . . . . .  Sr IoI(X)) ~ 
o ' e F  

I~rl 
<diam(X) ~ I~ Lip(S~I,)L 

aeF n = l  

Since F>-Cq was arbitrary this implies 

o~o~(K) < inf tdiam(X)~ ~ I~1 } [ I  Lip(S~ ,)~tFeMin, F;~ Cq 
L ~ r e f  n =  1 I 

lal } 
_<diam(X) ~ sup in f .  2 l-[ Lip(S~I,)~I FsMin,  F>Fo �9 
- -  F o e  M i n  I . aeF  n = l  

The last inequality holds for every 6 >0  and, therefore, yields the statement of 
the theorem. 

For the statement of the next theorem let us recall that a similarity S: 
X ~ X  is a map such that there exists a constant c > 0 with d(S x, Sy )= c d(x, y) 
for all x, y e X .  Obviously we have c=Lip(S). 

The following result is closely related to Theorem 7.3 in Falconer [4J. 

2.5. Theorem. Let X ~ I R  d be a compact set with non-empty interior f2. Let 
SPef2 o be such that for every aeD and all p,p'E{O . . . .  , N - l }  the map S~,p is a 
similarity with 

G,p(2)c~s~,p(2)=O if p ,p ' .  (,) 

Then there exists a constant c > 0  depending only on X and the dimension d such 
that, for every c~ >__ O, 

Iol } 
cdiam(X) ~ sup inf ~ L i p ( S J  " " " I~ Llp(S,I,) IFeMln,  F ;~F 0 

F o e  M i n  ( a c t  n= 1 

_< ~(K(:e) ) .  

Proof. Since X is compact we have K=K(SP)=  ("] U S~11 . . . . .  SolI~I(X )- 
q ~ N  a e C q  + 1 
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Let 6 > 0  be arbitrary and let (U~)I_<._<,. be an open covering of K with 
diam(U~)<8 and U ~ K + O  for v = l  . . . .  ,m. Define 

~ =Io-,~DISo_rl . . . . .  So-i io-i (X) n K c ' ,  u~,O, 
k Io.l-1 

diam(X) I~ Lip(S~t,)>diam(U~), 
n = l  

diam(X) ~I Lip(S~I,) < diam(U~) . 
n = l  

According to the last two conditions in the definition of F~ we have neither 
a ~ z  nor z-<o- if ~, zeF~ are different. Due to condit ion (,) of the theorem this 
implies 

So.i1 . . . . .  S ~ i i,,i (2) n S~I i . . . . .  Sr N (X)-- O (1) 

for all cr, zeF~ with o'+z.  
Since all the maps belonging to Y are similarities we deduce, for aeF~, 

I~1 
diam (S~ I1 o . . . .  S~ II ~r (X)) = diam (X) H Lip (S. In) < diam (U,,), 

n = l  

hence 
S,I1 . . . . .  S o.i i,,.r(X)c {xMR"td(x, U,,c',K)< diam(U,,)} 

~B2diam(Uv)(Xv) for any xv6U~c~K, (2) 

where Br(x ) denotes the open ball of radius r and center x. Now let 2 a denote 
the d-dimensional Lebesgue measure. Since all maps in .S are similarities we 
have 

Io.I 
.[d(s~rll . . . . .  Sa IIo.1(2))=2d(2) H Lip(SO.IS' (3) 

n = l  

Combining (1), (2), (3) and the definition of I; yields 

Hence 

(2 diam(U~)) a 2a(B1 (0)) = 2d(B2 aiam(V~)(Xv)) 

>__ ~ ;?(s,,j~ . . . . .  s,~.~(2)) 
(1), (2) O.~Fv 

tol 
> Z 2a(~) H Lip(S~,I.) a 
(3) ~ f ~  n = l  

=> ~, ,~d(2) diam(U~) d L i p ( S J .  
O.E.Fv 

�9 . 2a .;J(BI(0)) 1 
a ;~  Llp(Sa)a -< ~d(2) ="c"  (4) 

Using the definition of the F]s we obtain 
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diam(Uj~> ~ max diam(Xy [ I  Lip(S~I,Y 
v = l  v = l  creFv n = l  

> ~ (1/~, Lip(Sj d) 2 Lip(So) d diam(Xy I~ Lip(S~I,Y 
v = 1 d e F y  a ~ F v  n =  1 

>cdiam(Xy ~, ~ L i p ( S j I  ~ Lip(S~l,y 
v = l  a ~ F v  n= l 

�9 r  >c diam(Xy ~, Lip(Sa) d l~ Llp(S~I,) �9 
aE ~ Fv n =  1 

By Remark 2.3 a it is easy to check that 0 F~ is a covering. 
v = l  

Define 
r= {o"eUF~lV"ceur , /  "c-do" ~ "c=o"}. 

Then F is a minimal covering�9 
{ i~i-~ i~l t 

Now define F0= o"eD ,=[I s Lip(S~I")>cS' ,=1I] Lip(S~I,)<c5 �9 

Then F~ is also minimal with F~-dF. 
Thus (5) implies 

diam (UJ ~ > c diam(Xy ~ Lip (S~) e I ]  Lip (S~I,) ~ 
v = l  a e F  n ~  l 

> c diam(X) ~ inf (Sr d ~ Llp(S~I.) [ F eMm, F ~ . 
n = l  

(5) 

Since K is compact and (Uj is an arbitrary finite open covering of K with 
diam(Uj < c5 we deduce 

~ ( K )  __> ~ ( K )  
f N~J F'>~}. 

_>_ c diam(Xy inf ~ L i p ( S y  I- [ Lip(S~n,YlF' eMin, (6) 

Let FoeMin be arbitrary. Since Lip(S j > 0  for all "ceD there exists a 6>0 with 

(I~1 o" eFo}" c3<min l ~=tLip(S~l,)l 

Obviously this implies Fo-dF ~. 
Hence (6) yields the assertion of the theorem. 

2.6. Remark. If (S~,o, ...,S~,(N_I) ) satisfies condition (*) in Theorem 2.5 then 
(S~,o, ..., S~,(N_~)) satisfies Hutchinson's open set condition ([-6], pp. 735/736)�9 

An analysis of the proof of Theorem 2.5 shows that the theorem remains 
true under the following weaker assumption: 
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X c F d  is compact and 5PEr20 is such that there exists a Borel subset W of 
X of positive Lebesbue measure satisfying S~,o(W)c W and S~,o(W)c~S~,p,(W ) 
=0 if p+p'  for all aeD and p,p'E{O,. . . ,N--1}. 

This last condition is implied by the open set condition of Hutchinson. 

w 3. A Probability P, on ~ ( X )  Induced by a Probability/z 
on N-tuples of Contractions of X 

As everywhere in the paper (X, d) denotes a complete separable metric space of 
finite diameter. The space Con(X) of contractions of X will be equipped with 
the topology of pointwise convergence. It is easy to check that Con(X) is a 
separable metrizable space which is the countable union of completely metriz- 
able subsets and hence a Suslin space. The function Lip: Con(X)~[0 ,1] ,  
S~Lip(S)  is lower-semicontinuous since it is the supremum of the continuous 

d(Sx, Sy) 
functions S~-~ (x + y, x, y~X). 

d(x, y) 
For N e N  the space 

o = ( C o n ( X ) ~ p  

will be equipped with the product topology. Since D is countable the space f2 
is a metrizable Suslin space and the product of the Borel field of Con(X) is 
equal to the Borel field of f2. In the following # is a Borel probability measure 
on Con(X) u. Let /.P denote the corresponding product measure on f2 
=(Con(X)N) D. By (pD)N we denote the product of the #D's on f2 N. 

3.1. Proposition. Define cp: Con(X) N x f2N~ f2 by 

e ((S o . . . . .  SN _ 1), (Y~ o~, ..., y(N- ,)): = j ,  
where 

= (So . . . . .  SN_ 1) 
and 

~.~=~q~(") for GeD, n~{0 . . . . .  N - t } .  

Then ~o is BoreI measurable such that, for every BoreI set B ~ s 

# | (pD)N (~0 - ' (B)) = gD (B), 

i.e. the image 
#@(pD)No~ o I Of. p@(pD)N w.r.t. (p is equal to #D. 

Proof. Obviously (p is Borel-measurable and the remaining assertion follows 
from the elementary properties of the product measure pD (Fubini's theorem). 

3.2. Lemma. Let g: Con(X)N o[O, l) be Borel measurable. Then 

f2g:={2P~f2JVa~C(N): ~-,I~] g(S<o,,_,,.o . . . .  , S(~,,_,,.(N_,))=0 } 

is a Borel set with llD(f2g) = 1. 



