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Summary. Weak convergence of a class of functionals of P R W R E  is 
proved. As a consequence CLT is obtained for the normed trajectory. 

1. Introduction 

In the present article we investigate the asymptotic behaviour of Persistent (or 
Physical) Random Walks (PRW) in Random Environment (RE) on Z d. 

Suppose q / c Z  e is a finite symmetric subset of the lattice generating the 
group of translations on Ze: the set of possible steps of the random walker. At 
each site of the lattice (z~2g d) a random scatterer is placed characterized by a 
stochastic matrix r(z)_t~,(~) ~ which we shall call the persistency (or scat- z - - k / u , u ' / u , u ' E q J ~  

tering) matrix at z. The persistency matrices are random and the collection of 
them is the RE. 

Given the environment a PRW is a Markov  chain of order two on 7Z. a with 
transition probabilities 

P ( X , +  l = z  + u ' l X , = z , X , _  1 - - z  -u)--~:~,u,. (t.1) 

The model can be considered as a stochastic version of the Lorentz gas 
with finite horizon. 

The following three conditions are imposed on the scattering matrices: 
0. (Ft~))~z~ form a stationary and ergodic sequence of random matrices (under 
translations on Z a) 

1. they are almost surely bistochastic 

2. they satisfy almost surely a uniform Doeblin condition (condition (b) of the 
next section). 
Comment :  Condition 0. is natural. Condition 1. is the weakest symmetry 
condition on the scattering mechanism. In fact, from a physical point of view 
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stronger conditions seem to be natural (e.g. 7n,,,=y_u, _, a.s.). Condition 2. is a 
technical one, and we think that it can be considerably weakened. 

Under the above conditions we prove that the finite dimensional distri- 
butions of e 1/2 X~_1~1 converge to those of a Brownian motion with a positive 
definite covariance matrix (in probability with respect to the environment). 

For  the one-dimensional case with nearest neighbour jumps the invariance 
principle has been proved in [6] using a "very one-dimensional" ad hoc 
argument, so this result can be considered as a generalization of that one. The 
study of this model was proposed by D. Sz/~sz. 

Besides the intrinsic physical interest of the model, we think that the main 
mathematical interest of our result consists of the fact that it relies on a 
generalization to non-reversible Markov chains of a theorem recently announced 
by C. Kipnis and S.R.S. Varadhan on the asymptotics of additive function- 
als of reversible Markov chains E3]. 

The paper consists of two further sections and an Appendix. In Sect. 2 we 
give the exact mathematical formulation of the problem and state our result. In 
Sect. 3 the proof is given. The Appendix contains the sketch of proof of the 
generalization of the Theorem of Kipnis and Varadhan. 

2. Exact Formulation and Main Result 

Before entering into details we have to specify some notations. 
Throughout  this paper D([0, 1]) will denote the space of right-continuous 

real functions defined on [0, 1], endowed with the Skorohod topology. The 
Wiener measure of variance a 2 >0  on D([0, 1]) is denoted by ~K~. 

Let (t/n)n~ N be a Markov chain with state space f2 and trajectory space ~2 ~ 
(endowed with the natural product ~-algebra). We shall denote by //(o~) the 
Markovian measure on g2 N conditioned to the initial state r/o = co. If # is a 
probability measure on (2 (that is: an initial distribution of the Markov chain), 
/ /"  will denote the Markovian measure on the space of trajectories conditioned 
to this initial distribution 

,7. = ~ #(do~) n ~ .  
f2 

We say that the Markov chain t/,, is stationary (ergodic) with respect to # iff 
the measure H u is stationary (ergodic) under the left shift of f2 N. We denote by 

the transition kernel acting on the space of bounded, measurable functions 
defined on f2. If ~ is compatible with the #-equivalence of measurable func- 
tions, P and P will denote the transition operator and its adjoint acting on the 
L,(~?, #) spaces. 

The following lemma is standard (see for example [4]) 

Standard Lemma 
i) Let p~LI(Q,#), p>=O #-a.s., ~ d p p = l .  The Markov chain tln is s~ationary 

w.r.t, p d# if and only if ~p=p 
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ii) Let ~ln be stationary w.r.t. #. It is also ergodic w.r.t. ~ i f  and only if the 
only solutions in Loo(~?,l ~) of  the equation 

P~=~# 
are the constant functions. 

