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Summary. We examine the central limit theorem with Gaussian limit law 
for a sequence of independent, identically distributed, vector valued random 
variables whose partial sums can be centered and normalized to be tight 
with non-degenerate limit laws. These results apply to the situation when 
the sequence is in the domain of attraction of a non-degenerate stable law 
of index pe(0,2],  and are achieved by eliminating the extreme values from 
the partial sums. 

1. Introduction 

In dealing with the law of the iterated logarithm (LIL) for a random variable 
in the domain of attraction of a Gaussian law a strong relationship between 
the maximal values of the sample {[IXlll,..., [[X, ll} and the asymptotic be- 
havior of the partial sum S n was obtained in [8], and in much more detail in 
[9]. In the process of this work we observed that there is also a related 
Gaussian central limit theorem which holds in a very broad setting. This is 
what we prove here. 

A result of similar type was announced in [3J for real valued random 
variables in the domain of attraction of a stable law of index pe(0,2].  The 
proof  in [3] depends on a Brownian bridge approximation to the uniform 
empirical process in weighted supremum norms which is quite powerful, but 
this approach appears to be limited to the real valued case. We proceed using 
a more direct method, and obtain a result valid in any type 2 Banach space. 
The paper  [3] contains some interesting references to related papers, but our 
results appear to be the first for the vector valued case and at the level of 
generality with which we proceed here. 
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Throughout B is a real separable Banach space with topological dual B* 
and norm [[.ll. We also assume X, X I , X  2 .... are independent, identically 
distributed, B-valued random variables, and as usual S,=X~ + ... +X,  for n >  1. 
The law of X is denoted by &~ A sequence of random variables {W,} is 
said to be tight if for each e>0  there is a compact set K~ such that 
infP(W, eK~)> 1-e .  The sequence {•(W,)} converges weakly to 2e(W), and we 

write LP(W,) ~ L~(W), 

if l imE(f(W,))=E(f(W)) for all bounded continuous f on the range space of 
n 

{W,}. We say a random variable is degenerate if its law is concentrated at a 
single point. Otherwise, it is said to be non-degenerate. Finally, a sequence of 
random variables {W.} is said to be stochastically compact if {W,} is tight and 
all weak limits of subsequences of {W,} are non-degenerate. The stochastically 
compact laws on IR ~ were studied by Feller in [5] and more recently in some 
work by Pruitt 1-10] and Griffin et al. [6]. Of course, since B is complete and 
separable it is well known that for B-valued {W,}, tightness of {W,} implies 
every subsequence of {W,} contains a weakly convergent subsequence. Finally 
a Banach space is said to be of type 2 if for all integers n and independent 
centered random variables Yl . . . . .  Y, we have 

E[IYI + ' " +  Y,I[ 2<=A i EHY# 112 
j = l  

for some finite constant A. We write a,~b,  if there is a ca(I, oo) such that for 
all n sufficiently large 

1/c < a . /b .  < c, 

and a, ~ b, if lim a,/b, = 1. 
n 

2. Statement of Results 

The central limit theorems we obtain are contained in the following results. 
For n > 1 and 1 < j  < n, let 

E,U)--~{i: IIx~ll>liX~ll for l<__iNn or 

IIXill = IIX~ll for 1 <=i<=j}; 

here @D denotes the cardinality of the set D. If F,(j)=k, set xt, k)=Xj, i.e. [iXsL[ 
is the k *h largest element of {llxxlt,---,llX.ll} when F,(])=k. For any r>0 ,  
n>~r, z>0,  {>0,  and positive function d(t) defined on [0, oo) we define 

[~rl 

(2.1) (r S ,_  E X}i) I{HX$)ll > zd([n/r])}. 
2=1 

Here [ . ]  denotes the greatest integer function. Hence (r denotes the partial 
sum S o with the [~r] largest terms of the sample {IIXll I . . . . .  I[X.[I} deleted 
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provided they exceed Td([n/r]) in norm. We also define 

(2.2) 6,(% r) = ~ E(XjI{  [1Xj[ I ~ zd([n/r] }). 
j - - 1  

Now we can state our results. 

Theorem 1. Let X,  X 1 , X  2 . . . .  be independent, identically distributed, B-valued 
random variables where B is a type 2 Banach space, and assume: 

(2.3) for the centerings {~,} and positive normalizing constants {4,} the se- 
quence 

{(So - 6,)/d,} 
is tight, and 

(2.4) for some linear functional h~B* the sequence 

{h(S -a , ) /d , }  

is stochastically compact. 

