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I. Introduction 

In [15], McKean posed the problem of constructing a system of N interacting 
particles in ~ with generator 

1 0 2  1 (~x  c~) L=~ ~ ~-~.~ ~ ~ ~(x~-x J) + ~  . 
�9 o x  i 2(N-1)~<j  

(1.1) 

He conjectured that when the initial conditions are independent and u 0 distrib- 
uted, and if one looks at the law at time t of the first k particles, k fixed, letting 
the number N of interacting particles be larger and larger, one restores asymp- 

X 1 k totically at time t the independence of our first k particles ( t . . . .  ,Xt), and 
that their common limiting (N --, m), distribution is given by the value at time t 
of the solution of Burgers' equation: 

0u 1 02u 0u 
at 2 0x 2 u ~xx' with initial condition u 0 at time 0. (1.2) 

Such a type of phenomenon is called propagation of chaos (see Kac [12]). 
Several results concerning the questions of propagation of chaos and Burgers' 
equation have already been obtained, in Calderoni-Pulvirenti [2], where a 
smoothing procedure of the a-function is used, in Gutkin-Kac [-6], and Kotani- 
Osada [13], where the approach for the construction of the N-particle process 
and for the propagation of chaos result is rather analytical. 

The approach presented here is probabilistic. 
We consider a system of N particles satisfying: 

d X i = d B i +  N ~ dL~  i - X J ) ,  i=  1 . . . .  , N,  (1.3) 
j # i  

x~ =x'(0), 

where L ~  j) is the symmetric local time in 0 of X ~ - X  J, B ~ are inde- 
pendent Brownian motions, independent of the initial conditions (X~(0)), with 
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symmetric distribution u N satisfying: 

U { xi = xj = xk} is uN-negligible. (1.4) 
i , j ,k  

dislinct 

Such a process was constructed with a probabilistic approach in Sznitman- 
Varadhan [21], where it is also shown that the process (1.3), is trajectorially 
approximated by the "smoothed" processes: 

eXI' =dB + N 

when c~ goes to zero, 

sure). 

E i e  j e  4)~(X t' - X  t' ) 2dt, (1.5) 
j:~i 

This stability result links (1.3) with (1.1) (take c=1/4), specially if one 
notices that (1.1) can be interpreted as the divergence type operator 

L =  div (A grad), A=lld_~ H(x) - -  H i j ( x ) -  H (x - xJ), 2 4 ( N -  1)' if - 

(H(t)= l ( t > 0 ) - l ( t < 0 ) ) .  This remark concerning the generator (1.1) was a key 
point noticed by Kotani-Osada [13]. 

Let us first introduce a 

Definition. If E is a separable metric space, v a probability on E, a sequence 
(vN) of symmetric probabilities on E N is said to be v-chaotic, if for q51, ..., qSk, 
continuous bounded functions on E, 

k 

lim (vN, q~l @...@q~k@l @.. .@1) = ]-[ (v, ~bi). (1.6) 
N~ov 1 

In the following M(E) will denote the set of probabilities on E. One can show 
(see Tanaka [23], Sznitman [20]), that being u-chaotic is equivalent to 

1 N 
X N = ~  ~ ex~ (which is a M(E) valued r.v. defined on (E N, vN), (1.7) 

2"r 1 X~ are the canonical coordinates on EN), 

converges in law towards the constant v. (M(E) is endowed with the topology 
of weak convergence which allows us to define the convergence in law for the 
M(E)-valued sequence of r.v. ){N)- 

In this work we obtain the fact that for uN, u-chaotic, ( E = R ;  in the 
previous definition), and satisfying (1.4), then the laws PN, on C(R+, R) N of the 
processes (X i) satisfying (1.3), with initial law uN, are P-chaotic, (now E 
= C(]R+, IR)), where P is the law of the nonlinear process which describes the 
asymptotic (N ~ ~ )  individual behavior of the particles. Roughly speaking, this 
nonlinear process is obtained by considering (1.3), for say particle 1, and 
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replacing the summation over the other particles by an integration over an 
independent copy of the process, namely: 

x, = xo + B, + cG [L ~  G3, (1.8) 