Given (p a real measurable function on f2, we are generally interested in the 
asymptotics (as e--* 0) under the measures/7 (~) of the random functions: 

[e ~t] 

X~ ~~ f2~+D([0, 13); X<~)':co, tt ,:,~,s t )=e 1/2 ~ cp(cok). (2.1) 
k = I  

We define the notion of weak convergence to be used in the present paper. 

Definition. The finite-dimensional distributions of X{ e) converge in g-probabili- 
ty with respect to the initial state to those of ~ if and only if given any 
bounded, continuous real function f on D([0,1]) depending only on a finite 
number of coordinates 

5#(dco)lSdH(~ ) -  ~ d ~ f [ ~ O .  (2.2a) 
0 oN D([0,11) 

Or, equivalently: for any 6 > 0  

#({co6(2:15 d17(O)f(X?)) - ~ d~U~fl>c~})---'0- (2.2b) 
nN 9([o, a]) 

We are ready now to turn to our concrete problem. Let (f2o, ~o,~zo, {z~: ze2U}) 
be an ergodic dynamical system on the group {%:zeZd}, ~ c Z  d a finite 
symmetric subset of the lattice which spans Z e (l~#l=v) and F=(7, ,  ,),, , ~  a 
stochastic-matrix-valued measurable function on ~2o. We shall call cos~ o a 
realization of the environment, ~// the set of possible steps of the random 
walker and F(co) the scattering matrix corresponding to the environment co. 
Consider the Markov chain (v,, t/,) with state space 

f2= J# x ~o = {(u, co): ue~', coef2o}. 

vne~ the n-th step of the random walker, t / ~ 2  o is the environment seen 
by him after the n-th step. The transition kernel of this Markov chain is 

(5~ ~o)(u, co)= ~ ,/,,,,(co) (p(u', Zu, co). (2.3) 
u' Eo]z 

Using (i) of the Standard Lemma one can easily check that if 

(a) ~ 7,, , ,=1 ~to-a.s. (2.4) 

then this Markov chain is stationary with respect to the initial distribution.: 

/~=mx/~ o where m({u})=v -1 uEql. (2.5) 

(Later on it will be shown that, assuming also condition (b) below, it is also 
ergodic.) 
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Our result is the following: 

Theorem 1. If, besides (a), F satisfies also condition 

1 
(b) IIr-Hll__<l-a a.s., where H , , , , = -  (2.6) 

V 

then for any ~o~L2(g2,/~ ) satisfying 

2 q,(u, .)=0 (2.7) 
uaq/ 

the finite dimensional distributions of X~ 0), defined by (2.1), converge to those of 
a Wiener process ~ with positive variance, in #o-probability with respect to the 
initial environment. 

Comments: 1. Condition (a) is that of bistochasticity of F, (b) is a Doeblin 
condition uniformly imposed on the scattering matrices. We think that (b) can 
be weakened. 

2. Let ~ be a finite-dimensional vector-valued function on the state-space 
satisfying componentwise the conditions of Theorem 1. Applying component- 
wise the martingale approximation of the proof we readily obtain an appropri- 
ate vector-Valued martingale approximation of the process X~ ~). Thus the 
theorem holds word by word for vector-valued ~'s too. Choosing 

d cp(u, co)=u~P, (2.8) 

we obtain weak convergence of the finite-dimensional distributions of the 
normed trajectories of PRWRE. 

Theorem 1 will be proved using the following generalization to non-re- 
versible Markov chains of a recent result of Kipnis and Varadhan [3]. 

Theorem KV. Let tl, be a Markov chain with state space f2, stationary and 
ergodic with respect to the initial distribution #. P is the transition operator 
acting o n  LE(Q,# ) R;=(I _~p)-l, 0~)~<1, its resolvent. Let (pGL2(Q,#), with 
S d# (p = O, satisfy 

(i) (~o, Rxq~)~l(G2+[l~oll 2) as )bT1, (2.9) 

(ii) (1-2)(Racp, Rx, cp)--*0 as ,i, 2 'A1 (2.10) 

Then the finite dimensional distributions of X~ o) converge, in #-probability with 
respect to the initial state, to those of ~K~. 