368 S. Graf 

Proof We have 

~2g=(~Z~lVmeN VcreC(N) 3qEN: 

n= lg(S(aln-1),o, ..', S(~rIn-1),(N-1)) < ~ �9 

Using the compactness of C(N) in the same way as in the proof of Lemma 2.1 
we obtain 

S 1 
~2g={,galk/meN 3 q e N  ~/GeCq:nOlg(S(aln_l),O .. . .  , (aln_l),(N_l))<~} 

q . . . S  1 
=ra~,qq?~qac(~Cq{~n~lg(S(a'n-l' * 0 ' '  ( a ' n -  1)*(N- 1') ( m }  

which is a Borel set. 
For a > 0  set 

Ba= 6:eO[3aeC(N): I ]  g(S(~l,-~),o . . . .  , S(aln-1)*(N-1))~=a �9 
n = l  

As above one can see that Ba is Borel. 
Define p: (0, 1)~[0,  1] by p(a)=flD(Ba). 
Then p is a non-increasing function�9 We will show that p vanishes identi- 

cally. Once this has been established the proof is complete because 12g 

a>O 
It follows from Proposition 3.1 that, for every ae(O, 1), we have 

p(a) = #Q(IAD) N ( f ( ( S  0 . . . . .  S N -  1), (~G~ " " " , ~co(N-1)))13 0-e C(N) ~ pe {0 . . . . .  N -- 1}: 

�9 - S t  (g in - i )*0 ,  " ' "  L'(aln-1)*(N-1))~a 
n = l  

< ~ #| ((So,..., SN_0, (5 :(~ . . . . .  5~ g(So,..., S N_ 1) 
p ~ 0  

n= 1,5 k (~r[n-- i)*0, ' (a[n-l)*(N--1)]--"J] 

=< n/~ ({(S o . . . . .  Sr~_ ,) I g(So, ..., SN_ ,) => a}) p(a). (1) 

Since g <  1 there exists a be(O, 1) with 
1 

/~({(So, ..., SN_ a)I g(So, ..., SN_0_-> b } ) < ~ .  

It follows from (1) with a=b that 
p(b) =0. 

Define t/= inf{ae(O, 1) Ip(a) = 0}. 
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Assume t/> 0. Then there is an a > t/with a b < t/. As before we deduce 

p(ab)< ~ #| ((So , ...,SN_O,(~(o~, . . . , y (N- l~ ) ) l~aeC(N) :  
p=O 

g ( S o  . . . . .  S N -  1) ~ "  "a'{S(P) S(P) ' 11~5~ ( , ~ l n - 1 ) * 0 ' ' " '  (aln-D*(N-1))  ?>~b �9 

Since a > r / w e  have p(a)=0, hence 

oo 

]7- ,,  ~S(p ) ~(p) a i ,~ .  ( ~ l . -  1 ) , o ,  . - . ,  L ' ( ~ I , , - 1 ) , ( N -  i)) =< a 
t l=l  

for/~~ 5 p(p~. This leads to 

p(ab) < N l~({(S o, ..., SN_ OIg(S o . . . .  , SN_O>=b}) p(ab), 

which implies p(ab)=0 ,  a contradiction. 
Thus t/= 0 and p vanishes identically. 

3.3. Theorem. The set (2o=~5'~(Con(X)n)D[Va~C(N): .  ]~Lip(S,j~)--0~ is a 

Borel set with #D([2o)= 1. ~ ~= i 

Proof  Define g: Con(X)n~[0,  1) by g(S o . . . .  ,SN__0= max Lip(S~) and use 
Lemma 3.2. O~,=<U-~ 

3.4. Lemma. For every m e n  the map Con(X)~-~Con(X), (S o . . . . .  S,,_~)~---~ 
S o . . . . .  Sin- i is continuous. 

Proof  It suffices to prove the lemma for m = 2. 

Let ~>0, (S(o ~ S[~ z and x ~ X  be given. 
g 

('(0) X S o ~ For every ( S o , S O , C o n ( X )  z with d(S lx , , ,  1 ) < ~  and d( o ~1 x, 

s (o)~  ~(o) v ~ . i  8 o -~1 ~ 1 ~ w e g e t  

d(S o o S 1 x, S(o~ S~ ~ x) < d(S o o S 1 x, S O o S~ ~ x) + ~oo~tl~ o ~1~(~ ~," ~o~(~176 ~1~(~ ~J'~ 

< Lip(So) d(S~ x, S(~ ~ x) + ~ < ~. 

Thus the map C o n ( X ) 2 - - * X ,  ( S o , S 1 ) - - - + S o o S z x  is continuous. Since Con(X) 
carries the topology of pointwise convergence this implies the lemma. 

3.5. Lemma. The map Con(X)x ~ff ( X ) ~  )U(X),  (S, K ) ~ S ( K )  is continuous. 

Proof  For S, T~Con(X) and K, LsJY ' (X )  we have 

t 1 (S (K), T(L)) <= q (S (K), S (L)) + t l (S (L), T(L)) 

=< sup({d(S x, S (L ) ) I x~K}  w {d(S(K), S y)] y~L})  

+ sup({d(S y, T(L))]y~L} w {d(S(L), Ty)  Jy~L}) 

G Lip (S) t/(K, L) + sup ({d (S x, Tx)] x ~ L}). 
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Let e > 0  be given and let T~Con(X) and L e X ( X )  be fixed. Then there are 
x~, ..., GeL  such that 

L cBe/3(x1) ~ . . .  uBa/3(Xk). 

For every SeCon(X) 
xeLc~ B~/3(xp) we deduce 

hence 

P, 
with d(Sxp, Txo)< ~ for p=l , . . . , k  

d(Sx, rx)<d(Sx,  SXp)+d(Sxo, rxp)+d(Txp, rx) 

< Lip(S) d(x, xo) + e/3 + Lip(T) d(xp, x) 
<~, 

sup{d(Sx, Tx)]x~L} <e. 

and every 

F, 
Thus for every SeCon(X) with d(Sxp, Txo)< ~ (p--1 . . . . .  k) and for every 
K e Y ( X )  with t/(K, L)<e,  we have 3 

tl(S(K), T(L)) <2e.  

Hence the lemma is proved. 

The following result is well-known (cf. Kuratowski [7], Vol. I, p. 166). 

3.6. Lemma. The map Y ( X )  x oU(X)--* Yf(X), (K, L)~-~ K u L is continuous. 

3.7. Theorem. Let K 6Y{'(X) be arbitrary and define 

~fi: f2---,Y(X) by 

=[0.T U s ~ , I W  ~ ~q ..... s~,~(x), aee~o 

O(J) jR, " ~r162 

Then ~ is a Borel measurable map. 

Proof. According to Theorem 2.2 0 is a well-defined map. It follows from 
Lemma 3.4 through 3.6 that for every q e N  and every family ( K ~ ) ~  in 3((X), 
the map 

f2--* 3(((X), 5P~-, ~+ S<~ . . . . .  So i I~I(Ko) 

is continuous. Thus Theorem 2.2 implies that, on ~2o, the map ~ is the 
pointwise limit of a sequence of Borel measurable maps. Since s o is a Borel set 
by Theorem 3.3 this implies the assertion of the theorem. 

3.8. Definition. For  a Borel probability measure # on Con(X) N let Pu be the 
image measure of #D w.r.t. ~0, i.e. for every Borel set B = ~ ( X ) ,  Pu(B) 
=#D(O-~(B)). 

3.9. Remark. a) It follows from Theorem 2.2 that a P,-random set can be 
constructed as follows: 

Take an arbitrary set K s ~ ( X ) .  Choose an N-tuple (So, ...,SN_I) at ran- 
dom w.r.t, the measure #. Form the set So(K)~.. .uSN_I(K ). Then, for p 
=0, . . . , N - l ,  choose independently an N-tuple (Sp, o, ...,SR,N_I) at random 
w.r.t. #. 
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Form the set 

So(So, I(K) u ... w So,N_I(K))w ... ~Ss_l (SN_l ,o(K)  w ... WSN_I,N_I(K)). 

Continue this process. The limit w.r.t, the Hausdorff metric is a typical P,- 
random object. 

b) The result described in a) is a stochastic version of a result of Hutchin- 
son ([6], p. 725). 

w 4. Characterization of P, as the Unique/~-Self-Similar Measure on ~ ( X )  

4.1. Definition. Let # be a Borel probability measure on Con(X) n. A probabili- 
ty measure P on J ( (X)  is called /~-statistically-self-similar (or #-self-similar) if, 
for every Borel set B c JF(X), 

P(B)=#|  . . . .  , KN_I) ) 

sCon(X) Nx Jf'(X) N ~)Sp(Kp)~B . 
p 

The following lemma is an immediate consequence of this definition. 