where Y is an independent copy of X. 
Section 2 gives a precise meaning to (1.8), and proves a weak uniqueness 

result fo r  the solutions of (1.8). (This together with the results of Sect. 4 gives a 
weak existence and uniqueness result for (1.8)). We use Barlow-Yor's estimates 
[1], on the local time of a continuous semi martingale, which allow us to show 
that the law of Xt, has a density u(t, x) dx, with u(t, x)ffL2([0, T] x R), for every 
T > 0  (see also Krylov [14], Chap. 2, Melnikov [26]). As a consequence we 
obtain that 

t 

X t = X o  + B~+ S 2cu(s, Xs) ds, (1.9) 
0 

and also that u(t, x) satisfies (weakly), Burgers' equation 

0 u _ I  82u 2c 0(u2) (1.10) 
8t 2 8x 2 8x 

Using the Cole Hopf transform [3], one can then show that u is the classical 
solution given by 

exp - 4c Ft(x ) = (exp - 4c Fo) �9 p,(x), 

1 X 2 
and Ft(x)= i u(t,y)dy. (1.11) if pt(x)=]/27r, t ~  exp 2t -~o 

It is also easy to see that the law ~ of (X.,B.)  on C x C  o is uniquely 
determined. 

When the initial condition uo(dx)=Uo(X)dx, with Uo(X ) bounded, we obtain 
a strong uniqueness (and existence result). 

Let us now explain the general line of attack to the propagation of chaos 
result. 

Instead of trying to get direct convergence estimates on the processes (X~), 
which is often difficult when one deals with local times, we rather try to obtain 
a tightness result on the laws of the empirical distributions 

1 
XN(Og) = N(N -- 1) ~ ~(x,(o,~, B!(~), x~(o~), BJ.(~,), Lo(x,_xJ)(o))) 

i * j  

e M ( C  x C o x C x C o x Cg), (1.12) 

(Co is the set Of continuous increasing functions on IR+ with value 0 at time 
0), and then show that the limit points of these laws inherit sufficiently many 
features of the approximating XN, so that one can prove they are concentrated 
on the probability on C x C o x C x C o x C~, which is the image of r~@fft on 
((C x Co) x (C x Co)), by: ((X 1, B1), (X2, B2) )~(X 1, B 1, X 2, B 2, L~ ~ - X2)), by 
(1.7) one then gets the result. 
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We first need a tightness result on (1.12); as one can see easily (see 
Sznitman [20]), this amounts to a tightness result on the law of X. ~, and on the 
law of L ~  (when N varies), and this is done in Sect. 3. There are 
several ways of trying to obtain estimates on (1.3). The first guess is that one 
should express the local times L~ ~ -X j ) ,  using Tanaka's formula and then 
inject the result in (1.3), in this fashion, one can obtain estimates when c is 
small enough, but this method does not work for large c. One possible reason 
for that is that in a multidimensional way (1.3) has a structure near the one 
dimensional equation 

X t = X o + B t + aL ~ (X)t, (1.13) 

which admits no solution for la k >1 (see Harrison-Shepp [-7]). One may also 
try to use the divergence structure of (1.1), and use related estimates (see for 
instance Nash [16], where estimates on the first moment are given with the 
explicit dependence of the constants on the dimension N, and also Kotani- 
Osada [13] and Osada [17]). Here we use a different method; taking advan- 
tage of the symmetry of the (Xi.), we introduce the reordered process 
Ytl_< ... _< Yt N (reordering of X~, ..., XtN). It can be shown that (y.i) satisfy the 
oblique reflection problem 

1( 
Y t k = y { + w t - ~  1 -  7tk+~ 1 + ~ - 7 ~ -  - - 

1( 2c) 
where Wt I . . . . .  Wf  are independent Brownian motions and 

~.= } l ( y,i =_ yi  + ,. d i 7i ) ?s, l < _ i < _ N - 1 ,  continuous increasing. (1.15) 
o 

We obtain estimates by comparison results with a normally reflected pro- 
cess in the convex set {xl <_ ... <_x N} (see Tanaka [22]) constructed on a 
perturbation of W.1, ..., W. N. 