Then, there is an increasing continuous function d(t) defined on [0, oo) such that 

(2.5) d(n)~d, ,  

and for each positive sequence {~} satisfying 

(2.6) lira r, = 0% 
n 

(2.7) lim n/r, = 0% 
n 

and each z > 0 we have a number ~ > 0 such that 

(2.8) ~ ''~" - o.~z, r.) 
t 

is a tight sequence in B with only centered Gaussian limits. Further, there is a 
T o > 0 such that for T > z o the limits of  (2.8) are non-degenerate Gaussian. 

Remark. Using the result of Pruitt in [10] which characterizes the Levy 
measure of a limit law arising from stochastically compact normed sums, and 
assuming B=IR  1, one can simplify the proof of Theorem 1 somewhat and 
obtain non-degenerate Gaussian limits for all T>0. The essential step in this 
regard is to use Pruitt's result to obtain (3.15) for all "c>0, and this is possible 
if B = N  1. 

We say X is in the domain of attraction of a non-degenerate stable law Z 
of index pc(0,2] with respect to the centerings {c~,} and normalizations {d,} if 

~ ( ( s ~  - a.) ld.)  ~ - ,  ~e(Z).  

Stable laws and some of their immediate properties are described in [2] for the 
interested reader. 
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Theorem 2. Let X,  X 1 , X  2 ....  be independent, identically distributed, B-valued 
random variables where B is a type 2 Banach space, and assume X is in the 
domain of attaction of a non-degenerate stable law Z of index p6(0,2] with 
respect to the centerings {6,} and positive normalization sequence {d,}. Let r, 
satisfy (2.6) and (2.7), d(t) be as in Theorem 1, and assume "c > O. Then: 

(2.9) d(n)~Fd,  where F is a positive constant, and 

(2.10) there is a 3 > 0  such that 

\ 

where G~ is a non-degenerate centered Gaussian random variable for each z>0.  
In addition, for 0 < p < 2  and each z>0,  the sum of extreme terms 

[~r,d 

Z , =  ~ X~)I(HX(fl][ > zd([n/r,])) 
j = l  

is such that for some strictly positive constant c 

(2.11) 5F((Z, - 3, + 6,(z, r,))/(d(n)) w~ ~(cZ) .  

3. Proof of Theorem 1 

The first step of the proof is to define the function d(t). There are two cases: 
they are Eh2(X)< co, and EhZ(X) = oo where heB* is as in (2.4), 

If EhZ(X)<oo,  then standard symmetrization arguments and (2.4) imply 

that d , ~ l / n  , so in this case we define 

d(t) =V ~. 

Hence (2.3) implies {S,/l fn } is shift tight and that {(S, -S ' , ) / l fn  } is actually 
weakly convergent to a Gaussian law. Here {S',} is an independent copy of 
{S,}. As a result it is known that E f z ( x - x ' ) <  oo for all fEB*  and also from 
[-2, p, 153] that E]]X-X'H2-O<oo for all 6 > 0  where X' is an independent 
copy of X. Thus E X  exists. Further, for any finite dimensional subspace F of 
B, the semi-norm 

qF(X) = inf II x -- y H 
yeF 

satisfies 

E(qAS" - n EX)/l/-n ) <_ r4qv(S . -- S'o)/lfi), 

and a standard argument gives { (S , -nE(X) ) / l fn}  tight. Indeed, {(S, 

- n E X ) / l / n  } is actually weakly convergent to a Gaussian law because its finite 
dimensional distributions converge and it is tight. 

Now assume Ehz(X)= oo. To define the function d(t) we let 

(3.1) U(t)=E(h2(X)/~ t 2) (t >0). 



Extreme Values and a Gaussian Central Limit Theorem 345 

Then the function 

~U(t)/t 2 t > 0 
(3.2) f( t)=[P(]h(X)] >0) t = 0  

is positive, continuous, decreasing, and lira f ( t )=0 .  Also f is strictly decreasing 
on [a, or) where t~ 

(3.3) a = inf{x: P(Ih(X)l < x) > 0}. 

Thus l / f  (s) is strictly increasing on [a, oo) with range [l/f(0), oo), and we define 
the function d(t) to be the inverse of l / f  (s) on [l/f(0), oo). That is, 

d(t)_~inf{s>O: 1 I t = f  (s)} t> l/f(O) 
- ( a  0 < t <  1/f (0). 

