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Summary. If X takes values in a Banach space B and is in the domain of 
attraction of a Gaussian law on B, then X satisfies the compact law of the 
iterated logarithm (LIL) with respect to a regular normalizing sequence {~,} iff 
X satisfies a certain integrability condition. The integrability condition is 
equivalent to the fact that the maximal term of the sample 
{ [IXIlI, I]X2 II, . . . ,  IlX,/I} does not dominate the partial sums {S,}, and here we 
examine the precise influence of these maximal terms and its relation to the 
compact LIL. In particular, it is shown that if one deletes enough of the 
maximal terms there is always a compact LIL with non-trivial limit set. 

1. Introduction 

The interplay between the maximal terms of the sample { IIX1 II,..., [IXn l] } and the 
partial sum S, = X1 +. . .  + X, has been studied in a variety of contexts by a number 
of authors. For example, the paper [8] by Feller deals with the LIL in this regard, 
and those of Mori E15, 16] examine this relationship in the setting of the strong law 
of large numbers. Here we study the compact LIL for Banach space valued 
random variables and the related maximal terms. One particular result we obtain 
shows that if one deletes enough of the maximal terms there is always a non- 
degenerate compact LIL when we are in the domain of attraction of a Gaussian 
law. Now we turn to some notation and discuss some background for our results. 

Throughout, B will denote a real separable Banach space with topological dual 
B* and norm I1" [I- We assume X, X1,X2 .... is a sequence of independent 
identically distributed B-valued random variables on some probability space 
(f2, ~,~, P) and let as usual S, = X ,  +. . .  +X,.  We use Lt to denote the function 
max(l, 1Oget) and write Lzt for L(Lt). We write ~(X) to denote the law of X. 
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The random variable X is said to satisfy the classical central limit theorem 
(CLT) if there is a mean-zero Gaussian random variable G with values in B such 
that 

More generally, we say X is in the domain of attraction of a mean-zero Gaussian 
random variable G(DA(G)) if there exists a normalization sequence {d,} ,7 m and 
shifts {6,} ~ B such that 

We always assume the limiting Gaussian random variable non-degenerate. 
We now turn to the law of the iterated logarithm (LIL). If A = B, the distance 

from x e B to A is given by 

d(x, A)= inf I I x - y l l  �9 
yeA 

If {Xn} is a sequence in B, C({x,}) denotes the set of all x in B such that 

l iminf lx , -xl l  =0. We use the notation {x,}~A if both limd(x.,A)=O and 
n n 

C({x,}) = A. With this notation, we say that X satisfies the classical (compact) LIL 
if there is a non-random compact limit set D_C B such that 

~2n~2nJ---~.D w.p.l. 

Let us point out that the use of the shifts nE{X} in the definition of the LIL, as 
well as in the classical CLT, does not restrict the class of random variables 
satisfying those limit properties and is justified from the fact that the conditional 

S, - 6, S. - ~, 
compactness (resp. tightness)of ~ ~ )  (resp. ~ - ~ - 7 - t ~  for any shifts {1,} 

tV2nLznJ \ t l/n )1 
nE{X}-6 ,  nE{X} - 6 ,  

implies the existence of E{X} and that { ~ } ( r e s p . {  ~ -}) i s  

conditionally compact. 
If E{fZ(X)} < ~ and E{f(X)} =0 for each f in B* we define the covariance 

function of X to be 

T(f, g) = E{f(X)g(X)} (f, g E B*). 

The covariance structure of X determines a Hilbert space H.~x) c= B with unit ball 
K~(x). Details on H~e(x) and K~e(x) can be found in [9], Lemma 2.1. 

For a real-valued random variable X, it is well known that the three conditions 
E{X z} < oo, X ~ CLT, and X ~ LIL are equivalent. This is not true in infinite 
dimensional spaces, but, however, the following result due to Goodman et al. [9] 
and Heinkel [10], after preliminary work by Pisier [17], provides a necessary and 
sufficient condition for a B-valued random variable satisfying the CLT to also 
satisfy the LIL. 



Extreme Values and the Law of the Iterated Logarithm 321 

Theorem 1.1. Let X be a B-valued random variable such that X 6  CLT. Then 
X ~ LIL with limit set Kse(x) iff E{ IlX [I 2/L2 IIXII } < ~ .  

This result has been recently refined in [14] when X is merely in the domain of 
attraction of a Gaussian law and the following result was proved. 

Theorem 1.2. Let X be a B-valued random variable in the DA(G) where G is a 
centered Gaussian random variable. Then E{X} exists and there is a strictly 
increasing continuous function d:[0,  oo)--,[0, oo) such that 

d(t) ..~ ~/t Td(t) 

where T: [0, oo)~[0, oo) is non-decreasing, slowly varying and 

\ )-.-+oo -+ 

Further, if we define o~(t)= t/Lzt and 

= Td (t), 

then 

{ S"-nE(X}'~--~g w.p.1, iff E{e-ld-le(l]Xll)}<oe 
J 

where K = K~e(a). 