4.2. Lemma. Let qo: Y(X)--*IR+ be Borel measurable. Then, /br any p-self- 
similar measure P on ~'~(X), 

j dP= S  U=oS (K ) dPN(Ko ..... 
P 

4.3. Definition. For a Borel probability measure # on Con(X) N define 

Tu: ~ ( Y ( X ) ) - ,  ~(2(f(X)) 
by 

[Tu(Q) ] (B)=#|  ((So . . . . .  SN_I),(Ko, ..., KN_~)) So(Kp)~B , 
p 

where ~(JF(X)) denotes the Borel probability measures on X(X).  

4.4. Remark. A probability P E ~ ( f ( X ) )  is y-self-similar if and only if Tu(P)=P, 
i.e. if P is a fixed point of Tu. 

4.5. Theorem. Let # be a Borel probability o n  Con(X)  N. Then P~ is the unique #- 
self-similar probability measure on Y ( X ) .  Moreover, for every Qa~(~ff(X)),  the 
sequence (T,"(Q))n~ ~ converges to P, in the weak topology. 

Proof First we will show that T,(P~)= P,, i.e, that P~ is p-self-similar. 

Define 0: Con(X) N x ~(X)N~J~/ ' (X)  by 
N - - 1  

0((So, ..., (Ko . . . . .  U 
p = 0  

By Lemma 3.5 and 3.6 the map 0 is continuous. 
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Moreover Tu(Q) is the image measure of #| w.r.t. ~5 for any QE 
~(x(x)). 

Now consider the map ~o: Con(X)U x ~?N~Y2 as defined in Proposition 3.1 
and the map ~: Con(X) N x Y2N~Con(X) N x ~ ( X )  N defined by 

~((S0, . . . ,  SN_ d, (~o~,  . . . ,  S,,(~-1))) 

"= ( ( S  o . . . . .  S N  - 1), ( 4  (~9~176 ' ' '  , @ (~r 1)))), 

where ~ is defined in Theorem 3.7. 
Then it is easy to check that ~po~--Oocp. 
Next we note that the image of #| w.r.t. ~ is #| 
According to Proposition 3.1 the image of #| w.r.t. (p is #o  Since Pu 

=#0o~-1  we deduce, by combining these results, that Tu(Pu) =P~. 

Next we will show that lira T~(Q)=P~ for any Qe~(~d(x)).  
n--* oo 

Let Ac,~f'(X) be a closed set. Using induction on n it is easy to prove 

[Tu"(Q)] (A)= #D|176 (K,,)~D)ef2 X SC(x)D] 

U Xa[1 . . . . .  S a [ n ( K a ) @ A } )  . 
a ~ C n  

Hence we obtain 

lim sup [Tu"(Q)] (A) 
n~oo 

=inf  sup #D| (K~)~D)] U S~11 . . . . .  S~I,(K~)~A}) 
m t i l t h  ~ C  n 

<=#D| Q) {(~, (K~)~D) [ U Sail . . . . .  SoI,(K~)eA}) 
m n > m  a E C n  

__<#,| (K~)~D)Ey20 x :C(X)D[lim U S~I ~ . . . . .  S~l.(K~)eA}). 
t l ~  oo ~ C  n 

By Theorem 2.2 and the definition of ~ this last expression equals 

#~ | {(5~, (K~)o~D)eO o x X(x)DI O(Sg)~A}) 

which, in turn, is equal to #D(O-I(A)). 
Thus, by the definition of P~, we have shown 

lira sup [Tu" (Q)] (A) __< Pu(A). 
n~oo 

Since this is true for an arbitrary closed subset A of 3C(X) we deduce that 
(T2(Q))n~ converges to P~ in the weak topology. This last fact also implies that, 
except for P,, there is no fixed point for Tu. 

Hence the theorem is proved. 

4.6. Remark. The preceding theorem was mainly inspired by the techniques 
used in [5]. It has independently been proved by Falconer [4] in a slightly 
more restrictive case: Falconer defined a metric on ~(X) such that the corre- 
sponding topology is stronger than the weak topology and such that T u is a 
contraction w.r.t, this metric provided there is a c<  1 such that, for #-a.e. 
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(S O . . . . .  S~_I)~Con(X)  N, Lip(Sp)<C (p=O, ..., N -  1). Moreover, Falconer 
showed that under this condition Pu is the unique fixed point of T u. 

4.7. Problem. Is there a natural property which characterizes those probabilities 
on oU(X) that are #-self-similar w.r.t, some #? 

4.8. Remark. If /z is a point m a s s  e(T . . . . . .  TN ~) then #D is also a point mass. 
Hence it follows from the definition of P, as image of #D that P~ is a point 
mass, i.e. P~=e~ for a compact set K. It follows from Theorem 4.5 that K 
= To(K)w.. .  ~ TN_I(K ). Thus Theorem 4.5 contains Hutchinson's result ([6], 
p. 724) as a special case. 

w 5. Sets Supporting the Measure P, 

In this section we give a sufficient condition for a subset of S((X) to support 
the measure Pu" We use this condition to show how one can use the con- 
struction described in w to generate random curves and random homeomor- 
phisms. 

In the following # is always a Borel probability on Con(X) N. 

5.1. Theorem. Let A ~ Y ( X )  be a non-empty set and d A a bounded metric on A 
such that (A, dA) is a complete metric space whose topology is not stronger than 
the topology induced by the Hausdorff metric. Suppose that for #-a.e. 
(S o ....  , S u_ a)eCon(X) N the following two conditions are satisfied: 

N - 1  

(i) VK o . . . . .  KN-~eA:  U So(Ko)EA" 
p = 0  

(ii) Sc~(0,1) VK o . . . . .  KN_I~A VL o . . . . .  LN_~eA: 

N--1 N - 1  

dA ?oSo(Ko), U So(Lo)) <c max ldA(KR, Lo). 
p p=O I O < o < N -  

Then Pu is supported by A, i.e. A is Pu-measurable and P~(A)= 1. 

Proof Let W c C o n ( X )  N be a Borel set with # ( W ) = I  such that for all 
(So, ..., SN_I ) sW conditions (i) and (ii) are satisfied. Define g: Con(X)N~[0,  1) 
by 

g(So, . . . ,SN_I) = / s u p  

O, 

for (S O . . . . .  S u _ O e W  , 

elsewhere. 

Since da: A x A-MR is continuous with respect to the product of the topology 
induced by the Hausdorff metric it follows that the restriction of g to W is 
lower-semi-continuous. Since W is a Borel set this implies that g is Borel 
measurable. 
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Let Vg be the set of all ~ W  D such that, for all aeC(N),  

f i  g(S(~l,- 1),0 . . . . .  S<,_ ~),(N- 1)) = O. 
n = l  

By the choice of W as a set of full #-measure it follows from Lemma 3.2 that 
#~ ( Vg) = 1. 

Let K ~ A  be arbitrary. We will show that, for o~eVg, the sequence 

(Q) S~I ~ ..... Satq+~(K))q~ N 
q~Cq + l 

is Cauchy in (A, dA). 
Let ~eVg and e > 0  be given. As in the proof of Lemma 2.1 it can be seen 

that there exists a qo~N with 

qo 

W e  C~o: I ]  g(S(<,-1),o, --., S(,,t,->,(N-~))<e. 
n = l .  

For q > m > qo we deduce 

dA( 0 S<, . . . . .  S<m+l(K), 0 S<~ . . . . .  S<~+~(K)) 
~7~Cm + 1 cr~Cq + 1 

~ ' dA  "~ U Sn(  U S n , ( ( r ] l )  . . . . .  Sn,(a[q)(K ) 
n n = O  GffCq 

<g(So . . . . .  SN_I) max dA( (._) S,,,(~j1)... S,,,(~,j,,,)(K), ~) S,,,(~11)... S,,(olq)(K)). 
0 <n<N-1  aeCm aeCq 

By induction it follows that there exists a re  C~+~ with 

de(Q) S~II'"S<m+I(K), U S,  I1 ..... S<q+I(K)) 
a@Cm+l (~Cq+l 

ra+ l 

--< FI g(S(~t~),0 . . . .  , S(~In),(N-1))dA(K, QJ S(~Iq+I),,~(K))<=s diamA(A) 
n = l  K~Cq-m 

where diamA(A ) denotes the diameter of the metric space (A, dA). Hence our 
claim is proved. 

Since (A, da) is complete the sequence 

( U Sr 
~eCq + I 

converges in (A, dA). 
If, in addition, ~e~2 0 then the above sequence converges w.r.t, the Haus- 

dorff metric t 1 to ~(~9~). Since the topology induced by dA is not stronger than 
the topology induced by t/ it follows that the two limits agree, hence that 
~ ( ~ ) e A  for #~ 5s Since f2=(Con(X)N) ~ and ~ ( X )  are Suslin spaces and 
since ~ is Borel measurable this implies that A is measurable w.r.t. #Oo~-~ 
=P~ and satisfies P~(A) = 1. 
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5.2. Corollary. The support of the measure Pu is equal to the intersection of all 
non-empty closed subsets A of  28~ ( X) such that, for ~t-a.e. 
(S 0, ..., SN_ 1)eCon(X) N and for all (K o, ..., Ku_I )eA  N, 

N--1 

U Sp(Kp)eA" 
p = O  

Proof. By Theorem 5.1 each closed set A with the properties stated in the 
corollary supports P,. Thus the assertion of the corollary follows. 