Then d(t) is continuous, non-decreasing, and strictly increasing on [l/f(0), ~ )  
with lira d(t)= oo. 

The remainder of the proof now proceeds via a sequence of lemmas. The 
first lemma contains some useful properties of the function d(t) when Eh2(X) 
~ O Q ) .  

Lemma 3.1. I f  Eh2(X) = o0, the function d(t) satisfies the following conditions: 

(i) d(t) = l i t  U 1/2(d(t)) for all t > l/f(0). 
(3.4) 

(ii) d(n)~d,  and d(n+ 1)~d(n). 

Proof The definition of d(t) implies (3.4-i) immediately. To prove (3.4-ii) we 
observe that since Eh2(X)= oo and (2.4) holds, Theorem 2.5 of Jain-Orey [7] 
implies that there exist shifts {bn} such that 

{(h(S,)-b,)/d(n)} 

is stochastically compact. Of course, (2.4) holds by assumption, and since 

(h(S,) - b,)/d(n) = d,/d(n). (h(S, - 6,))/d, + (h(3,) - b,)/d(n), 

it is impossible that lim d,/d(n)= oo or li__m_mdJd(n)= 0, as a simple application of 
n n 

the convergence of types theorem implies either would destroy stochastic 
compactness. Hence d(n)~d,  as claimed. 

The argument for d(n + 1)~d(n) is similar since 

prob  

h(X,+O/d(n+l  ) ,0, 
and 

(h(S,+ 1) - bb + O/d( n + 1) = (d(n)/d(n + l)) (h(S,) - b,)/d(n) 

+ ( b , - b , +  1 +h(X,+ 1))/d(n+ 1). 

Lemma 3.2. The condition (2.3) and d(n)~d,  together imply that for each v > 0  
and continuous semi-norm q we have 
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(i) sup tP(q(X) > zd(t)) = c(z, q) < oo. 
(3.5) ,>o 

(ii) lira sup tP(q(X) > 2d(t)) = 0. 
~ . ~  t>O 

Proof. Since q is assumed to be a continuous semi-norm it suffices to prove the 
result when q ( . )=  [I'Ll- Hence by applying Theorem 2.2 of [1] and a simple 
interpolation argument we obtain (3.5-i). 

To prove (3.5-ii) we simply notice that (2.3) and Theorem 2.2 of [1] implies 

{n~.qf(X/d(n)]B])} 

is a tight sequence. Here B~={x: [Ixlq >~} and (#1A)(E)=#(A~E) for E a Borel 
subset of B. Hence 

lim sup n(P(LI X l[ > 2 d(n)) = 0 
. q , ~  oO 17 

and a simple interpolation argument gives (3.5-ii). 
Now let {%} satisfy (2.6) and (2.7) and let z > 0. We define for each integer n 

uj = uj(n)= XjI  { [q Xj q[ < zd([n/r,])} 
and 

v j=  X j - - u j  
for 1 =<j < n, and let 

(fin=- i U j 
j=l  

Vn= i Vj. 
j = l  

Then E(U,)=f,(z,r,) and for each 3>0  we have 

(3.6) (:r-~S.- 6.(% r.)= ( U . -  5.(~, r.)) + V. 
Hr,d 

- ~ X(,J)l{llX(.J)ll >zd[n/r,])}. 
j = l  

Lemma 3.3. Let {r,} satisfy (2.6) and (2.7) and z >0  be fixed. Then there is a 
>0 such that 

[r 11 prob 
(3.7) V . -  E X~J) I {IqX~J~N > zd([n/r.])} -----*0. 

j = l  

Proof. Fix e > 0. Then 

( t~,,] >zd([n/rJ)} ) J.=P v . -  ~ x~)t{llx(j)ll >~ 

<P(a t  least [~r.] + 1 Xfs (1 <j<=n) 

satisfy II/jLI > ~d([n/r.])). 