Comment. The theorem of K & V was stated originally for reversible Mar- 
kov chains (that is: P self-adjoint) and only a condition equivalent to (i) above 
was imposed on ~p. If P is self-adjoint, our second condition is implied by the first 
one. In [3] the theorem is proved by using essentially a form of the spectral 
theorem for selfadjoint operators and also tightness of the processes is ob- 
tained. We give a sketch of our proof - which uses resolvent calculus instead of 
spectral theorem - in the Appendix. Unfortunately, for the present mo- 
ment, we are not able to prove tightness. Hence the fact that we formulate our 
theorems in terms of the finite dimensional distributions. 
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3. Proof of Theorem 1 

This section is divided into four subsections. In the first one the formalism 
needed in the sequel is introduced. In the second one ergodicity of the Markov 
chain is proved. In the last two we verify conditions (i) and (ii) of Theorem KV 
for our concrete case. 

3.1 

Throughout this section we shall work in the Hilbert spaces 9f  
=L2(O0,/~o) and :U=L2((2,/~ ). ( , ) and < , > will denote scalar product 
in H and Y respectively. Simple capital letters (sanserif) will be used for 
bounded linear operators on a f  (e.g. E), fat ones for those on X (e.g. ID). It is 
convenient to make the identification 

J r =  @ 9f,, H,=Yr ~ (3.1) 
ue~ 

and to use the matrix notation 

We have 

~oes: ~o=(~o,),~, %=q~(u,.)e~ 

(A~o).= F, A,,,.,~o.,. 
(3.2) 

(3.3) 

(#/, qo) =_1 ~ (~., (P.) (3.4) 
V u~q/ 

We define now the operators needed throughout the proof. I and lI will denote 
the identity on H respectively • .  Given zE2U, D= is the shift by % on f20; for 
u , u ' ~  V,,,, is the multiplication by 7,,,,: 

q~J/z ~ (Dz q)) (co) = q~(zz co ) (3.5) 

(Fu, u' ~o)(co)= 7,,,,(co) q)(co). (3.6) 

The D~'s are unitary and commute, the Fu, u,'s are positive contractions satisfy- 
ing 

Z r . , . ,= Z r , , , ,= l .  (3.7 t 
uE#/ u ' e ~  

We shall need also 
E =  -I ~ D u. (3.8) 

V u e ~  

Due to the symmetry of og, E is a selfadjoint contraction. 
The transition operator of the Markov chain is 

IP=IFID 
with IF and ID defined by 

IF.,. ,  = F.,.,; lD . , . , =& . ,u ,  D . . 

(3.9) 

(3.10) 
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Consider also the orthogonal projection IE, which separates "the worst sub- 
space" of oU: 

I E u . , . = ! l .  (3.~i) 
V 

Conditions (a) and (b) are equivalent to the following 

(a) IEIF=IFIE =IE (3.12) 

(b) IIIFql<l-6 where IF%flF-IE.  (3.13) 

We shall use the decomposition under this projection of the transition operator 

IE]PIE =IE]DIE;  IE ]P(]I - IE) = IE ]D(I[ - IE) 

(If - IE)  ]PIE = IF(I] - ]E)  ]DIE (3.14) 

(]] - I E )  ]P( ] [ - IE)  = ~ ( H - I E )  D ( ~  - I E )  

defined by the matrix elements 

(IE ]DIE),,,, =i E 
V 

(IE ]D(]I - m)). , . ,  = ~ (D. ,  - e )  = ((n - IE) ]D IE).',u 

(( I I - ]E) ]D(]I-IE)).,,,, = 6u, ., D . - } ( D , , +  Du,)+-1 E. 
F 

(3.15) 

Two identities regarding the decompositions of the resolvent of a contraction 
will be used in Subsects. 3.3 and 3.4. Let P be an arbitrary contraction on a 
Hilbert space, 17 an orthogonal projection and R)=(1-I-2P) -1 the resolvent of 
P, (12l < 1). The following identities hold 

(I -R) R~(I -n)= [I -2(I -17) P(I -FI) 
-~2(I -n) Pn0 -;~n Pn)- ~nP(l -n)]- 1(1 --ll) (3.16) 

lIR~(l-FI) = 2 [ l l ( l -  211PI1)-~ l-IP(l-ll)] ( I -n )  R~(I-ll) (3.17) 

((3.16) is to be understood in the sense that "if the right hand side exists".) 

3.2 

Ergodicity is proved by showing that (ii) of the "Standard Lemma" is fulfilled 
even with L2(O, #) instead of Loo(O, r We have to show that the only solutions 
of the equation 

(IE + ~) ]D~o-- ~0 (3.18) 

are the constants. Due to the fact that ]D is unitary, this is equivalent to: 

(IE+IF) 0 = I D *  0; go=ID* 0. (3.19) 
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Equat ion (3.19) can be fulfilled only if 

I I Ig@ H 2-Ji - 1[17F(II-IE)@ II 2=  [I(IE + IF)@l[ 2=  I[@l[ 2=  ]1IE@112 + II(II-Ig) ~,lt 2 

whence, due to (3.13), • = I E 0 ,  and Eqs (3.19) transform to 

0 = I D * 0 ;  qo=~. (3.19') 

But the dynamical  system ( f20 ,~ ,  #o,{'c=:ze7Zd}) is ergodic, thus the only 
solutions of (3.19') are the constants. 