Here we use the notation f(t),~g(t) as t ~  if 

f ( t )  
lim ~ =1 
t o~ g ( t )  ' 

and fg(t) for the composition of f and g. 
The importance of the integrability condition on IlXll in Theorems 1.1 and 1.2, 

which provides a necessary and sufficient condition for X to satisfy the compact 
LIL whenever X satisfies the central limit theorem, can be illustrated in several 
ways. First of all, some examples in [14] show that when it fails, K is possibly a 

proper subset of the cluster set c ( { S" ;-~n){ X } } ) (in contrast with the situation of 

the classical CLT [6]), and, of course, it is well known that, in the notation of 
Theorem 1.2, 

lira m a x  HXj[I/7(n) = 0 w.p. 1. iff E{~- ' d -  10~([]Xl])} < OO, 
n l<y<-n 

More subtle implications were examined by Feller in [8] and by Mori in [15], [16], 
but the thrust of all of this is that the asymptotic behavior of the maximal terms of 
the sample {[IX1 I[, .--, ItX.ll} parallels the behavior of the partial sum S,. This 
suggests that removing the maximal terms from the sums might improve the LIL 
statement. More precisely, deleting maximal terms could lead to an LIL under 
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weaker integrability conditions than those of Theorems 1.1 and 1.2, or even 
without any integrability assumption if sufficiently many extremal values are 
omitted. It is the purpose of this paper to make precise these intuitive remarks and 
to extend and clarify a portion of [8]. 

2. Statements of the Results 

For n > 1 and 1 < j  < n, let 

~-,(j) = ~{i"  [Ixill > Ilxjll for 1 < i < n  or ]lXil[ = IlXjl[ for 1 < i < j } ;  

here # D denotes the cardinality of the set D. If ~-,(j) = k, set X~ ) = X j; i.e. Xj is the 
kth largest element of X1 . . . . .  X,  when ~,( j )  = k. For any integer r > 1 and n > r we 
se t  

(r)Sn=S n -  ~, X ~  ) . 
j = l  

When r = O, ~~ is just S,. 
Our first theorem deals with the case where we only substract a finite number of 

maximal values from S., that is, in the preceding notation, when r is a fixed finite 
number. The integrability condition we need can be expressed using Lorentz 
spaces. For 1 <p,  q < ~ ,  let Lp, q = Lp, o(f2, ~ ,  P ) b e  the space of all real-valued 
random variables r such that 

(tPP{I~[ > t} ) q/v dt < oe . 
o t 

If p = q, Lp, p is just Lp by the usual integration by parts fromula. If q = 0% Lp, o~ 
consists of all random variables ~ for which 

suptPP{[r < oe . 
t > o  

Note that Lp,ql =CLp, q2 whenever ql--< q2. 

Theorem 2.1. Let X be a B-valued random variable in the DA(G) where G is a mean- 
zero Gaussian random variable and let d, T, and 7 be the functions constructed in 
Theorem 1.2. Then, for any integer r, 

(2.1) 

/if 

(2.2) 

{(r)s, - nE {X  }') 
- ~ -~---K w.p. 1. 

0~- ld-  t 0~([IXll ) ~ Ll,r+ 1. 

For  a better understanding of the integrability condition (2.2), we first provide 
the following equivalence (to be proved later): (2.2) holds iff 

~r+l(X)---E{l_<j~r+lmin (~-~d-l~(UXjll))  "+1} < ~ .  
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The next corollary examines condition (2.2) further: that is, when X is in the 
DA(G), (2.2) implies that it is possible to weaken the usual integrability condition 
E{~-ld - lc~([[X[J)} < ~ of Theorem 1.2 as in (2.3) below. Precisely, we have the 
following 

Corollary 2.2. Let X be a B-valued random variable in the DA(G) where G is a 
centered Gaussian random variable and let d, T, and 7 be the functions constructed in 
Theorem 1.2. Assume that r is an integer and 

? ld l (NxH); 
(2.3) E (  (Lzl[Xt[)o ) < ~ 

for some ~>0. Then (2.2) is satisfied for every r>Q and therefore (2.1) holds. 
Further, if Tx(t) ~ T(t) (for example if X ~ CLT where T -  1 or T is sufficiently 
slowly varying), then condition (2.3) and r >_~ suffice to imply (2.2). 

Let us point out that even in this more general setting, the proof of Theorem 2.1 
we present contains some significant simplifications in comparison with the earlier 
proofs of Theorems 1.1 and 1.2 and is particularly simple in case of Theorem 1.1. 

We also note that when r-- ~ ,  condition (2.2) reduces to 

sup tP(iiX[I > 7(t)} < oo, 
t > O  

and this is always fulfilled when X is in the DA(G) (since X in the DA(G) with 

normalizing sequence d(n) implies lira tP{ [IX [1 > d(t)} = 0 [4], Corollary 2.12, and 
t -+~3 

Jim+ 7(t)/d(t)= ~ [14], remark (V)). This suggests that by subtracting r, maximal 

terms of the sample {[fXllJ ..... tlX, lJ} from the sum S,, where r , ~ ,  could 
possibly yield LIL under the sole assumption that the central limit theorem holds. 
The following theorem describes this situation. 

Theorem 2.3. Let X be a B-valued random variable in the DA(G) where G is a mean- 
zero Gaussian random variable and let d, T and 7 be the functions constructed in 
Theorem 1.2. Then there exists a sequence {4,} of real numbers decreasin9 to 0 such 
that if r, = [ ~ n L z n ] ,  where [ ] is the integer part function, we have 

(2.4) l 7 (~  ]--++K w.p.1. 