If EhZ(X)<oo, then d(n)=I/n  and we know {(S,-nE(X))/I /n} converges 
weakly to a Gaussian law. From this (3.5-i) can be improved to the well- 
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known fact that 

(3.8) lim t P(q(X) > ~1~) = 0 
t 

for all z > 0 and continuous semi-norms q(.). 
Now let p,=P([tX[l>rd([n/r,])), s , = [ ~ r , ] + l .  Then we have for any ~>0  

that 

j = a n  

and hence by [41, p. 173, and Stirling's formula for all n sufficiently large 

(3,9) J .<n  ( n - 1 )  p~ 
s . - 1  ~oP"-l(1-t)  . . . .  dt 

Pn 

<=nn[r162 ~ (1 --t) . . . .  dt/[~r,]! 
0 

< (np. e ] fr 1 n / i n -  [r 
= t [ -~ - . ] l  I-r ~/~ 

Since (3.8) holds when EhZ(X)< oo there is a sequence {e(n)} such that lira e(n) 
= 0 and 

nPllXll >q/~)=~(~). 
Hence, in this case, 

p.~e([n/g])/[n/g]~(g/n)E([n/g]) 

as lim n/r. = ~ ,  and thus for all n sufficiently large 

(3.10) J,, < 2/[~ r.] */2. (2 e r. e([n/r~])/[ ~ r.]) ~r"l. 

Since ~>0  and r .~oo we have l i m J . = 0  for each ~>0  as required provided 
Ehz(X)< oo. 

If Eh2(X)= o% then the proof is as above except we do not have (3.8), but 
only (3.5-i). This implies 

p. ~ c(T, II'l])/Un/r.] ~ (rJn) c(z, II "1]). 

Substituting this into (3.9) we have for all large n that 

J. < 2/[ gr.] 1/2 . (2c(v, Jl" H)r.e/[ gr.]) ~r"l. 

Taking ~>4c(z, ll" [I)e we have l imJ .=0 ,  and the lemma is proved. 
n 

Since (2.6), (2.7), and d(n)~ d(n + 1) together imply that 

/7. a(./ro) ~ / ~  a([./r,,~), 
and E(U.)=6.(z,r.), part of the proof of Theorem 1 will follow by combining 
(3.6), Lemma 3.3, and by showing 
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u.- E(U.) 
(3.11) L a(En/rJ)J 
is tight with only centered Gaussian limits. 

To prove (3.11) is tight let qe(') be as before. Since B is of type two, we 
have for each qe that 

(3.12) 

<_A'E(q}(u, -EuO) 

where A '=  Asupn/([rJd2([n/r,]))< oe by (3.4-i). Now for each e >0, there exists 
n ~ l  

a finite dimensional subspace F of B satisfying 

(3.13) E(q2(ul - Eul) ) < e/A', 

and by combining (3.12) and (3.13) we easily have (3.11) tight. 
To verify (3.11) has only centered Gaussian limits now follows easily by 

applying Theorem 2.10 of [1] to weakly convergent subsequences of (3.11) 
since 

II u~(n) - Euj(n)]l -~ 2d([n/r,]) 
and lim r, = oe. 

n 

Hence by Theorem 2.14 of [1], or Corollary 4.8 of [2], the proof of Theo- 
rem 1 will be complete when we show there is a % > 0  such that z > z  0 implies 

E(h2(ul(n)-Eul(n))) >0  
(3.14) lira [n/r,] dZ([n/rn]) 

To obtain (3.14) we use the following lemma applied to the subsequence m, 
= E n / r . 3 .  

Lemma 3.4. Under the previous conditions there is a %>0 such that ~>% 
implies 

(3.15) F(h, z) = lim (m/dZ(m)) E(h2(t/m - E t/m)) > 0 
m 

where 17m=XI{l[X[I <=zd(m)}. 

Proof If Eh2(X)<oo, then d(n) is defined to be ]//n and the above limit is 
Eh2(X-EX)  for each z>0.  Further, this limit is positive by (2.4), so (3.15) 
holds in this case. 

If Eh2(X)= o% then d(n)~d n by (3.4), and (2.4) holds with {2,} replaced by 
{d(n)}. We will assume F(h, z)= 0 for all z > 0 and produce a contradiction. 

Since Eh2(X)=oo we have (Eh(tlm))2=o(Eh2(tlm)) and hence F(h,z)=0 for 
each z > 0 implies 

m 
1 ~  ~ Eh2(tlm)=O. 
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Thus there is a subsequence {m,: r >  1} such that 

~(h(S,n"  - ~m,)/d(wlr)) ~ ~.QP(Z), 

where Z is non-degenerate by (2.4), and for all z > 0 

(3.16) lim m, Eh2(G~,) = 0. 