The last section studies the limit points of the laws of )~N, it is not difficult 
to see that these limit points are concentrated on probabilities m on C x C o 

X 2 x C x C O x C~- such that (X. 1, B~) and ( . ,  B. 2) are m-independent (identically 
distributed), B~, B. z are independent Brownian motions, the law of X~ (or X~o) 
under m is uo(dx ) and m-a.s. X r  + B] + A], where A, ~ = c x E,, [AJ(X.,1 B.1)] 
(A denotes the C~- valued coordinate on C x C o x C x C o x C~-). The main 
difficulty is to identify A. as L~ ~ -  X2). 

Once this step is performed, one can apply the uniqueness results of Sect. 2. 
As a consequence of this propagation of chaos result, one can see, using the 

fact that PN is approximated by the laws/:~ of (X!' ~) (see (1.5)), when a goes to 
zero, that for sequences c~(N) converging rapidly enough to zero, p~(N) is also 
P-chaotic. Such a result for sequences a(N) converging slowly towards zero 
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was obtained by Calderoni-Pulvirenti [2], see also Oelschlager [27] on related 
results. 

In the case of initial conditions uN=u r with u(dx)=u(x )dx ,  u(x) 
bounded, our result also leads to a convergence in probability of XI'N towards 
the nonlinear process J{[, "constructed on B i and Xi(0)"; 

d2',=dBi + 2cu(t, dr, 

u(t, x) a solution of Burgers' equation with initial value u 

J?~ = X~(0). (1.16) 

The author wishes to thank here the referees for their very careful reading of 
the original manuscript, and the Courant Institute where this article was 
written, for its hospitality. 

II. A Uniqueness Result for the Nonlinear Process 

In this section we will prove a uniqueness result for the law of the nonlinear 
process which is going to describe the limit individual behavior of the interact- 
ing system of particles we study. We are first going to prove some lemmas, in 
order to define precisely the quantity E r [ L ~  (Y independent copy of 
X), which appeared in the introduction. 

Let (~, F, (Ft)t>=o , P) be a probability space endowed with a filtration (Ft)t>o 
(F is complete, (Ft) is right continuous, and each F t contains the F negligible 
sets). We suppose that ([2, F, (Ft), P) is endowed with an Ft-Brownian motion 
(Bt)t>o. We are going to consider a continuous Ft-semimartingale (Xt)t>o , 
satisfying: 

X t = X  o + Bt+ A t, (2.1) 

where X o is Fo-measurable, and A t is a continuous increasing process equal to 
zero at time zero, and such that A t is integrable for every t. 

One has the following: 

Proposition 2.1. Let ([2, F, (Ft) , P) be a filtered probability space (also satisfying 
the "usual" conditions) and (Yt)t>=o, be such that for T > 0 ,  ( Y -  Yo)tAr is in the 
space HI(~)  (see Dellacherie-Meyer [4],for the definition of H1), and Y has the 
same law as the process (Xt)t>=o (defined on [2), then the formula 

C t = ~ L~ - Y) dP, (2.2) 

where L ~  denotes the symmetric local time in zero of the continuous 
semimartingale X -  Y on the product space s x (2 defines a continuous increasing 
process, integrable for every t, which does not depend on the choice of Y (one can 
take a copy of ~2 and X for instance). Moreover P a.s. 

Ct(o)=l im2 ~ idsOn(X~(co)-X,(6)))dP(~)),  Vt>O (2.3) 
n ~ 0 

if (a is smooth positive symmetric around zero, ~q~=l, qS,(.)=n~b(n.). The con- 
vergence in (2.3) is dominated for t < T by an element Hr(co)~L 1 (P). 
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Remark. We refer the reader to Jacod 1-10] for the definition of the continuous 
increasing process L ~  Y). 