Note that the number of maximal terms we remove from S, in Theorem 2.3 is 
very small in comparison to n and can be interpretated in the following way: 
among the maximal values, only those which are in norm larger than dc~(n) 
influence the behavior of S, since Lzn terms less than d~(n) can be dominated by the 
normalizing sequence ~(n).-~l/2L2n d~(n). In addition, the expected number of 
values larger than d~(n) is exactly 

E{ 4~ { 1 < j  < n" IlXj II > d~(n)}} =nP{ I IX It > d~(n)}, 
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and since X is in the DA(G), lim tP(][Xl[ >d(t)} =0, so 
t --+ ct3 

E{ ~ {1 <__j <__ n: IIX jll > d~(n)} } = o(Lzn)  . 

Hence, on the average, the number of values of (IlSl II, -.. ,  IIX, II } bigger than d~(n) 
behaves like o(L2n). These values are usually estimated by some integrability 
condition on IIX II, but since we choose to proceed without integrability we remove 
them, and once they are removed, the LIL  behavior of S, follows directly from the 
CLT statement. 

More general situations than the case of random variables in the domain of 
attraction ofa Gaussian law can also be considered in this setting. These questions, 
as well as various related ones, will be studied in a forthcoming paper. 

3. P r o o f  o f  Theorem 2.1 and Corollary 2.2 

The proofs of Theorems 2.1 and 2.3 follow the same pattern, we will detail the 
situation of Theorem 2.1 and provide in the next section the necessary modifi- 
cation to prove Theorem 2.3. We first concentrate on the necessity of condition 
(2.2) in Theorem 2.1 that we will deduce from the following lemmas. 

L e m m a  3.1. Let r be an inteoer. The followin9 are equivalent 

(3.1) ~- ld- l~( l lX l[ )eLt , r+l ;  

(3.2) J r+ l (X)<  oe; 

(3.3) for some (all) Q>0, Jr+l(QX)<oe;  

(3.4) for some (all) e > 0 and fl > 1, 

(nkP { IIX II> Q~- l d~(nk) } ) ~ + 1 < 
k 

where nk =- [ilk], k > 1. 

Proof. The equivalence between (3.2) and (3.3) holds since T slowly varying implies 
that for each Q > 1 there exists Uo > 0 and 2 > 0 such that 

VU>Uo, ~ - l d - ~ ( Q u ) < 2 ~ - ~ d - l ~ ( u ) .  

Dealing with (3.4) we have: 

f ,+l  "1 
E (nkP( II X [I > ec~- *d~(nD}) ~§ = E n• + *E ~ H l{,, x. II > o~- *.=(.k)}~ 
k k U =  1 ) 

r+l }} -=E f ~ n k  I 
~ k  {rtk=< min ct-ld-l~(llX,]l/o) 

l_<j~r+l 

and this last expectation is clearly equivalent to J~+,(X/Q). Finally (3.1) is 
equivalent to the preceding conditions since 

t ' (P{a- t d-  a~(llXll) > t} ) ~+ sat < 
0 
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2k+l 

Z I t ' (P{~-*d- l~( l lXl l )>t})  *+ldt<~ 
k 2 k 

52 (2kp{~-i d -  1 ~(ll x II) > 2k}) r +~ = E (2kp{ [I X l[ > ~-1 d~(2k)), + 1 < o0. 
k k 

To prove the necessity of (2.2) we will need the following lemma, a proof of 
which can be found in [15], Lemma 3. 

Lemma 3.2. For any integer r and any 0 > O, 

P{[[X~r+ 1)[[ >o?(n) i.o.} =0 or 1 

accordin9 as J , + I ( X ) <  ~ or = c~. 

The necessity of (2.2) then follows easily: 

Lemma 3.3. For any inte9er r, if 

II(')&-nE{X}[I 
(3.5) l imsup <oe  w.p.1. 

. 

then (2.2) holds. 

Proof. The case r = 0 is known so we assume r > 1. It is easy to see that 

[](~)S,+ 1-(~)&J[ =min( l [X,+l  [[, IlX~.r)l[) 

and thus by induction on n that 

max ] l r  1-r = [IXL+ )II �9 
r<j<=n 

By (3.5) and Lemma 3.2, the conclusion is immediate. 
We now show that under condition (2.2), the conclusion of the theorem holds. 

Before turning to the main argument of the proof, let us state the following simple 
lemma which will prove to be useful. 

Lemma 3.4. Assume that 

2 '  \ d(n) ] "-* ~ ~ ( G )  

where d is the function of  Theorem 1.2. Then, for every 3 > 0 

. n 

(3.6) hm d ~  []E{XI{llxll > od~,)}} [1 = 0. 

Further, if {e j} is a Rademaeher sequence independent of {Xj}, ~ k ejXj~ j= 1 ~ J  is tight. 
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Proof Since X is in the DA(G) with normalizing constants d(n), by Corollary 2.12 
of [4], for each 6 > 0 

By difference (3.6) holds. Now let q be a continuous seminorm on B; for each n 

<__ 2E{q(Sn- nE{X})} + V ~ q(E{X}). 