5.3. Examples. a) Random continuous functions. 
Let E be a compact subset of ]R e and [a, b] a compact non-trivial interval 

in ]R. Let X =  [a,b] x E carry the Euclidean metric d. Consider the space 
~( [a ,b ] ,E)  of all graphs of continuous functions from [a,b] to E with the 
supremum metric. Let (A, dA) be a non-empty closed subspace of (E([a, hi, E). 

Suppose that # is a probability on Con(X) N such that H-a.e. 
(So,. . . ,  S N_ 1)~Con(X) N satisfies the following conditions: 

! l !  p (i) S o =S o x So, where Sp(]a , b D csS'o,(]a , b u =O for p 4p ' ,  
N - 1  

(ii) VK o . . . .  , K N _ ~ A :  ~ So(KR)~A. 
o = O  

Then Pu is supported by A. 

Proof The metric d A generates the same topology on A as the Hausdorff 
metric t/ (Kuratowski [7], Vol. I, p. 223). Moreover, (A, dA) is obviously a 
bounded complete metric space. To apply Theorem 5.1 it suffices, therefore, to 
show that condition (ii) in that theorem is satisfied. Let 

(Ko)o<p<=N_ 1 and (Lo)o=<p__<N_I in A be given. 

We will prove that 

N - I  

d a So(Ko), S;(Lo) <_ max Lip(So) max da(Kp,Lo) 
P P --O<=p<=N--1 O<=p<=N--1 

N--1 N--1 

provided (S O . . . . .  SN_I) satisfies (i) and (ii). Since U SR(Ko) and ~ So(Lo) are 
p = 0  p = 0  

N--1 

graphs of continuous functions on [a, b] by (ii) and since Q) S'o(]a , b u is dense 
p = 0  

N - 1  

in [a,b] it is enough to show that, for every x~ U S'p(]a, bU, every y with 
O=0  

N - 1  N - 1  

( x , y ) e U S p ( K o )  , and every z with ( x , z ) sUSo(Lo )  we have ]]y-zH 
p = 0  p = 0  

<ma x  Lip(So) max dA(KR, Lp) (where [] Ir denotes the Euclidean norm). Suppose 
P O 

x~S'o(]a, bD. Then (i) implies (x,y)eSp(Ko) and (x,z)~So(Lo). There exists a 
(u, v)~K o with So(u, v)=(x,y). Since L o is a graph there exists a unique w e e  

N--1  

with (u, w)eL o. Then So(u , w)=(S;(u),S~(w))=(x,S~(w)). Since ~ Si(Li) is a 
i = 0  



376 s. Graf 

graph this implies S~(w)= z. Then  we deduce 

Ii y -  ~tl = I1 s'd (v) - s'd (w) ll = II So(u, v) - s o(u, w) ll 

< Lip (So) II (u, v) - (u, w)[I < Lip (So) d A (KR, Lp) 

which proves our  claim. 
By Theo rem  5.1 we conclude that  P, is suppor ted  by A. 
To give a brief specific example let [a,b]=[O, 1]=E and let A 

= {fecg([0, lJ, [0, 1 ] ) i f ( 0 )=0 ,  f ( 1 ) =  1}. Let  v be the normal ized Lebesgue mea- 
sure on A = {(x 1, x2)e[0,  []2[X1. q-X 2 ~ 1}. For  (xl, x2), (YI, Y2) eA define contrac-  
t ions S~ ,x>y~'yz, ... by 

S~ 1 .... Y1"2 (u, v)= (x I u, (1 -Y2) v), 

S~ 1 .... YI'Y2(u, v )= (x  1 +(1 - u )  (1 - x  1 -x2 ) ,  1 - y 2  + ( 1 -  v) (Yl + Y 2 -  t)), 

S~ ..... Y*'Ya (u, v) = (1 - x  2 + UX2, Yl "{- I)(1 --Yl))" 

Let # be the image of v |  with respect to the map 

((xl, x~), (y~, y=))-+(s; ''x~'''''~, ~* '~"*"=  v.~,,x~,,~,,a 

Then # obviously satisfies (i) and (ii). Hence  the corresponding measure P~ is 
concent ra ted  on A. 

b) R a n d o m  curves joining two points. 
Let  E c l R  e be compact  with the Eucl idean metric. Let  # be a probabil i ty  

measure on Con(E) N such that  there are a, beE and, for #-a.e. 
(To,...,TN_,)eCon(E) N, To(a)=a , TN_l(b)=b, and Tp(b)=Tp+l(a ) for p 
= 0  . . . .  , N - 2 .  Then  P~-a.e. KeoU(E) is a curve (i.e. cont inuous image of [0, 1]) 

joining a and b. 

Proof Let  X = [ 0 ,  t ] x E  be equipped with the euclidean metric. Define (p: 
Con(E) N ~ Con (X) N by 

(D(To . . . .  , TN- 1)~---(So . . . . .  SN-  1) 
with 

Then  qo is continuous.  Define/7=/2o ~o 1. If 

A = {fecg([0, 1], E)l f (0)  =a ,  f (1)  =b} 

then A is easily seen to satisfy condi t ion (i) and (ii) in the preceding example 
for fi-a.e. (S O . . . . .  SN_0eCon(X) .  Hence  Pg is suppor ted  by A. Now define ~: 
Y ( X )  ~ 0ff(E) by 

~_(K)={yeElSxe[O, 1]: (x, y)eK}. 

Then ~ is Borel  measurable  and - using Theo rem 4.5 - it can be checked that  
e =V~o~-l.  

Hence  P, is suppor ted  by {~(K)IKeA} and each ~(K) is a curve joining a 
and b. 
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Remark. The present example is a stochastic version of Hutchinson's con- 
struction of parametrized curves ([6], pp. 730-731). 

c) Random homeomorphisms. 
Let X = [ 0 ,  1] 2 be equipped with the Euclidean metric. Let H c J s  be 

the set of all (graphs of) increasing homeomorphisms from [0, 1] onto itself. 
Define 

du(Gr(h), Gr(h'))= Ilh-h'[I ~ + IIh -1 -h'-~[I ~, 

where II I[~ denotes the supremum norm and Gr(h) the graph of the ho- 
meomorphism h. Then the topology of (H, du) coincides with the topology 
induced by the Hausdorff metric. Moreover, (H, dn) is a complete metric space. 

Define <o: (0, 1) x(0, 1)~Con([0,  112) 2 by 

~o(x, y)=(s~,,, L,,) 
with 

s~,.(u,v)=(xu, yv) 
and 

Tx, y (u, v) = (x, y) + (( 1 - x) u, (1 - y) v). 
Then (p is continuous. 

For all (x, y)~(0,1) x(0,1) and all h, h 'eH we have S~,y(Gr(h))u T~,y(Gr(h'))eH. 
Moreover 

du (Sx, , (Gr (h)) u T~,, (Gr (h')), Sx,, (Gr (g)) ~ T~,, (Gr (g'))) 

~max{x,  y, 1 - x ,  1 - y }  max{dn(Gr(h), Gr(g)), dn(Gr(h' ), Gr(g'))}. 

Let v be any probability measure on (0, 1)x(0, 1) and #=vocp -1. Then Theo- 
rem 5.1 implies that P~ is supported by H. 

Remark. The measures P~ of the present example have been introduced by 
Dubins-Freedman [2]. A detailed investigation of some of these measures can 
be found in [5]. 

w 6. Probabilistic Tools for the Investigation of P~-Random Fractals 

It is the purpose of this section to develop the tools for determining the 
Hausdorff dimension and Hausdorff measure of Pu-random sets. To a large 
extend our results and techniques are inspired by the work of Mauldin- 
Williams [9]. 

In this section g: Con(X)~  [0, 1) is a Borel measurable function. Recall that 
f2=(Con(X)N) D. For F ~ D  and f i>0  define fr, p: O--*IR+ by 

A,p(s~l= Z [Ig(&j.) ~, G~,~-~I, 
cr~F n =  1 

and abbreviate fc~, p by fq, p. 
As always, # is a probability measure on Con(X) N. 