Let {X}: j >  1} be an independent copy of {Xj: j >  1}. Then 

~(h(S~. - S'm,)/d(m,) ) ~ *  ~ ( Z  - Z') 

where S', = ~ Xj and Z' is an independent copy of Z. 
j = l  

Now (3.5) implies that for each e > 0  there is a % > 0  such that ~ > %  
implies 

(3.17) lim mP(H X 1[ > ~d(m)) < el2. 
n 

Thus for 6 > 0  a continuity point of the distribution of ]Z-Z ' [  we have 

(3.18) P(IZ - Z ' l  > 6) = lim P(lh(Smr - S ' ) l  > 6d(m,)) 
r 

d -  

m r  

+ l i m 2  ~ P(flXjll >zd(m,)) 
r j = l  

__<lim 2m, E(rl2 )/(~2 d2(m,) + e 
r 

Since e > 0  was arbitrary we have P({ IZ-Z ' [>6)=O for each 6 > 0  which is a 
continuity point of the distribution of Z - Z ' .  Hence Z - Z ' =  0 with probability 
one, which contradicts the fact that Z is non-degenerate. Thus F(h, zo)>O for 
some z o > 0, and hence for z > z o we have F(h, z)> 0 because 

(Eh(r/m)) 2 = o(Eh2(tl,,,)) 

when Eh2(X)= ~ ,  and Eh2(t/m) increases when r increases. This completes the 
proof of the lemma and the theorem. 

4. Proof  of  Theorem 2 

First we need to verify that d(n)~Fd~ for some F~(0, oo). This follows from the 
following lemma. 



350 J. Kuelbs and M. Ledoux 

Lemma 4.1. Let X be in the domain of attraction of a non-degenerate stable law 
Z of index ps(0,2]  with normalizing sequence {d~} and centerings {~-~}. Let d(t) 
be the function defined in Theorem 1 and suppose hEB* is such that h(Z) is non- 
degenerate. Then 

(4.1) 

[~h(z) /~.(x)  
, d(n) lab(Z) 
nm ~ =  2 1/p . d .  l (  (2-p)p 

[ \2(bl -/- b2)/  

when EhZ(X)<oo (p=2) 

when Eha(X)= oo (/)=2) 

when Eh2(X)=oo (O<p<2)  

where a2(y)= E ( h 2 ( Y -  EY)) and b~ + b2 = limnP([h(X)[ > cTn) is a positive finite 
constant, p n 

Proof If Eh2(X)< oo, then p = 2  since h(Z) is non-degenerate by assumption 
and d , ~ c t / n  by convergence of types. Further, d(t)=l/~ in this case so (2.9) 
holds. Now n E h 2 ( X - E X ) / d 2 ~ E h 2 ( Z - E Z )  since h ( X - E X )  is in the domain 
of attraction of h ( Z - E Z )  with respect to the normalizing sequence {d,}, and 
hence 

(4.2) d(n)/d, = ]/n/d n ~ ah(Z)/ah(X ) 

in this situation. 
If Eh2(X)=oo and Z is Gaussian (p=2), then the construction of d(t) 

implies 

(4.3) ~ ( h  (S, - nEX)/d(n)) -~-, N (0, 1), 

and, of course, replacing the centering by expectations (which is possible in the 
case Z is Gaussian) we have 

(4.4) S(h (S ,  - nEX)/d~) ~ ~ ( h ( Z  - EZ)) = N(O, a 2 (Z)). 

d(n) 
Hence by convergence of types (4.3) and (4.4) give lim~ d, =ah(Z)" 

If EhE(X) = oo and Z is stable of index pc(0, 2) then 

(4.5) ~(h(S ,  -g),)/d,) - ~  ~(h(Z))  = c Pois(#h(bl, b2, p)) 

where/~h ~S a measure on IR 1 such that 

~ b l x - l - P d x  (x>0)  
(4.6) d~h(b~'b2'p)=[b2Lx[-~-Pdx (x <0), 

(4.7) (bl +b2) x -P=l imnn(Ih(X) l>d~x)  (x>0),  
p 

and c Pois(l~h(bl, b2,p) ) is the stable law of index p on IR 1 with L~vy measure 
#h and Fourier transform as in [2], Corollary 6.12-b. For details regarding 
(4.6) and (4.7) the interested reader can consider [2], p. 79-88. 