Since d( t ) , ,~ t  Td(t), we already deduce from these inequalities the stochastic 
n ~ , j X  j . 

boundedness o f  ~7~-_.~_- Using convergence of moments [5], for every e > 0, we 
J --1 urn)) 

can find a finite dimensional subspace F of B such that if qv(" ) = d( . ,  F), 

s u p E ~ q e ~  d ~ - ) f < -  rl ~ 2 "  

Defining/Tto be the finite dimensional subspace of B generated by F and E{X}, we 
get that 

a - ( h 3 / 3  - 

The tightness of Y~ follows from its stochastic boundedness and this finite 
~j= 1 d(n)J 

dimensional approximation. 
The following proposition is the main point in the proof of Theorem 2.1. 

Anticipating, we notice that it also contains part of the proof of Theorem 2.3. 

Proposition 3.5. Let X be as in the theorem, r be an integer and assume (2.2) holds. 
Then, for every continuous semi-norm q on B satisfying 

(3.7) E{q(j~=l ejXj~; 
d(n)JJ <1 

for all n large enough, we have 

(3.8) lira sup q ( .(r)S" - nE { X }'] / w.p.1. 

Proof. We will show that for every e > 0 there exists a fl > 1 such that if nk = [ilk], 
and I(k) = (nk, nk+ 1], k > 1, 

P ~max q(tr)S~- nE{X}) > (3~/2 + e)7(nk)} < oo. 

Since q is continuous, there is a constant M < oo such that q(x) < M II x II for each x 
in B. Let e > 0 be fixed. We choose an integer m such that l=  2m> 3r + 1 (m = 1 if 
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r=O!) and take z = r ( r , m , M , e )  such that 

O<Z<  
24M. 3 '~" 

Let also 0 > 0 be specified later. Define for every k > 1 and 1 <j  < n k + 1, 

uj = uj(k) = X jI{i Ix jll <= ~d~(.~)}, 

(3.9) 

and for 1 <__n<_nk+ 1: 

vj = v;(k) = X jI{~d~(m,) < IlXjll ~ -  ad~Kn~)} ' 

wj = wj(k) = X jI{I I xj  I I > ~-~d~(n~)}, 

U n =  ~ ,  (uj-E{ufl), 
j = l  

(3.10) ~ :  ~ (vj-E{vj}), 
j = l  

K= Z (wj-E{wj}). 
j = l  

Clearly S . -  nE{X}  = U. + V. + W.; further 

+ M m a x  W , -  max q((r)S.-  nE{X})  < max q(U,) + M max [[ V, II X ,  ~) �9 
n ~ I(k) n e I(k) n e I(k) n e l (k)  j = 1 

The result will therefore be proved if we show that for every fl > 1 and Q > 0 

r X~) s } (3.11) Z P  max IV.-  Z >~--~?(nk) < ~ ,  
g (,~1(k) ll j=l 

(3.12) 2 P  max II11.11 > XV;..7(nk) <0O, 
k ( n ~ I ( k )  

and for some fl > 1 and Q > 0 

(3.13) ~ P { m a ~ q ( U . ) > ( 3 [ / / 2 + 3 ) ? ( n D } < ~ .  

Let us first prove (3.11). We note that 

j = l  j = l  ) = I  

and hence 

" X~. j' <=max ~ w j - ~ X f f '  max W . - ~  1 .~1(k) j=l j=l +nk+ttlE{XI~llxll>~-'d~("k)}}l[" 
n E I(k) 
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Since d(t) is continuous and strictly increasing we choose m = re(k) such that d(m) 
= ~-ld~(nk). Now, since T is slowly varying, it is easily seen that 

�9 n k d ( m )  = O ,  
h m  Y~k) m 

so that we deduce from (3.6) that 

�9 t / k +  1 
hm y(nk------) I I E{XI~11 x It >,,-la,~,~)~} It = o. 

Note that the limit in (3.6) holds as n ~ ~ through the integers, but it is also true if n 

is a continuous variable. Therefore, to prove (3.11), it suffices to show that 

P~max  ~ w , -  ~ X~' > ~MY(nk)} < oo. 
k [n~I(k)  Ilj= 1 j= 1 

But now, for k large enough 

(3.14) P max Z w j - j  X~ ~ > 
{n~l(k) j=  1 w , *  ~)(nk) 

<P{at  least r +  1 Xfs (1 <j<nk+l) satisfy IlXjJl >z~-id~(nk)} 

since on the complement of this set 

max [ ~ w j -  ~ X~ ) < rz~- ~d~(nk) < 
neI(k)~ j = l  j = l  

for z < e/6Mr and y(nk)~ 1/~ ~-ld~(nk). It follows then from (3.14) that 

P max 5-" w j - j  X, o) > <(nk+lP{llXll>z~-ld~(nk))) "+1 
{ neI(k) j=  1 

and (3.11) holds by Lemma 3.1. 
Next we turn to the proof of (3.12). We first show that 

(3.15) lim E{ II V,~+~ II } = 0. 
k ~(nk) 

Since X is in the DA(G), [-5] and lim y(n)/d(n) = ~ together imply 
n 

lim E{IISn-nE{X}I[} =0 .  
. ~(n)  

Using classical inequalities involving Rademacher random variables and a 
contraction principle, for each k 

E{[] V.k+~l[) < 2E 8jl)j <2E ejXj 
J J 

and (3.15) follows from the inequalities in the proof of Lemma 3.4�9 
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By Ottaviani's inequality, for every k, 

} P max II g.II > ~.~xc~ ~-M ~(nk) < { } g 
1 - m a x P  [I V~+ l -- V, II > -K-M T(nk) 

n ~ I ( k )  

but for every n ~ I(k), 

11 v~ ~ )} 6M P k+l - -V . I I>~y(nk  < 
= e~(nk )  

6M 
E{I] g~+ 1 - gd} ~ ~ E ( I I  v~+ 111}, 

and hence by (3.15), for k sufficiently large, 

P max [111.11> l[V.~+ I [ > ~  (.~X(k) ~ 7(nk) < 2P 1 ~(nk) . 