N - 1  

6.1. Theorem. The function lR + ---*IR + , fit-* y ~ g(S p) p d#(So, ... , SN_ t) (where 0~ 
= O) is decreasing, p- o 
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N - 1  

I f  ~ ~ g ( S o ) ~  then there exists a unique c~>0 with 
p=0 

N-1 
Z g ( S y d # ( S o , ' " ,  SN-1)= 1. 

p=0 

Proof The first part of the theorem is obviously true. The second part follows 
from the fact that the map 

N-1 

P-*~ F, g(Syd#(So, ..., SN_I) 
p=O 

is continuous and strictly decreasing with 

N-1 

lim S ~ g ( S J d # ( S o  . . . .  , SN_I)=0. 
/~co 0=0 

6.2. Definition. Let c~=c~(g) denote the ~ in the conclusion of the preceding 
N-1 

theorem, i.e. ~ ~ g(Syd#(So ,  ..., SN_I)=I.  
p=O 

The following theorem was proved by Mauldin-Williams [-9] in a more 
general setting. Due to the special situation we are considering we are able to 
give a simple proof here. 

6.3. Theorem (Mauldin-Williams [9]). Suppose 

N--1 

2 g(Sp ) 0 d # ( S 0 , ' ' ' , S N - t )  ~ '1 .  
0=0 

Let e=~(g). For q e N  let 9.1q be the a-field of all Borel subsets in f2 
q 

=(Con(X)U) v depending only on coordinates from Dq-- ~ {0, ..., N -  1} ~ 
p=O 

Then, for every peN,  (fq,~)q~ is an LP-bounded martingale w.r.t, to (9~q)q~ N 
which converges #~-a.e. and in L0((2) to a function f =- f(g). 

If, for #-a.e. (So,. . . ,  S N_ 1), g(Sp) > 0 for p = 0 . . . . .  N - 1 then f > 0 #D-a.e. 

Proof Clearly (fq,~)q~ is a martingale w.r.t. ('~q)q~IN. By induction on p e n  we 
will prove that (fq ~)q~ is LP-bounded. Since fq, ~ > 0 and (fq, ~)q~N is a martingale 
it is obviously Ll-bounded. 

Now assume p > 1  and that, for re<p, (fq,~)q~N is Lm-bounded. Define 
M--sup{llfq,~lLmLqsN, re<p} where II II., denotes the L~-norm. Then M < c o .  
We claim that (f0,,)o~N is LP-bounded. By the definition of f q+ 1,~ we have 

II fq+ ~,,ll~ = 5fg+~,,d# D 
/ N - 1  \P  

(p) , , .  = II ( ~ g(so) f~,~(J )) d(#~)~(~(~ ..., ~('~-1~) d#(So, S~_ 1) 
\ p =  0 / 

= E P! fg(So) ~~ . . g ( s ~ _ 0  . . . . .  

vo-~...+vN-1:p VO[ " ' "  VN-I! 
�9 ]lfq ~ ;~ ...' Ilfq,~ll;~',z*~d#(So, .. . ,SN_I) 



Statistically Self-Similar Fractals 379 

= ~ (g(So)P~ + ... + g ( S N _ y  ~) d~(So, ..., SN_,)If f~,=ll~ 

~- 2 VO ! - - -  ,Yg(So)  v~ ' " ' g ( S N - 1 )  v~ i~d/ / (So  , " ' , S N - 1 )  
vo+ .. .+VN-l=p "" VN--*' 

vo, ..., vN -1 < P 

�9 I]fq ~l ;o. . . . '  Ilfq,~ll~:-', .  

Using backward induction on q this leads to 

Ilfa+ i,=l[~=[~ g(So) p~ + ... + g(SN-1)V~ d#(So, "",SN-1)]q ][fl,~]l~ 

[Vo! P! + ~ ..2VN_,,~g(So)~O~.....g(SN_O . . . . .  d~(So,...,Sx__]) 
VO+.. .+VN_I~ p 

VO, ..., VN- I < p 

p-- 

�9 [Ifa_p,=l[;~ _ ] �9 - I l l . .  ~il~-~ 

[~ g ( S o )  ap -~- . . .  -]- g ( S N _  1) pa d ] ~ ( S o ,  . . .  , S N _ 1)] q [1 f,, ~][ 

-~- M P  ~ (g(So) a -~ ... ~- g ( S N - 1 ) a )  p d ~ ( S o ,  . . . ,  S N - 1 )  

q - 1  

E (~ ( g ( S o ) P a  ~ - ' "  ~t_ g ( S N _  1)p a) d # ( S o , . . . ,  SN  - 1))p. 
p=o 

Since 0 < f l , ~ < N  , and by the choice of ~, 

S g(SoY ~ +. . .  + g(SN_ ~)p~ d#(So, . . . ,  S~_ 1) < 1 

we deduce that (]]fq,~]]~)q~ is bounded. This proves our claim. 
By the martingale convergence theorem there is an f with feLP((2) for all 

peN,  such that (fq,~)q~ converges to f #D-a.e. and in LP(Q). 
It remains to show that f > 0  #D-a.e. provided g(Sp)>0 for #-a.e. 

(So, ..., SN_ 0. 
We will postpone the proof until we have proved the following lemma. 

6.4. Lemma. Let the assumptions of the preceding theorem be satisfied and let f 
be as in that theorem. 

For a~D let 5 :~ be defined by 

5'~ = 5:~** (z6D). 

Then, for #D-a.e. ~,, the following conditions are satisfied: 

(i) For every aeD, lim fq,~(5 :~) =f(5:~). 
q~oO 

(ii) For every minimal covering F ~ D, 

f ( 5 : ) =  ~ I-[ g(S~l,)~f(5:~) �9 
a~F n= 1 

Proof Since (fq,~)q converges to f ktD-a.e, the first statement follows im- 
mediately from the fact that D is countable. 
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Let  F be minimal  and let 5~  satisfy (i). 
Fo r  every q ~ N  with l"~Cq we obtain 

Iol 
fq,~(5~) = Z N g(S4,)~ 

a ~ C q  n =  1 

I~l q-I~l 
S = Z Y~ [I g(s,~,) I1 g(,,c~o~) 

o'eF ~eCq-  lal n=  1 p =  1 

S a = 2 I~ g(So-ln) ~ I~ g(-*(~lp)) 
a E F  n =  1 z ~ C q -  I~1 P =  i 

= F, [ I  g(S~l~)~fq-I~j,~(Se~) �9 
a ~ F  n =  1 

Taking the limit over q yields the assertion of the lemma. 

Continuation of the Proof of Theorem 6.3. We will show that  f > 0  #D-a.e. 
provided g(So)> 0 for #-a.e. (S o . . . . .  SN_I). 

Using Proposi t ion  3.1 and L e m m a  6.4 we deduce 

/*D({~ ] f(SP) = 0}) = #| (f((So, ... ' SN - 1), (~(o, . . . . .  $o(N 1))) 

N - 1  

p=o J /  

= ~ |  s~_  p, (~(o) . . . .  , ~(N-1))1 

Vp = 0, ..., N - 1 : g ( S y f ( 9  ~ = 0}). 

Since g(Sp)> 0 for #-a.e. (So, . . . ,  S N - 1) we deduce 

~ D ( { ~  I f ( a P )  = 0}) = (t~ ~ ({5" I f ( ~ )  --  0})) N. 

This implies #D({5 ~ ] f ( ~ ) =  0} )=0  or = 1. 
Since S f d #  D = Sfq,~ d# D = 1 we get 

#D({~ I f ( ~ )  = 0}) = 0. 

Thus the p roof  of Theorem 6.3 is completed. 

N - 1  

6.5. Corollary. Suppose ~ ~ g(Sp) 0 d#(S o .. . .  , SN_I)> 1. Let 0~=a(g). Then 
p = 0  

sup inf{fr ,~(6e) lF~Min,  F)-Fo} < oo 
FoeMin 

for/~~ 6Peg2. 

Proof. For  #D-a.e. 6 e we have 

sup inf{fr,~(6#)lFeMin, F~-Fo} < sup inf fq,~(Se) =f (6e) .  
Fo~ Min qo~N q>=qo 

Since ~fd#  D < oo by Theorem 6.3 the corollary is proved. 
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Our next aim is to obtain a lower bound for 

lim inffr, e provided fl<c~(g). 
F~Min 

N - 1  

6.6. Lemma. Suppose ~ ~ g(So) ~ d#(So,... , SN_I)> 1. For fi< a = ~(g) and #D-a.e. 
p = O  

5eel2 there exists an m e n  such that, for every aED with lal >m, 

lal I~l 
1~ g(S~p,)~'f(5t~') =< ]-] g(S~r,)e, 

n = l  t l = l  

(where f =f(g) is defined in Theorem 6.3). 

Proof Let aeD and p e n  be arbitrary. Then, by Cebyshev's inequality, 

#o (~5,, I l ]  g(S~l.)'-~ f (Y")  > 1 
t [n=l 

<= S I-[ g(S~.) ~(~-~) d#~ ~ f(Y)P d#D(Y) �9 
I1=1 

Taking the union of the sets on the left-hand side when cr runs through Cq 
yields 

I-I 
< f 2 I] g(S.I.)"(=-P)d#~ " 

tXECq n =  1 

For p e n  with p(c~-fl) >c~ we have 

N 1 

~ g ( s y  (~-e~ d#(So,..., S~_ 2) < ~. 
p = O  

Since 
,,~l I N - 1  ]q 

~, [I g(S<.)P(~-~) d#~ J ) =  ~p~og(So)P(~-~) d#(So, ..., SN-~) 
f f~Cq n ~  1 = 

and, 

~fpd#O< co by Theorem 6.3, we deduce 

#D 5P[3aeCq: l-[g(Sol,)~-~f(SP~)>l < 
q = l  n = l  

0(3. 