3.3 

Condit ion (2.7) of Theorem 1 reads: 

q~ = (lI - IE)  ~o. (3.20) 

We prove that if 2 / 1  

(~ - nO) ~ (lI - IZ) _ e ~  0I  - IZ) [~I - �9 l l g V ]  - 1 0 r  _ IZ) ( 3 . 2 1 )  

where AL, stands for strong convergence of linear operators and V is a 
selfadjoint and unitary operator to be defined below. Hence, for cp satisfying 
(3.20), we have condition (i) of Theorem KV verified, with 

6 
a 2 = 2 (q), (lI - IF IDV)- 1 (p) _ (qg, q0) > ~ (q~, ~o). (3.22) 

Let 

v~ =z~  - (n  - x D * )  •(H - x m D ~ )  -~ ~(~ - x D )  

IK~ =(ID - (1  -2)(11 - }riD*)- *)(i - ) 0  (2 II -~rx) (3.23) 

1glx = lD~ra + IKx 

l[Jz is the operator which appears in (3.16) 

(lI - IE) IR;. (II - IE) = (lI - IF 1Ux) -  1(1I - IE) (3 .24 )  

The crucial fact is that,  as ), A 1 

~r o_2!~ V =1I -(1I -112)*) IE(II - IE IDLE)- ~ IE(II - ID)  (3.25) 

which is selfadjoint and unitary. Hence 

IK, II-ll O .  (3.26) 

Besides (3.25) 
[IV?.II < 1. (3.27) 

(In fact equality holds.) (3.26) and (3.27) together imply that  for )~ sufficiently 
close to 1 

II 1]PlLIz [I < 1 - 6. 
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Thus (II-]E)IR~(II-IE) is bounded, uniformly in 2. From this fact and (3.25) 
assertion (3.21) follows. 

(3.25) is verified through the matrix elements, using the common spectral 
representation of Toeplitz operators (see Th. X.2.1. of [-1]): 

(V>),,,., = c5 ,., 21 - 1 ( 1 - 2 E ) - 1 ( [  - 2  D_ . ) ( I  - 2  D..) 
V 

= 5 e (d0)[a . , . ,2  
[-rc, M a 

(1 - 2 ei~ (1 -2e - i~  

v~q/ 

[ (1--ei~176 
_K~ ~, e(dO) 6,,,, (3.28) 

t . . . .  ~' y. (1 - c o s  0. v) J " ' " '  
vffoR 

where do( .)is the projection valued measure on 1--~, rc] ~ associated to Toeplitz 
operators. (The value of the ratio in the last expression is defined to be zero at 
0=0~) 

For verifying (3.27) we give 

v~ = ) / ] i - ( i -  2 ~ * )  w,(H- 2]E IDLE)- 1 ]E ~k~ 0| -- 2 ]D ) 

(]B~k)),,,,,= 5,,,, �89 - I ) -  ~ {[21 + 2(C~ - I ) ]  k --2k I} (3.29) 
1 -22  

C ~ = ~ ( I - 2 E )  -~. 

Using the spectral representation of E one finds that IB~ k) - and consequently 
~g~ - is bounded uniformly in k. Hence (3.27). 

3.4 

We verify condition (ii) of Theorem KV, Throughout this subsection ~o(~)=(lI 
-]E) ~ , ( ]I  - ~ )  ~. 

=(1 - 2) (~o(~) ~o{a')) + (1 - 2) (IEF..a(1I - IE) ~o, IERz,(II - 1E) ~p) (3.30) 

By the assertion o f  the last subsection the first term of the right hand side 
tends to zero as 2,2'/"1. To evaluate the second term we want to use (3.17). 
For this purpose we give the matrix elements 

[IE(]I - 21EIPIE) -11E IP(]I -IE)], , , ,  =-1(I - 2 E ) -  I ( D , , -  E). (3.31) 
V 

Using these we find that the second term equals 

22' Z (';~162 ~')) (3.32) ] /2 u, u' ~q/ 
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But 

( I - ) 0 ( I - 2 E ) - I ~  f g(dO)Z{o=o}(O)=g({O}) as 2 / i  
[_~,~]a 

(D_E)(D, , ,_E)( I_ZE)_~ st). f g(dO)f(O) as Z / I  
[ -  ~, ~l a 

with the concrete form of f(O) unimportant except the fact that it is bounded 
and f (0 )=0 .  Thus the product of these two converges strongly to zero. This 
fact and the assertion of the last subsection implies the convergence to zero of 
the expression in (3.32). 