OfcoursewealsohavethatP{l lV,~+l l l<l~MY(nk)  } >�89 for k large and thus 

(3.16) 

P (max  llV"]l > 3 ~  

< 4 P  IIV,~+lll > g-~7(nk), Ir V,'k+,l I < l~--~7(nk) 

=<4P k+l[I > l'l'l-~ "~ (nk 

t l k+  1 

where V.~ + 1= V.k+ 1 -  E'.k+ 1 and V.'k+ 1= ~ (v}-E{@) is an independent copy of 
j = l  

V,~+ ,. Now, by J. Hoffman-Jorgensen's inequality [11] iterated m times, for some 
constant C, 

(3.17) P ~+ll[>l~-~(nk < C  P ~+,r[> 12M.3"7(nk 

since 11 v j -  v~[] < 2z~- lda(nk) < 2zT(nk) < eT(nk)/12M- 3" for k sufficiently large. 
Using again (3.15), for k big enough 

P ][~,k+l]l> 12M.~-~?(nk) 

(NAg) < 2 P  IIV.k+l[I > 24M. 3 "7(nk) 

< 2P III V.~+I [I - E{ [I V.~+, I[ }1> 48M- 3" ~(nk) " 
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Now II ~+111 - E{ 11 ~ +, II } can be written as a sum of martingale difference 
sequence d j, 1 < j  < nk + 1, such that (cf. 1-23) 

E{d}} <= 4E{ l[ vj - E{@ II 2} ____ 16E{ I[ vi II 2}, 

and therefore, by Chebyschev's inequality, 

(3.19) P 111~+,ll-E{II~+IlI}[> 48Y]. 3" 

= - - E g { l l v j t l 2 }  �9 
j = l  

Bringing together (3.16), (3.17), (3.18), and (3.19) we finally get that for some 
constant C and all k large enough 

Pt n~l(k)max IIV.II > 5-~r(nk) _<C (~(/~k)) 2 j=l E{llv~llZ} 

and hence (3.12) will be proved if we show that under (2.2) 

k (~(nk))2 J=*2 E{llvjll 2 < ~  

for l = 2" > 3r + 1. To this aim, we need two elementary estimates and we assume 
z < 1 for simplicity. First, for k large enough and some C < 

(3.20) E{ nX]l 2I~od=(.~)< Itxll <-~-~d=(.~)>} =< C(Te- ld~(nk))ZZ3nk 

where L3t denotes L(L2t). Let us prove (3.20). By integration by parts, 

E{ 11 x II 2I{ed~(nk)< II X II < ~-  *d~(nk)}} 

<(ed~(n~)YP{llXLl>ed~(nk)}+ I e{llXIl>t}dt ~.  
Qd~(nk) 

Using now that lira tP{ IIX II > d(t)} = 0 and d(t)~ ~/t Td(t), we get that for k large 

enough 

+ ~- ~a~(~) T2(t) dt 2 
( ( Td~ ) Z od~(nk) t ) <=c ~ z 

- 1 2 ~ -  i d ~ ( n k )  

and (3.20) follows since c~-1(0 ~tL2t. Recall now that 

(3.21) (7(nk))2 2L2nk(Td~(nk)) 2 
nk 
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and from [13], p. 546, since T is slowly varying, for every ~ > 0  (to be specified 
later), 

(3.22) Tcr l d~(nk) < 2(L2nk)~l 4 
Td~(nk) 

for k suffidently large. 
We turn to ~ and in the estimates below, C will denote a constant possibly 

varying from line to line; also the sum over k in Y, is assumed for k large enough. By 
(3.20) 

E < C ~k t ~ )  ((Ta-'dcc(nk))2Lank)'-'-S(E{ ] IX I I  H(ed~<(,,,~)~ liXll =<~-,a~<(,,,<)j,,, 

and by (3.21), (3.22) and independence: 

. . .  112 y~(L2nk) ~ ( t - ' - ' ) -~  Z<CE) . I IX l l l  ~ I I X , + I  ,, 

X ]{erl~(m,)<= { IX l  II =< ... --< IIX,.+ i l l  =<<x- ld~(nl,)} t ' 

Using the properties of d and the fact that on the set 

{od=(n~) < I lX l  II 5 ... < I IX,+ ~ II < <~-'d,(n,<)} 

we have IlXill < c IIxl IlL2 IlXx II for 1 < j  < r + 1, it is easily seen that 

C gL llX N~2r+f(l-r-1)-I 
~ < C E . ) , X  112(r+1)~. 211 1111 I 
~ =  { ,  1, ~ i 3  { l lX ,  l l_-<.. .=<l lX,-+, l l }  

X Y~, I{ada(nl,)< = 11 x, II < ~<- ~d<~(",<)) ~ > 
k ) {( v,,+,, } 

< c g  I + T . ( I I X 1 D J  (L211X~ll)2"+o(~-'-t)-~L311X111I~llx'il<-"<=lix"+~li} " 