By the Borel-Cantelli lemma this yields 

--0. 

Taking the complement of the set on the left-hand side leads to the conclusion 
of the lemma. 
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N - 1  

6.7. Theorem. Suppose ~ ~, g(Sp) ~ d#(So, . . . ,  S N_I) > 1. Let 
and #D-a.e. 5t~ E(2, o=o 

sup inf{fr,~(SP)lFeMin, F~Fo} > f(Se). 
Foe Min 

Proof Let 5z~2 satisfy the following conditions 

and 

= ~(g). 

3 m e N  VaeD: [a[ >m ~ I-[ g(S~l,)~f(SP~)< [I  g(S~l,)P 
n = l  n = l  

VF~Min: f(Sz)= ~ 1~ g(Sr 
o'eF n= 1 

Then we obtain, for every FeMin  with F~-C,~, 

f(5~) = ~, ~[ g(S~l.)~f(SP~)--< Y'. [ I  g(S~l.)Z=fr, z(SP), 
aeF n= 1 aeF n = 1 

i . e .  

For fl < o~ 

(,) 

(*) 

f(5~)__< sup inf{fr, z(Sa)lreMin, r~-Fo}. 
FoEMin 

By Lemma 6.6 and Lemma 6.4 #D-a.e. Y~f2 satisfies conditions (.) and (*). 
Thus the theorem is proved. 

6.8. Theorem. Suppose that, for g-a.e. (So, ..., SN_I)6Con(X) N and p - O ,  ..., N - I ,  
g(Sp)>0. Let fi<c~=e(g) and d e n  be arbitrary. Then, for #D-a.e. 5~, 

0 

N--1 

Proof Since S ~ g ( S y  d#(S o, ..., S N_ 1) > 1 there exists an t/> 0 such that, for A 
p = 0  

={(S O .... ,SN_I)]g(Sp)>t l for p=0,  . . . , N - l } ,  

N--1  

2 g ( S p )  fl d # ( S o , ' " ,  S N - 1 )  > 1. ( * )  
A p = O  

Define g~: Con(X)~[0,  1) by 

0, g(S) <r/ 
g , (S)=  g(S), g(S)>__~. 

Then (*) implies c~(g,)>fl. L e t f  (") stand for f(g~). For all 5eel2 we have 

sup inf Z g ( S J  ~I g(S~l,)~>sup inf Z g,(So) d I ]  gn(S~l,) ~ 
Fo F>"Fo aeI" n--1 fo F ~ F o  a e f  n = l  

> r f s u p  inf ~ Hg,(Sr 
Fo F~'Fo a~F n= 1 
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By Theorem 6.7 the last expression in the above inequality is greater or equal 
to f(,)(5~) for #D-a.e. ~ Since, by Theorem 6.3, Sf(")dlt~ we deduce that 

I~1 
sup inf Z g(S,) d I ]  g(S~l,)a>0 (*) 

Fo F~-Fo aeF n= 1 

with positive probability. 
To complete the proof we will show that the left-hand side in (*) is either 0 

with probability 1 or > 0  with probability 1. 
By Proposition 3.1 we have 

(4 }t #D Y sup inf ~ g ( S J [ I g ( S ~ I . ) P = 0  
\ [  ] Fo F>-Fo aeF n = l  

= ~(~(#D)N ( { ( (So ,  . . . ,  SN_ I), (dcP(O), . . . ,  ~P(N-1))) 

sup inf ~ g ( S y  ~ g(S~)) d I-[ g(S~)  ~=0  
FO F~-Fo p = O  a n = l  

p*a~F 

: ~ @ ( ~ I D ) N ( { ( ( S o , . . . , S N _ I ) , ( ~ ( O ) , . . . , ~ ( N - 1 ) ) )  

}t ~, g(S y sup inf 2 g(ST)) e I-[ aft(P)'fl=O 
p = O  F' F~'F' asF n=l ~koaln) 

[ (I }i] = gD 5o sup inf ~,g(S,~)dFIg(Sol.)=O ; 
\ t  ] F' F~F'aeF n = l  

since g(Sp)>0 for #-a.e. (So, ..., SN_ O. 
This implies our claim and the theorem is proved. 

6.9. Definition. For F ~ D let 

IFI =max{Io-I: a~F}. 

N - 1  

6.10. Lemma. Suppose S ~ g(Sp)~ . . . . .  S x _ 0 > l .  Let c~=c~(g). For n~]N 
define h n : (2 ~ ~ + by ,= o 

hn(Y) = inf{fr,~(5~) ] F~Min,  F #  {0}, ]FI =Gn}. 

Then (hn)~ ~ is a non-increasing sequence of Borel measurable functions with the 
following properties N 1 

(i) Vn~N VS~ h,+1(5~)= ~ g (Symin(1 ,  h,(Yo)). 
p = 0  

(ii) h: = infh, = inf fr, ,  > O. 
n~N Fe Min\{{0}} 

(iii) The following properties are equivalent: 

a) h > 0 on a set of positive #~ 
b) h > 0 #~ 

N - - 1  

c) ~ g ( S y = l  u-a.e. 
p - - 0  
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Proof. By definition (h,) ,~ is a decreasing sequence of Borel measurable 
functions. 

(i) For FEMin and pc{0 . . . . .  N - 1 }  let 

F(p)={aeDlp*a~F} .  

It can be shown that F(p)~Min for p=O, ..., N - 1 .  
Obviously, for every 

N--1 

fr,,(5~) = ~ g(Syfr(o),~(5~~ 
p = 0  

Using this last identity we obtain 

h,+ l(Se ) =inf{fr,~(Se)lFEMin, F:t= {0}, [FI < n +  1} 
N - 1  

= ~ g(Syinf{fr(p),~(Sf~ F+ {r IF[ < n +  1} 
p = 0  

N - 1  

= ~ g ( S y  min(1, inf{f~, ~(5~ pA ~ Min, A =t = {0}, fAJ < n} 
p = 0  

N--1 

= ~ g (Symin(1 ,  h,(SPP)). 
p = 0  

(ii) is obviously true. 
(iii) a ) ~  c). It follows from (i) and (ii) that 

N--1 

h(Se) = ~ g(S y min(1, h(St0)) 
p = 0  

for all 5~e~?. 
Since g < 1 Eq. (1) implies that h is bounded by N, hence #D-integrable. 
Using Proposition 3.1 and (1) yields 

N--1 

h d# D = ~ Z g ( S y  rain(l, h(5~(P))) d(#D)N(sv(O),..., 5P(N-1)) d#(So,. . . ,  SN - ~) 
p = 0  

N - 1  

= Z ~ g ( S y  d#(So,. . . ,  S u_ ~) ~ rain(l, h(SP)) d#D(5'~). 
p = 0  

Since, by the definition of a, 

N - 1  

Z ~ g ( S y  d#(So,. . . ,  S N_ 1) = 1. 
p = 0  

we deduce 
h d# D = ~ min(1, h) d# D 

and, hence, 
h < l  #D-a.e. 

(1) 

(2) 
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Let q be the essential supremum of h. Using (1) and Proposition 3.1 another 
time we obtain 

N - 1  

g(s F < (3) 
p = 0  

for #-a.e. (So,.. . ,  SN_I)eCon(X) N and (#O)N-a.e. (~9 ~176 ... ,  ~o(N-1))c(2N" 
By our assumption t/> 0. Thus dividing the last equation by t/ and observ- 

ing that h<q #D-a.e. yields 
N - 1  

g ( S y  < 1 (4) 
p = O  

for #-a.e. (S o . . . . .  Su_l). 
N--1 

Since ~ ~ g(Syd#(S  o . . . . .  SN_I)= 1 this leads to 
p = 0  

for g-a.e. (S O ....  , SN- 1). 
N - 1  

c ) ~  b) If 

N - I  

Z g(sF=  1 
p = O  

L i p ( S y =  1 for #-a.e. (S o, ..., SN_I) then 
p = 0  

h 1=1 pD-a.e. 

and, therefore, by (i) 

hence 

b) ~ a) is trivial. 

h , = l  #~ 

h = l  gD-a.e. 