Extreme Values and a Gaussian Central Limit Theorem 351 

Further, Corollary 6.17-ii of [2] immediately implies that if e is inde- 
pendent of X and P(e= 4-1)= 1/2, then the symmetric random variable h(eX) is 
in the domain of attraction of h(eZ) where, in the notation of (4.6) and (4.7), 

~ ( h ( e Z ) ) = c P o i s # h  (bl +b2 b l +b2 ) 
2 ' 2 'P " 

Further, b 1 +b2e(0  , oo) as h(Z) is non-degenerate. 
Now let a, el,e~,. . ,  be independent identically distributed and independent 

of X,  X1, X2, . . . .  Wet T,= ~ ejXj, and consider {h(T,)/d(n)}. Since h(~X) is in 
d = l  

the domain of attraction of h(eZ) with h(eZ) non-degenerate, Theorem 6.17-ii 
of [2] implies 

@(t) = E(h2(X)I(Ih(X)] <= t))= E(h2(eX)I(lh(eX)] < t) 

is regularly varying of order 2 - p  and 

t 2 
(4.8) lim ~ P(]h(eX)t > t)=(2 -p) /p .  

Hence the function U(r) of (3.1) satisfies 

U(t)/t2 = q~(t)/tz + P(I h(eX) l > t) ~ ~2  ) (2/p), 

and by definition of d(t) we have 

1 = t U(d(t))/dZ(t) ~ 2/p. t~b(d(t))/d2(t). 

Since q~(t) is regularly varying of order 2-p we have for all x > 0 that 

(4.9) t@(d(t)x)/dZ(t)~tq)(d(t))x2-P/d2(t)~p/2x z -p  (0<p<2) .  

Now (4.9) implies the variances of the truncated variables go to zero as x$0 
and using (4.8) and (4.9) together we have 

(4.10) tP(Ih(~X)l > xd( t ) )~  (2-p~) x P= 2(c,p)([x, oc)) 
2 

where c > 0 and 
f c x - l - P d x  (x>0)  

d )o (c, p) (x) d 
]c ]xi - 1 - p dx (x < O) 

provided 

(4.11) 

o r  

(4.12) 

( 2 - p ) x - P / 2 = 2 c x - P / p  (x>0)  

(2 -- p)p/4 = c. 

Thus by the convergence theorem, Corollary 4.8-d of [2], we have by sym- 
metry that 
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(4.13) 

where c = (2 - p ) p / 4  > O. 
Since 

~qP(h( T.)/d.) - -~  c Pols(,t(c, p)) 
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 414, w (b ) ~(h(T,,)/d.)__~q~(h(eZ))=cPois#h lFb2 bl +b 2 
2 ' 2 'P 

and the limit laws in (4.13) and (4.14) are non-degenerate the convergence of 
types theorem immediately implies that 

d(n) 
(4.15) lim ~ - = F  

for some F~(0, oo). Further, for each x > 0  

and since (4.10) holds we have from (4.15) that 

(2 -p)  
2 (x/F)-P" 

Combining (4.7), (4.16), and (4.17) we have for each x > 0  that 

(Z-p )  (x / r )_  p = (bl + bz) x -v  
2 p 

and hence 

F = /  (2-p)p  ]l/p 
\2(bl + b2)! 

where (b 1 + bz)/p = lim nP(] h(X)[ > dn). 
n 

Hence (2.9) holds, and we turn to (2.10). Recalling (3.6) and Lemma 3.3 it 
suffices to show that for each ~ > 0 

(v . -eu . )  w, 
~]/~d(n/rn) 

for some non-degenerate centered Gaussian random variable G~. 
Now the proof of Theorem 1 implies 

F/~.d(n/r.)) 

is tight and the only possible limit laws are Gaussian, so it suffices to prove 
that for each f e B *  and ~>0 
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/ ( ~ . -  Eu~ 

has a unique limiting distribution which is non-degenerate if f ( Z )  is non- 
degenerate. As in the proof of Theorem 1, this follows from an application of 
Corollary 4.8-a of [2] provided we show 

2 ,. E ( fZ (U , -EU, ) )  
O'f ~.~ Ilm ~ - -  

. [ r . ]d  ( [n/r . ] )  

exists for each f e B * ,  v>O, and that @ > 0  for each f e B *  such that f ( Z )  is 
non-degenerate. 

This is the result of the following lemma. It is possible to use the normal- 
izations d(n) in this lemma because of Lemma 4.1. 