Proof Let Y be as in the statement of Proposition 2.1, we know that (Y) t  is 
2 n -  1 

the limit in probability of ~ (Y(k+l)/2--Yk/2~ 2 (see Dellacherie-Meyer [4]), 
k = l  

since Y has the same law as X, this last quantity converges towards t. So we 
can write Y,-- I1o + Mt + D~, where M t is a continuous local martingale (in fact a 
Brownian motion), and Dt (by assumption on Y) has integrable variation on 
bounded intervals. (D is not necessarily increasing, for instance in the case 
where P is Wiener measure on C(I(+, Na), F, the canonical filtation, X = B ,  if 

t^ l  X t _ X ~  
(2=fL Y = X  and Ft=~(B1)vFt ,  in this case D~= ! ds, and is not 
increasing, see Jeulin [11], p. 46). 1 - s  

Consider now X - g  on the product space, one can find a version of the 
local time which for any T > 0 ,  is right continuous with left limits in the space 
variable, with values in C(0, T), (time variable), see Yor [24]. Now, for 
L(x, t, co, CO) the symmetric local time of X -  Y in x at time t, we have 

P |  V xelR, V t e l ( + ,  (2.4) 

t 

L(x, t, co, o3)= lim 2 5 (~ ,(Xs(co)- Ys(CO)- x)ds. 
n 0 

If we apply now formula (2.4) to X - X  o and Y -  I10, we find 

t 

L(x, t, co, CO) = lim 2 5 dpn(Xs - Xo - ( I s -  u + Xo - Yo - x) ds 
n 0 

= L ( Y  o - X  0 +x ,  t, co, (5), (2.5) 

if L(x, t, co, c S) denotes the symmetric local time of ( X - X o ) - ( Y - I 1 o ) -  By an 
inequality of Barlow-Yor [1], one has: 

Ee|  co, f f ))]<CEv| (2.6) 
X S < t  

Defining Z~(co, cS)=sup__L(x, t, co, CO), p@/5 a.s. Vs<t ,  L~ - Y)s<Z~(o), CO) and 
x 

as a consequence of (2.6), by dominated convergence, ~ L~ - Y)dP(CO) defines 
r~ 

a continuous increasing process integrable for every t. Since 

t 

2 5 4 , . ( x s -  ~) as= 5 I4x, t, o2, co) 4).(x)dx= 5 L_(Yo-Xo +x, t, co, co) On(~)'tX; 
0 ~,, N. 

we also find that p |  a.s. 2 5 (p,(X s -  Y,)ds<Zt(co, CO), using (2.4), by dominat- 
0 

ed convergence, we see that for P a.e. co, V s__< t, 

s s 

2 5 dfi(co) 5 d?.(Xu(co) - Y~(CO)) du = 5 2Ee" [4.(X.(co) - X.(co'))] du, 
0 0 
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converges to C~(~o)= ~ L~ - u and this a.s. convergence is dominated 

by the integrable Ht(co)=Ep[Zt(o~,&)]. So this tells us that Ct(co ) does not 
depend on the special choice of Y, and that formula (2.3) is valid). [] 

Notation. Let (Xt)t>o be a process satisfying (2.1), we denote by Ey[L~ - Y)] 
the continuous integrable (on bounded time intervals) increasing process (Ct) 
defined by (2.2). 

Our goal is now to give a more convenient formula than (2.3) for the 
computation of EyEL~ - Y)]. In view of (2.3), if we can show that X t has a 

t 

smooth density, u(t, x), then a natural formula is Ey[L~ Y)l = 2 ~ u(s, X~)ds. 
0 

It turns out that condition (2.1) does not imply that the law of X t is smooth 
for every t; the law of X t can even have a purely atomic part. (If we dropped 
in (2.1) the assumption A increasing, one can simply build a counterexample 
with a Brownian bridge). 

In the case of assumption (2.1), one has the following example due to S.R.S. 
Varadhan 

1 
Example 2.2. Consider a Brownian motion B,  define the sequences t~= l  2"' 

1 
n > l ,  C , = - .  

n 
Set At=0, t < t l ,  Ate§ = - B t - C , ,  n > l ,  and /it linear on each interval 

It,, t~+ t], and/11 = -B~ ,  then A t is continous, consider the set: 

n ~ l  

we have, 
D= ~ {Bt. - B t  > C , - C , , _ ~ } ~ { - B t  -C~>=O }. 