Appendix 

We give a sketch of proof of Theorem KV. Let 

qb = R,~ q~; 5~=q~- ( I -  P) a., ,p. (A.1) 

The basic ingredients of the proof are the following three consequences of 
conditions (i) and (ii), which can be proved by standard arguments of resolvent 
calculus: 

LIq~A 2 = ~  (l_~X 2) as ;~I1 (A.2) 

tl,~xll 2 = ~ ( 1 - , ~ )  as )~/1 (1.3) 

(6~, ~oz, ) --, 0 as 2, Z / 1. (A.4) 

Let fi be the probability measure on (f2 x O, ~- x ~-) defined by 

fi(A xB)=S#(d0))#(0),B ) A, BeS'. 
A 

Consider ~F~eL2(~2 x O, fi) 

f f /~ (0) l '  0)2)  = q)2.(0)2) - -  p @X(0) l )"  ( A . 5 )  

By (A.4) #~ is Cauchy as )~7 1. Let 

We have 

S dfi ~//-z = lira S dfi ~/~2 = 2 lira (q~, Rx ~0) - ( p ,  q~) %f a z. (1.7) 
2Z 1 2. -~ I 

#~ was defined in such a way that for //-almost all 0)eQ (~K~(17k, t&+l))k~ (and 
consequently (~U(t/k,t/k+t))k~N) is a sequence of martingale differences on 
(~,H(o)). Let 

n 
m ,  = ~ %'(t&, r&+ ~). (A.8) 

k = l  
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Applying to M, Brown's martingale limit theorem (see I-2]) one finds that for 
/z-almost all initial conditions of the Markov chain 

e 1/2 M t,- *'1 ~ ~ (A.9) 

( ~  stands for convergence in distribution). 
We have to show that the finite dimensional distributions of 

r[e- ~'] "1 
def•l/2 [ E -M[~ 1 J (4.10) d/2 Ate- 1.~ = ~~ -1 

k=l 

converge to those concentrated at zero (in #-probability w.r.t, the initial state - 
which in case of degenerated limiting distribution is equivalent to showing the 
same thing on the probability space (f2 ~, H") !). 

Using (A.1) and (A.8) 

[~ ~'l [e -~'1 
A[e- l" l=  Z (ff~--~/')(Ok'~]k+l)~- E (~2(~k)-t-~0&(~0)--q))~(~][e-l"])' (A. 11) 

k=l k=l 

Notice that the r.h.s, in fact does not depend on 2, thus we can choose 2=  1 -e .  
The estimation of the first three terms in (A.11) goes on the same way as in 
[3]. Thus the following three arguments are copies of similar ones from there 
and we have also tightness for them. 

(1) H u ( s u p  t ~ , l  ~) ~ ) (~_~-*r)( ,7~,  ~ +  > - -  
\0 -<t-<l k=l ] ~ -  

[e- 1] \2 
__<~E"( Y~ (~-~-~)(n~,n~+0 ) 

k=1 

__~D--'] 
c~ 2 5 d#(~//~_ ~ -  ~U)2 ~ O. (a.12) 

E" denotes expectation w.r.t. H u. We have used the 
property of (~_~-~/")  and (A.6). 

martingale difference 

(2) /7u / sup ] ~ 6 1 _ ~ ( t / k ) t > - -  
\ o = < t < l  k = l  I 

We have used the Schwarz inequality and (A.3). 

> - -  - -  - + 0 .  (3) /7" (~ 1 _ e(/'/o) Ilq)l_el[ 2 

We have used (A.2). 

(A.13) 

(A.14) 
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The estimation of the finite-dimensional distributions of the last term is 
rather simple: 

(4) / /"  max 
\1  < i<m 

/ / #  e l -  - - ] l q ? l _ ~ ] l  2 ----~ 0. (A .15)  
i = i  

(A.2) has been used once more. But we cannot prove tightness of this term 
without the assumption of reversibility (that is: self-adjointness of P). 
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