N--1 

6.11. Theorem. Suppose ~ ~ g(So)~ . . . . .  S N _ 0 > I .  Let c~=~(g). Then the 
p = 0  

following conditions are equivalent 
N - 1  

(i) ~ g ( S y = l  for p-a.e. (So, ...,SN_ O. 
p = O  

(ii) sup inf{fr ,~(Y)[FeMin,  F > F o } > 0 .  
FoeMin 

for #~ 9 ~ 

(iii) #D({6elsu p inf fr,~(6~)>0})>0. 
Fo F~Fo 

N - 1  

Proof. (i)~(ii): Under the hypothesis that ~, g ( S y =  1 #-a.e. it is easy to check 
that, for every F~Min,  p= o 

fr,~ = 1 gD-a.e. 
This implies 

sup inf fr,~ = 1 #D-a.e. 
Fo F>-Fo 
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(ii)~ (iii) is obviously true. 

(iii)~(i): Let Fo~Min be given. For F > F  0 and a~F  o let F~={z~Dla*z~F} .  
Then F~Min ,  and for every 5:~f2, we obtain 

r l  1~1 x I*1 S ~] 
inf f r , ~ ( J ) =  inf ~ /1 [ I  g(s<o) } 2 I] J F>'Fo F>'Fo acE0 I - \ n = l  i zeF~ p = l  

1 I~ ~, Id 
= 2 / 1-[ g(S,,I.) ~'1 inf Z F[ g(S,.(~lo))~/ 

a~Fo \ n = l  I F?~Fo ~EFcr p = l  a [.+ , ] 
= 2 ~ I-I g(s<,) ~} min(1, inf fr,~(5:~ 

aeF0 \ N  - 1 / Fe  Min\{{0}} 

= ~ { [ I / (S , I , )  ) min(1, h(5:")), 
~rEFo \ n =  i 

where h is defined in Lemma 6.10. 
According to (iii) there is a Borel set Beg2 with #D(B)>0 such that, for 

every 5:eB, there exists a F o with inf fr,~(5:)>0. By the preceding consider- 
F~'Fo 

ations this implies that, for every 5:EB, there is a FoeMin and a o-eF o with 
h(~r  For aeD let f2(a)= {5Plh(5:~)>0}. 

Since B c  ~ f2(a) we get #D(U f2(a))>0. Hence there exists a aeD with 
a~D a~D 

#D(Q(a)) > 0. Since ff'(O(a)) =/zD({~th(S :) > 0}) Lemma 6.10 yields condition (i) 
in the theorem. 

6.12. Remark. Using the techniques developed in this section it can be shown 
N - 1  

that, if ~ g ( S y =  1 does not hold #-a.e., then for every psN,  (fr,~)r~Min is an 
p = 0  

L'-bounded martingale with a countable index set satisfying 

lim sup fr,~ = oe ktD-a.e. 
F~ Min 

and 
lim inf fr , ,  = 0 #D-a.e. 

F~Min 

Another example of a martingale with a countable index set which is not a.e.- 
convergent has been given by Dieudonn6 [1]. 

w 7. Hausdorff-Dimension and Hausdorff-Measure of P.-Random Fractals 

In this section we prove that - under rather weak conditions - there is a 
number c~elR+ such that P,-a.e. compact set has Hausdorff dimension e. Under 
more restrictive assumptions we calculate the number ct, thereby reproving 
more general results of Mauldin-Williams [9] and Falconer [4] in our special 
situation. Moreover we show that in most cases the c~-dimensional Hausdorff 
measure of P~-a.e. compact set is 0. This result answers a question of Mauldin- 
Williams [9] in the negative. 
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7.1. Lemma. Let fl~lR+ and 3 > 0  be given. Then the following maps from X ( X )  
to ~,~+ are Borel measurable. 

(i) K~Jf~P(K). 
(ii) Kt---~(K).  

(iii) K-> H-dim(K). 

Proof. (i) Let K o ~ Y ( X  ) and ~>0 be arbitrary. Then there exists a finite open 
covering (Gn) , of K o with diam(Gn)<3 for all n and 

diam(Gn)P < ~ ( K 0 )  + ~ < oo. 
n 

Let G =  U G, and 3' =d(K, X \ G ) > 0 .  For every KEYF(X)with rl(Ko, K)<3 '  we 

have K ~ G and, therefore, (G~), is an open covering of K, hence 

d~P (K) < ~, diam(G.) ~ < ~ ( K o )  + c. 
n 

Thus, the function K ~ ( K )  is upper-semi-continuous, hence BoreI measur- 
able. 

(ii) Since ~ r  the second assertion follows immediately 
from the first one. ~ " 

(iii) For f i ~ +  the set 

{ K uJ l  (X) [ H-dim(K) > fl} 
equals 

~) {Ke~Yf(X)[~+~(K)>O}. 
h E N  

Hence (iii) follows from (ii). 

The following 0 - l - l a w  does not seem to be an immediate consequence of 
one of the classical 0 - 1  laws. 

7.2. Theorem. Suppose that, for #-a.e. (So,...,SN_I)~Con(X) N and every 
p~{0 . . . . .  N - l } ,  there exists a c > 0  with d(Spx, Spy)>=cd(x,y) for all x ,y~X.  
Let fl >= 0 be given. Then P~ has the following properties 

(i) P~({K~ff(X)I~C~P(K)=O})=O or =1. 
(ii) P , ( { K ~ ( X )  I~'~P(K)= oo}) =0  or = 1. 

Proof. (i) According to Theorem 4.5 we have 

P~({K[YC~(K)=O})=#| N ({((So, ..- , S x - l ) ,  (K0, -.-, Ks-l)) 

~ a  C91oSp(Kp)) = 0}) 

= #@pN({((So,... , SN - ~), (Ko,...,  KN _1))l 

-.~r for p=O . . . . .  N -  J}). 
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According to our assumption we have, for #-a.e. (S o, ...,SN_I) and every p, 
that W~(So(Ko) ) = 0  if and only if Jfe(Ko)= 0. This yields 

P, ({K [ J t~  (K) = 0}) = (P,({ K [ ~ P ( K )  = 0})) N 

which proves (i). 
(ii) is proved in the same way. 

7.3. Corollary. Let the assumptions of Theorem 7.2 be satisfied. Then there exists 
an ~ > 0 such that 

H-dim (K) = 
for P~-a.e. K E f ( X ) .  

Proof Define c~=inf{/~>0[~fP(K)=0 for Pu-a.e. Keo~(C(X)}. If e = o o  we ob- 
viously have H - d i m ( K ) < e  for Pz-a.e. Suppose c~<c~. Then there exists a 
sequence/~,.Le such that 9f~B"(K)=0 for P,-a.e. K and all n~N. This obviously 
yields H-dim(K) < ~ for Pz-a.e. KeJ~ff(X). 

If e = 0  then the corollary is proved. Suppose c~> 0. Let (/~,), be sequence in 
(0, c 0 with/~,Te. By Theorem 7.2(i) and the definition of e we have J(fe"(K)>0 
for Pu-a.e. K and every n~N. This implies H - d i m ( K ) > e  for P~-a.e.K. 

The following theorem gives an upper bound for the Hausdorff-dimension 
of P~-random fractals. It has been proved by Mauldin-Williams [9] in a more 
general context. 

N--1 

7.4. Theorem. Suppose ~ ~ (Lip(So)) ~ dl~(S o ..... SN_I) > 1 and let c~= c~(Lip), i.e. 
p=O 

N--1 

S Z Lip(Sydy(So, "--, Su-1) = 1. 
p = 0  

Then Jt~ < oo and, in particular, H-dim(K)< c~ for Pu-a.e. KeOff(X). 

Proof Let 0: f2--*~{(X) be as defined in Theorem 3.7. By definition Pu 
=#Oo~j-x. To prove the theorem it is, therefore, enough to show ~(O(SP))  
< oo for #~ ~ According to Theorem 3.3 and Theorem 2.4 we have 

~ ( 0  (50)) < diam (Xy sup inf fr, ~ (5~) 
Fo F>'Fo 

for y~ ~. By Corollary 6.5 this last expression is finite #~ 

As the following example shows it may happen that H-dim(K)=/~ for P~- 
a.e. K and f l<~=~(Lip) .  (This holds for the graphs of most of the random 
homeomorphisms constructed in Example 5.3 c.) 

7.5. Example. Consider X = [0, 1] 2 with the Euclidean metric. 

/1 1 / ~ \  Define To: X - * X  by To(x,y)= l ~ x , ~ - y ]  

and T I : X ~ X  by T l ( x , y ) = ( 1 , ~ ) + (  1, ( 1 - ~ 3 ) y ) .  
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Let #=e(ro, rl) be the Dirac measure on Con(X) 2 concentrated in the point 

(T 0, Tt). Then we have Lip(T0) = ~ and Lip(T1)=�89 

Hence c~=c~(Lip) is determined by the following equation: 

1 = ~ (Lip(So) ~ + Lip(Sy)  d#(S o, St) 

= Lip (To)~ + Lip (TY = ( @ ) ~  + (~) ~ 

which yields ~ = 2. 
But according to Example 5.3c) we know that Pu-a.e. K ~ J f ( X )  is the graph 

of an increasing homeomorphism of [0, 1] onto itself and, therefore, has 
Hausdorff dimension 1. 