Lemma 4.2. Let X be in the domain of  attraction of a stable taw Z of index 
pe(0,2] with respect to the normalizations {d(n)} and centerings {6,} where d(t) 
is as in Theorem 1. Let p denote the Levy measure of ~Lf(Z) when 0 < p < 2 .  Then, 
for each f ~B* such that f ( Z )  is non-degenerate, we have for each 4>0  that 

m 
(4.18) F(f, z)=lirn ~ E f  Z(tlm- Etlm) 

exists and is positive where ~l,~=Xl{PlXll <4d(m)}. In fact if p = 2  (Z Gaussian) 
we have 

(4.19) F(f, 4) = E f z ( z  - EZ), 

and if Z is stable of index pc(0,2), then 

(4.20) C ( f  4)= S f 2(x)d#,(x) 
B 

where #~ denotes # restricted to the ball {x: Ilxl[ <z}. 

Proof. Let {Ym,f 1 < j  =<m} denote the infinitesimal triangular array defined by 

Y,,,j = XJd(m) (1 < j  < m). 
Let 

Y,..j.~= Y,.,jI {][ Y,.,fl < z} 

for 1 < j  =< n, 4 > 0, and set 

j = l  

Then. by Theorem 2.10 of [1] for each z > 0  such that #{x: I[x]] =z )=0 ,  we 
have 

(4.21) ~f(S~.,~ - ESm.~) - ~  7 * e~ Pois(# 3. 

Here V is the Gaussian component of Z, and for any Levy measure )~ on B the 
z-centered Poisson measure associated with 2 is c~Pois(2) having Fourier 
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transform 

(4.22) ~ eiI(X)dc~ Pois0~)(x) = exp{~ [e iI(~)- 1 - i f (x)I{x:  Ilx[[ <'c}~d)~(x)} 
B B 

for fEB*.  Of course, since/,  is a L6vy measure the restricted measure #, is also 
a L6vy measure. Further, when p=2,  then /~=3 o (so c~pois (~)=a  0) and 7 

dr 
= ~ ( Z ) .  If pc(0,2), then y = a  o and # = e X ~ p p  (0<r<oo)  where o- is a finite 

positive measure on {x: Ilxll = 1}. In particular, #(x: Ilxll = z ) = 0  for each z>0.  
In addition, the proof of Theorem 2.10 of [11 implies for each f e B *  and z > 0  
that 

lim Ef  z(sm,~ - ES,,,,)= 5 f 2(x)dT(x) + ~ f2(x) d#~(x). 
m B B 

N o w  

Ef2(Sm,~ - ES~,~) = r o d -  2 (m)Ef2( t lm  _ Etlm ) 

for each f eB* ,  so the limit used in F(f,'c) exists. If p = 2 (and 7 = ~(Z)), then 

V(f, z)= ~ f 2(x)dT(x) > 0 
B 

for all f such that f (Z )  is non-degenerate. If O<p<2 ,  then for all f such that 
f (Z )  is non-degenerate we have 

r( f ,  z)= ~ f2(x)d#,(x) > 0 
B 

dr 
since /,~=Cr• 7 (O<r<z),  and the closed subspace of B which supports 

s equals the closed subspace generated by the support of #~ for each z >0. 
Thus the proof of the 1emma is complete. 

To finish the proof of Theorem 2 we must verify (2.11). Since Z~=S,- (~")S ,  
we first observe that 

(4.23) (Z, - 6, + 8,(z, r,))/d(n) = ((S, - c~,) - ((~")S,- 8,(~, r,)))/d(n). 

Now s  by assumption, and by Lemma4.1 we have 
lim d,/d(n)= c where c is a strictly positive constant, so 

n 

(4.24) Y((S,  - 5,)/d(n)) 2_+ s 

Combining (4.23) and (4.24) we have (2.11) provided 

(4.25) s - 8(z, r,))/d(n)) ~+ 6 o. 

Now (4.25) is immediate from (2.10) provided 

(4.26) lim ] /~ d(n/r,)/d(n) = O. 
n 

To prove (4.26) observe that by [2], p. 90, and Lemma 4.1 we have 

d(n) = nl/PL(n) 
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where L(t) is a continuous slowly varying function as t~or Hence by the 
representation theorem for slowly varying functions [2, p. 90] we have 

( 4 . 2 7 )  lim]/~d(n/r~)/d(n)=limr~/2-1/Pexp{ ~ ,/r~ ~ds}  

where lim e(s)=0. If 0 < p < 2 ,  (4.27) yields (4.26) and Theorem 2 is proved. 
S ~ o O  
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