As : r  2 and since l > 3 r + l ,  we choose 6 > 0  so that 
l -  6 ( 1 -  r - 1) - 2r > r + I and it follows that 

Z_-__ c ~ r  l ( x )  < ~ �9 

This establishes (3.12) and the proof  of the proposition will therefore be 
complete if we show that (3.13) holds. For k > 1, let Pk = [ L z n k ]  and s~ = nk + 1/Pk" 
Note that 

7(nk) .-~ ~/2~- X d~(nk) ..~ ],/2L2nkd~(nk) > ]//2pkdCC(nk) ; 

therefore, for k sufficiently large 
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We set A = (31/~ + 2 )  ~/-2 for simplicity. By the maximal inequality for submar- 

tingales, for every k > 1 and 2 > 0 

P ~max q(U,,) > Apk&X(nk) } < e x p ( -  2Apk)E{exp2q(U,k § 1)/d~Z(nk)} 

Pk 
=exp(--2Apk) I71 E{e xrm} 

m = l  

where Tm =q m ~ - uj--E{uj de(nk) and 2 = 2 . We now recall an 
j = (  1)sk j=s j = [ s l +  1 

inequality due to A. de Acosta [1], Lemma 2.2, and apply it to our setting: for every 
2>0 ,  t > 0 ,  m =  1, ...,Pk, and c such that q(ui-E{uj})<cde(nk), 

(3.23) E{e ~rm}=<e~t+e x(t+c~ 

x P _  max q 2 (uj -E{uj})  > td~(nk) E{e;~Tm}. 
~(m- 1)sk<i<=msk \j=(m-- 1)sk 

But now, for every m = 1, ..., Pk and k large enough, applying again the maximal 
inequality for submartingales, 

(3.24, P{,m_lmaX<_ms qC= iZ_l,~,ui-E{uj})>2fld~(nk)} 

< 2fldo~(nk ) E q j=( i)~kuj--E{uj 
)} < - -  E q Y e, jU i 

1 ( f t . , j§  \ ~  

where the last inequality follows from the fact that 

d(Esk] + 1, ~ d(Sk, ~ d ( ~  +~ ~ ~ d(fl~(nk,) ~ 1/fl d~(nk,. 
\L2nk/  

Setting t = 2fl, c = 2QM, and ~ = 1/2(fl + QM) in (3.23) and using (3.7) and (3.24) we 
get 

E { e~ :r,.} < eZ.Zp + ~eZ~.(p + O U)E{e.Zr,~} < e 2,za + 

and thus 

P ~max q(U,,) > ApkdC~(nk) ~ < eXp(-- pk(2A -- 22fl -- 1)). 
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These probabilities are summable if2A - 22 f l -  1 > 1, that is, since 2 = 1/2(//+ QM), 

if A > 6fl +4QM. Recalling that A = 3V~+ g , this is accomplished if we 

choose fl > 1 and ~ > 0 such that 

> 3]//2(fl- 1) + 2]//2 ~M.  

This finishes the proof  of Proposition 3.5. 
The following proposition will allow us to identify the limit set of 

{t~)S, with K = Kze(~r nE{X} ~ 

J 
Proposition 3.6. Under the hypothesis of Theorem 2.1 and condition (2.2), if f is a 
linear functional on B such that (E{fZ(G)}) 1/2 = try > O, we have 

/(")S - nE{X} 
(3.25) l imsupf~-  "7~n) -j =try w.p. 1. 

Proof. We assume without loss of generality that I[fll = I. We need to recall [4], 
Corollary 2.12, that for every t5 > 0  

t 
(3.26) }im ~ E { f Z ( X I ( l j x l j  <=~a(t)~-E{XI(rlxll ~oa(t)~})) =tr}. 

Let us first prove the upper bound 

(3.27) lim sup f ( t ' ) S , - n E { X }  \- ~ ,]t =< trf w.p. 1. 

W e  set n k = [ilk], k ~ 1, w h e r e  fl > 1 is to be specified later and define u j, v j, w i, U n, 
V,, IV, as in (3.9) and (3.10) with Q > 0 and z > 0 also to be specified later. Taking into 
account points (3.11) and (3 .12)of  the proof of Proposition 3.5 (with some 
appropriate choice of z > 0), we have only to show that for every e > 0 there exist 
fl > 1 and Q > 0 such that 

(3.28) k ~ P [, d(k)~maxlf(U")[ oe > ( I  -q-e)trfy(nk) } < . 

By the maximal inequality for submartingales, for every 2 > 0, 

P ~maxlf(U,)l  > (1 + e)ai?)(nk) ~ <= exp(-- 2(1 + e)tryT(nk))E{exp21f(U,)l} (neI(k) J 

and by the proof of the exponential inequality in Lemma 2.2 of [3], this probability 
is also less than or equal to 

2 exp - 2(1 + e)tri7(nk) + ~- Y'. E{f2(ui-- E{uj})}e ~c 
j = l  
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where c=2Qdoffnk). Recalling that  7(nk),.q/~Lank&z(nk) and 

n k + l  E:'f r z rv  I 2 
( d ~ k ) )2  ":,W ~,A {It x II -_< ~d,(,~}}- E{XI{H x II <= Qa~t,~)}})} ~ flL2nk{rl, 

we choose 2 = [/~/asd~(nk), and thus, for any 5 > 0 and k sufficiently large 

P ~max[f(U,)[  > (1 + e)r ~ 
(n E ~ {k) 

_--< 2 exp(--  (2 + e)Lznk + (fl + 3)L2nke2ViQ/"O 

= 2 exp ( -- L2nk(2 + e -- (fi + 3)e2V2e/~0). 