The following theorem states conditions which ensure that c~=e(Lip) is 
equal to the Hausdorff dimension of Pu-a.e. compact set. It is a special case of a 
result of Mauldin-Williams [9]. The result of Mauldin-Williams has also 
independently been proved by Falconer [4] under the additional assumption 
that the Lipschitz constants of the maps involved are all uniformly bounded 
away from zero. In the deterministic case #=e(~ s ~ the following result 
was first proved by Moran [10]. Another dimension formula for deterministic 
self-similar sets can be found in Ruelle [12]. 

7.6. Theorem (Mauldin-Williams [9], Falconer [4]). Let X c N  e be compact 
with X:#O. Let d be the Euclidean metric on X. Suppose that, for #-a.e. 
(So,. . . ,  SN- 1) E Con (X) N, the following conditions are satisfied: 

a) Vp6{0 . . . . .  N -  1}: S o is a similarity 

(i.e. 3 r > 0  Vx, y~X:  d(Spx, Spy) =rd(x,  y)). 

b) Vp, p ' e { O , . . . , g - 1 } :  p4=p'~sA2)ns~,(2)=r 
Let ~ > 0 be such that 

N - 1  

~ L i p ( S y d # ( S  o . . . . .  SN_I) = 1. 
p=O 

Then H-dim(K)=e  for Pu-a.e. K e Y ( X ) .  

Proof By Theorem 7.4 we have H-dim(K)=<c~ for P~-a.e. K e Y ( X ) .  To prove 
the converse inequality it suffices to show that, for all ~ < c~, 

YF~(K)>0 for Pu-a.e. KeYF(X).  (1) 

By the definition of P~ this is equivalent to 

JgP(O(SP))>0 for #D-a.e. 5~, (2) 

where O is defined in Theorem 3.7. 
According to conditions a) and b) we know that the assumptions of 

Theorem 2.5 are satisfied for #D-a.e. 5~. Hence Theorem 2.5 yields that there 
exists a c > 0 such that 

Iol 
c diam(X) e sup inf ~ L i p ( S j  l~ Lip(S~I,)~ --< J4~ (3) 

ro r > r o  a e f  n = l  
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for #~-a.e. 5s By assumption a) we have Lip(Sp)>0 (p=0, . . . , N - l )  for #-a.e. 
(So,...,SN_I)~Con(X) s. Thus Theorem 6.8 is applicable and yields that the 
first expression in (3) is positive for #D-a.e. ~ Hence (2) is proved. 

In the following theorem the e-dimensional Hausdorff measure of Pu-a.e. 
K ~ S ( X )  is determined, where c~--c~(Lip). The theorem answers a question of 
Mauldin-Williams ([9], Question 3.8) in the negative. 

7.7. Theorem. Let the assumptions of Theorem 7.6 be satisfied. Suppose 

#({(So . . . .  , S N _ I )  oN~=ILip(S y # I}) >0. 

Then, ~ ( K ) = 0  for P~-a.e. K e X ( X ) .  

Proof By the definition of Pu we have to prove 

~ ( 0 ( 5 P ) ) = 0  for #D-a.e. 5s (,) 

By Theorem 2.4 and Theorem 3.3 we deduce 
lal 

Jcg~(0(S~))<diam(Xysup inf 2 I ]  Lip(SolY 
Fo F)>Fo cr~F n= 1 

for #'-a.e. ~. Hence Theorem 6.11 implies (,). 

7.8. Theorem. Let the assumptions of Theorem 7.6 be satisfied. Suppose that there 
exists a c5>0 such that Lip(Sp)_>c~ for p =O, ... , N - 1  and #-a.e. 
(So .. . . .  SN_ 1)6Con(X) N. Then the following statements are equivalent: 

N--1  

(i) ~ L i p ( S y = l  for #-a.e. (S O .... ,SN_I)6Con(X) N. 
p=0 

(ii) 2/~(K)>0 for P~-a.e. K~oU(X). 

(iii) Pu({K ~ ( X ) ] W ~ ( K )  > 0}) > 0. 

Proof (i)~ (ii). By the definition of P, we have to prove 

Jq~(O(SP))>0 for #D-a.e. 5s (1) 

By Theorem 2.5 and Theorem 3.3 we know that there is a c>0  with 

c diam(Xy sup inf ~ L ip (S j  [ I  Lip(Sr < ~(O(5P)), (2) 
1"o F ~ F o  a~F n -  1 

for #~ ~. According to our assumptions this yields 

c 5 q diam(Xy sup inf ~ [ I  Lip(S~I,Y ~ ~f~($(S~)) (3) 
Fo F~'Fo aEF n=l 

for #D-a.e. ~. Thus (1) follows from Theorem 6.11. 

(ii) ~ (iii) is trivial. 

(iii)~(i) follows immediately from Theorem 7.7. 
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7.9. Remark. It remains open whether the implication (i)~(iii) in Theorem 7.8 
is true without the assumption that, for #-a.e. (So,...,SN_I)eCon(X) N, 
Lip(So)> 6 ( p = 0  . . . . .  N - I ) .  

7.10. Examples. a) The following example is a random version of the classical 
Cantor set (see Mandelbrot [8], p. 210 and Falconer [4], Example 11.2). 

Start with the unit interval I. Remove the first, second or last third of I at 
random with equal probability �89 For  each of the remaining two intervals of 
length 1/3 proceed in the same way. Continue this process. What remains of I 
is a random Cantor set. 

In our language the above construction amounts to the following: Let To, 
T~, T 2 be affine orientation preserving maps of N onto IR mapping I onto the 
first, second and last third of I respectively. 

Let # -  5e(To, T1) + 3 (to, T2) +�89 T2)' Then the random Cantor set described 
above is a Pu-random set. 

It follows from Theorem 7.6 that the Hausdorff dimension of P~-a.e. K e  
• ( I )  is equal to c~, where 

1 = S Lip (So) ~ + Lip(S1) ~ d#(So, S j  

= �89 (Lip (To) ~ + Lip (T0 ~ ) + �89 (Lip (To)" + Lip (T1) ~) 

+ ~(Lip ( T y  + Lip ( T y )  

:2(}) 

log2 
hence c~ =log 3" 

Since Lip(So)~+Lip(Sj  ~= 1 #-a.e. it follows from Theorems 7.4 and 7.8 that 
0 < ~ f ~ ( K ) <  oo for Pu-a.e. Ke~,U(I). 

b) The construction of the following random Cantor set is given by Maul- 
din-Williams [-9] who also calculate its dimension. The construction is as 
follows: Choose a point (x,y) from A={(s,t)E[O, 1]Zls<t} at random with 
respect to normalized Lebesgue measure on A. Set Jo = [0, x] and Ja = [y, 1], 
Suppose J~ has been defined for every aED(2) with Io-J <n. If J~=[a, b] choose 
(x,y) from A at random with respect to normalized Lebesgue measure on A 
and set J~,o=[a,x(b-a)], J~,l=[a+y(b-a),b].  Then the corresponding ran- 
dom Cantor set is 

K:N UJo 
n~N ~rE{0, 1} n 

We translate this construction into our setting. Let 

S o~'', S~'Y: [0, 1] ~ [0, 1] 
be defined by 

S~'Y(t)=xt 
and 

S~'Y(t)=y+(1 --y) t. 

Then we have Lip(S~o'Y)=x and Lip(S~ 'y)--- 1 - y .  Let # be the image of normal- 
X~y X , y  ized Lebesgue on A w.r.t, the map A ~Con( I )  2, (x, y)-*(S o , S 1 ). 
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Accord ing  to Theorem 7.6 the Hausdorff  d imens ion  of Pu-a.e. K~{(I)  is c~, 
where 

1 = ~ Lip(So) ~ + Lip(S1) ~ d# 
1 1 

= 2 ~  ~ [x~+(1 -Y) '3  dydx, 
O x  

hence c ~ = � 8 9  ). 
Since obviously Lip(So)~+Lip(S1)~+l  for #-a.e. (So,S 0 it follows from 

Theorem 7.8 that  X/g~(K)=0 for Pu-a.e. K ~ ( I ) .  

7.11. Remark. Mauld in -Wi l l i ams  [9] and  Fa lconer  [4] give a series of examples 
of r a n d o m  compact  sets most  of which can easily be t ransla ted into our  
setting. The r a n d o m  compact  sets constructed in Examples  4.3, 4.4, 4.6, 4.7, 4.8 
of Mau ld in -Wi l l i ams  [9] and  Example  11.4 of Fa lconer  [-4] all have e-dimen-  

sional Hausdorf f  measure  0 with probabi l i ty  one, if e is their Hausdorff  
dimension.  
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