n>~2 

Let us show that D has positive probability; this comes from the fact that for Y 
gaussian of variance one, 

. - n ( n - 1 ) ] !  

a n d ~ P  Y < .  n ( n - 1 ) ]  

One can then define ~=inf{t , ,  At.+1-At<_O}, z is a stopping time (because 
/lf.+~ is a(Bs, s<t , )  measurable), and A~=A,^; is a continuous increasing 
process which with positive probability satisfies A 1 = - B  1. So X t = B  t + A  t has 
a positive probability of being zero at time 1. [] 

In spite of the previous example, we have the following smoothness result: 

Proposition 2.3. Let (Xt)r satisfy (2.1), then 

(i) for f ( t ,  x) a continuous function on ~0, T l  x IR 

where the constant K depends on T and the H 1 norm of Xt^ r" 
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(ii) if u(s, x)sL2([0, T] x IR) is the density of X,, then 

T 

Er [L~ Y)] = y 2u(s, Xs) ds. (2.8) 
0 

t x 2 
Proof Define q S ~ ( . ) = ~  exP-2-~,  then we know from Proposition 2.1, that 

on the product space s x s 

T 

sup ~ 2 x (~(Xs(co)-Xs(co'))ds<Zr(o), co') 
0 

which is integrable. As a consequence, 

sup Ee| ~(X~(co)-X~(oY))ds ] 
~ > 0  

T 

=sup  ~ ds(u~(dx)| 4)a(x-y)) 
2 > 0  0 

<-Ee| co')] <__K x Ep [sup IBs[ + AT], (2.9) 
s < T  

if us(dx) is the law of Xs. Now, 

4,Ax- y)= ~ 4~/~_(x- z) q~/2 (z -  y) d z 
T 

and the left member of (2.9) is sup ~ ~ uz(s, z) 2 ds dz 
2 > 0  0 R 

if uz(s, z) = d& * us(z ). (2.10) 

Now for f(s, x) continuous on [0, T3 x N, with compact support, 

T 

= lim !ds~u~(x) f (s ,x)dx 
X ~ 0  

- [ i  - ]1 /2  <=l/K-xEp[supIBsl+Ar] x ds~dxf2(s ,x) l  
s < T  

by Cauchy Schwarz inequality. 
This shows that the positive measure of (2.7) defines an element of L2([0, T] 

x IR). Let us now compute Ey[L~ - Y)] = Ct(e)). By (2.3), we know that 

Ct(co)=lim2E e ,(X~(o~)-X~(d))ds , a.s. and in L*(P). 
tl 

Using (2.7), denote by u(s, x) the element of L2([0, T] x IR) which for almost 
every se[0, T] is the density with respect to Lebesgue measure of u~(dx). 
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n o w ,  

t 

Ct(oo ) = lim 2 5 ul/,,(s , Xs(oo)) ds, (ua is defined by (2.10)), 
n 0 

[I ' ] ct(~o)- 2j u(s, x,) ds 
0 

T 

<lira inf2E [S lul/,(s, X~(o3))- u(s, X~(co))[ ds] 
LO 

T 

=l im inf2 J ds ~ dy ]ua/,(s, y)-u(s ,  Y)I u(s, y) 
0 R 

r T -11/2 

<lim inf2llu(s, y)[IL~(CO, n , a )  X [ !  ds 5dy]u,l,(s, y)-u(s ,  y)t 2] . 

We know that ul/,(s, y)--+u(s, y) in L2(IR) for a.e. s and 

(see for instance Stein-Weiss [16]), as a consequence 

T 

0 

goes to zero, and this proves that P-a.s. V t>=0, Ct(m)=2 ] u(s, X~(m))ds. 
0 

(Notice that the right member of the previous inequality also defines a 
T 

continuous increasing process, because P-a.s. V T > O, S u(s, Xs(co))ds < oe). This 
proves Proposition 2.3. []  0 

Remark 2.4. Let us notice that if we had chosen the right continuous version 
/5' o (respectively the left continuous version /2' o) of the local time in zero, 
instead of the symmetric local time in zero, formula (2.3) would remain valid, 
when choosing 05 with compact support in ~ +  (resp. ~ )  instead of being 
symmetric around zero, and the proof of Proposition 2.3 shows that 