We then choose 6, 0 > 0, and fl > 1 such that  

8 
2 + e -  (fl + 3)e 2V~/~ > 1 + 

and finally get that  for k large enough 

P ' m a x ' f ( U . ) l > ( l + e ) a f l ( n k ) } < = 2 e x p ( - - ( l + 2 ) L 2 n k ) ;  
(n �9 I(k) 

this proves (3.28) and therefore also (3.27). 
We next turn to the lower bound  and prove that  

['<~)S. - nE{X} "l 
(3.29) l i m s u p y  ~- 7 - ~  J > a l  w.p.1. 

The notat ions  are as before, we just take 0 = 1 for simplicity. Let  e > 0 be fixed and 
define for each k 

E k = {f(U.~ +, - U,~) > (1 - 8)O-yV(n k + 1)} 

and 

Fk = {If(U,k)l = ead(nk+ 1)}. 

We will show that  there is a fi > 1 large enough so that  

Z P ( F ~ ) < ~  and Z P ( E k ) = ~ 1 7 6  
k k 

we will then have by the Borel-Cantelli L e m m a  that  w.p. 1. 

f ( U , k + l -  Un~)>(1--e)ayT(nk+D i.o. 

and 

that  is 

[f(U,k)[<eay~'(nk+t) eventually,  

f (U.k  + ,) > (1 -- 2e)o-fl(nk + 1) i.o. 
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But it follows from (3.11) and (3.12) that for some appropriate choice of z > 0, for 
every fl > 1 

Z P{[f(V,~ + 1)l > ea:~(n,  + 1)} < oe 
k 

and 

so that, w.p.l., 

f ( ' ) S , ~  +1 - nk + 1E{X}) > (1 -- 4e)az7(nk + 1) i.o. 

which gives (3.29). 
Let us now prove that ~2 P(F~) < oe and ~2 P(Ek)  = oe. That ~2 P(F~) < oe 

k k k 
follows from the same argument we used in the proof of the upper bound (3.27) 

since 7(n k + a) "~ ] / ~  7(nk) and we take fl > flo > 1 for some flo large enough. We turn 

to ~2 P(Ek).  Let s2~+1 = E { f 2 ( U , ~ + I  - U,~)}; using (3.26) 
k 

Thus, for k large enough, 

We apply to this last probability Kolmogorov's  lower exponential inequality 
[18], p. 262. Let 7 > 0  be such that 

1 -  5 < 1 -  5 , 

and e(~) and rc(~) be as in [-18]. Of course 

for k sufficiently large and since 

I f  (uj - E{uj})l < 2d~(nk) ~ 
2 s .~  + 1 1 

L]/~zn~ 65 =csnk + l 

where c is defined by the equality above, we then have 
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for fl>fll > 1, fl~ large enough and hence by Kolmogorov's lower bound 

fl e 2 + 7)L2nkl P(Ek) >exp ( - - ~ ] - ( 1 -  ~ ) ( 1  
/ 

if 1 -  fl/(fl-1)<=l-~ which is achieved for f l>f l2>l .  Taking finally 

fl> max(3o, ill, fla), we see that 2 P(Ek)= oO and thus (3.29) holds. The proof of 
k 

Proposition 3.6 is complete. 
Using Propositions 3.5 and 3.6 we can now conclude the proof of Theorem 2.1. 

Let us choose via Lemma 3.4, for every e > 0, a finite dimensional subspace F such 
that 

s u p E  
- _ 1  d(n) J J - n j 

Applying Proposition 3.5 to qr/5e we get 

( .'r)S"-nE{X}~ < 15V/2e w.p.1. lira sup qF \ y(n) ] = 

~"'S,- nE{X} ~ is relatively compact w.p. 1. Taking into Since it is also bounded, [ ~;(n) J 

account Proposition 3.6, Theorem 3.1 of [12] concludes the proof if B is infinite 
dimensional; if not, a standard finite dimensional argument (see, for example, the 
proof of Corollary 3.1 of [12]) can be used to establish Theorem 2.1. 

We finish this section with the proof of Corollary 2.2. By Lemma 3.1, (2.2) is 
equivalent to 

Z ( 2k P { I1X I I > a - 1 d a(2 k) } )r + 1 < oo. 
k 

Since X is in the DA(G) and d(t)~ ]//7 Td(t), for t large enough, 

T2(t) 
P{ l lx l l> t}< t2 , 

and thus, for k sufficiently large and some constant C 

2kp{IIXll > a- ld~(2k)} < LzZk \ Td~(2k ) j . 

As was already noted, since T is slowly varying, for k large 

ld (2k)) 2 



Extreme Values and the Law of the Iterated Logarithm 337 

when r > 0. But then, C being a constant possibly changing from line to line, we 
have 

Z (2kP{ II g II > ~-- l d~(2k)})' + 1 < C P{ II S II > =-  l d~(2k)} 
--- ( 2 )  

< CE ~ -  l d -  ~( lIXll )~  
= k (g2llXll) ~ J" 

The further conclusions of the corollary follow immediately from the preceding 
proof since we are assuming Te(t) ,,~ T(t) when 0 = r. 

4. Proof of Theorem 2.3 

We first construct the sequence {~,} which will determine the number of maximal 
terms we remove. Let 

A(t) = sup sP{ I[X 11 > d(s)}. 
s~ t  

Since X is in the DA(G), we know that lim A(t) = 0. We eliminate the case A(t) = 0 
t--* oO 

for some t since in this case X is bounded and Theorem 1.2 implies (2.4) holds with 
~ , - 0 .  Choose then for {~,} any sequence of positive real numbers decreasing to 0 
such that for every 6 > 0 

(4.1) lim r A(f~(n)) ) = oo . 

As a possible choice for {r we suggest ~. defined for n large enough by 

L 1 -1 /2  

Take now any sequence {~,} decreasing to zero satisfying (4.1) and let it be fixed; 
since a sequence larger than ~, still satisfies (4.1), we may clearly assume ~, "~ 0 and 
r, = [ ~.L2n] ,~ oo. 

We will need the following analogue of Proposition 3.5. 

Proposition 4.1. Let X be as in the Theorem 2.3 and r, = [~,L2n]. Then, for every 
continuous semi-norm q on B satisfying 

(4.2) E q < -  

for n large enough, we have 

" ' - - \ Iq" 'S" -nE{X}7-~  ) "~ 3V~ w.p.1 (4.3) u m s u p q /  _-< . 
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Proof. We will prove that for every e > 0 there exists a/? > 1 such that 

Y,P ~max q(~")S,-nE{X})>(3V~ + e)7(nk) } < oe. 
k ~n�9 

Let M be such that q(x)_<__ M I[ x 11 for each x in B. Fix e > 0 and let 0 > 0 be specified 
later. Define for every k > 1 and 1 <j < nk + 

Uj = uj(k) = SjI(i I xj I I =< od~(nk)~, 

wj = wj(k) = X j -  uj 

and for 1 <n<_nk+l, 

Clearly 

u.=  2 % - ~ { @ ) ,  
j = l  

w~ = Z (wj-E{wA). 
j = l  

rn  

max q(('")S.- nE{X}) <_ max q(U.) + M max W. -jZ----1 x~) " 
n E I(k) - -  n �9 I(k) n �9 I(k) 

The proposit ion will thus be proved if we show that for all fl > 1 and 0 > 0 

(4.4) ~ P  max > < oo k ~.�9 j=l zlvl ~(n~) 

and for some fl > 1 and Q > 0 

(4.5) 32P m a x q ( U . ) >  3 l /~+  ?(nk) <o0 
k ~.~(k) 2 " 

To establish (4.5) we need just to recall (3.13) of the proof  of Proposit ion 3.5. Hence 
it is enough to show (4.4). Now 

max W . - ' ~  X ~ ) < m a x  ~. 
Yn 

w j  2 X~ ~ 
,~�9 j =  1 . �9  j =  1 j = l  

From (3.6) and the fact that 7(t)~l/~L2td~(t), we see that 

r nk+ 1 
lm - -  [IE{XI~IIx II > ed~(~k)1} [[ = 0 
k ~(n~) 

so that (4.4) reduces to 

P max 32 w j - _  > oe. 
k l n � 9  l l j = l  j = l  4 - M  7 ( n k )  < 
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We estimate these probabilities in the following way: since r, ~ oe for k large 
enough, 

=<P{at least r ,k+l  Xjs  (1 <=j<=nk+l) satisfy ItXj[] >od~(nk)} 

since on the complement of this set 

n r n 

max Z w j -  Z X. ~ < 0 max r.d~(nk) <= V(nk). 
n~I(k) j = l  j = l  = n~I(k) 4 -m 

Writing Sk for r,~, 

P max Z % - Z X ,  ~) < Z ~ (1--pk) . . . .  -J 
[neltk) [[j= 1 J= ~ II j=sk + 1 

where Pk = P{ [] X [[ > Qdc~(nk)}. By Feller [7], p. 173, and Stirling's formula, for all k 
sufficiently large 

mc+t (nkj + )P~k " (nk+l--l~P;tsk(1--t) nk+l-sk-edt 
Z 1 (1 - -pk)nk+l-J-=nk+l  \ Sk / 0 

j=sk+ 1 

<= 2(en k + lpk)SkS~ (s~ + ~). 

As d(o2t)~ od(t), for k large 

and therefore 

O2~(nk)Pk < 2A(oZ~(nk)/2) 

) 
j =  1 X"U  

< 2 ( ~ z  "nk+lnk A(o2c~(nk)/2)Lznk) sks~r 

A(o2~(nk)/2) sk 

Remembering (4.1), we have (4.4) and Proposition 4.1 is proved. 
The following proposition is just a consequence of (4.4) and the proof of 

Proposition 3.6 and may be proved as there. {~,} is fixed as before. 

Proposition 4.2. Under the hypothesis of  Theorem 2.3, for any linear functional f 
on B such that (E{fZ(G)}) 1/2 = a I > O, 

- ne{X} 
(4.6) l imsupj~-  ~ -j = a  I w.p.l .  

The conclusion of the proof of Theorem 2.3 now follows exactly as for 
Theorem 2.1. We omit the details. 
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