Ey [L~ - Y)] = E y [tJ; o (X - Y)] 
t 

= E~,[Zs; ~  Y)] = j 2u(s, X,) as. [] (2.83 
0 

We are now going to define the nonlinear process which is associated with 
the propagation of chaos result, we have in view. Let c be a strictly positive 
number, u o be a probability on R, define the probability u t on IR, (t > 0), by 

exp -4cF~(x)=(exp -4cFo)*Ot(x),  t>0 ,  (2.11) 

i z2 with Ft(x)=_~ ut(dy), t>=O, and q S t ( z ) = ~ - i  exp 2t" 
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We are going to study the laws of the processes (Xt)t=>0, defined on some 
probability space, satisfying (2.1) and such that: 

X o has law u o and At=cEy[L~ - Y)]. (2.12) 

Denote by S(uo) the set of the laws on C(]R+, ~ )  of these processes. We have 
the following weak uniqueness result: 

Theorem 2.5. The set S(uo) has at most one element, and if P~S(uo), X t o P= ut, 
where u t is defined by (2.11). 

Remark. As a consequence of the propagation of chaos result that we are going 
to prove, one has in fact S(uo) non-empty, and so reduced to a singleton. 

Proof Let X~, on some filtered probability space satisfying the assumptions of 
the beginning of this section, satisfy (2.1) and (2.12). Denote by u(s,x) 
(eL2([0, T] x N), ~/T>0) the density of the law of X s with respect to Lebesgue 
measure, by Proposition 2.3 we have: 

t 

X t = X o + B t + 2 c  ~ u(s, Xs) ds. (2.13) 
0 

Let q~(s,x) be a C a function with compact support in ]0, T[xIR.  By Ito's 
formula 

0 = e [r Xr)-O(O, Xo)] 

[ i /a~b l aZq5 2 a~](s ,X~)ds]  ~ E  cu 

i lee, 1 a2+  04,2. (2.14) = d s f d x t ~ s + ~ a x z ] X U + 2 C T - -  
0 R (TX 

So (2.14) tells us that u(s, x) satisfies Burgers' equation: 

0 2 O(u 2) ^ 

au ~-2 u as ~xz - 2c ~ T x = U  (2.15) 

in the distribution sense in ]0, T[ x 111. So far we do not know if u is smooth. 
Define on ]0, T[  x IR 

x 

F(t, x)-- ~ ut(y)dy~[O , 1]. (2,16) 
- o o  

0F 
We have ~ x  = u (in the distribution sense) and 

a l  aF a 
ax ~ - ~ - t + 2  a x 2 l - 2 c  ~ (u2). (2.17) 

aF 1 02F 
So - ~ 7 - + ~ - x 2  and 2cu 2 have the same space derivative in ]O,T[xIR ,  

consequently their difference is a distribution invariant by translation in the x 
direction (see Schwartz [18], p. 55). 
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Let  ~b(t, x) be a test function, we have 

I 8F 1 82F 2cu2,~)  
--~T+~ 8 x ~ -  

\Or ~s (t, X+Z) --2CU 20(t, X+Z)drdx 

any z. Lett ing z go to + ~ ,  we have ~ d t d x F ( t , x - z )  8C~2(t,x ) for 

184)  t 
\c, t  

+ ~  ~ ( , x )  which converges towards zero by bounded  convergence,  and 

j u 2 (t, x - z) ~b (t, x) d t d x goes to zero because u 2 (t, X) EL 1 (] 0, T [ x IR). 
As a consequence 

8F 1 82F 
- - -  2cu 2 = 0  (2.18) 

8t + 2 8x 2 

in the distr ibution sense in ]0,  T [ x  IR. Working  now on the open set (e, T - e )  
x IR, let F).(t, x) be a regularizat ion by convolut ion of F, on (e, T -  e) x IR (in the 
time, space, variables). Set 

W~(t,x)=exp -4cF~(t,x) on (e, T - e ) x l R  (2.19) 

(this is the linearizing Cole -Hopf  t ransform for Burgers'  equation,  see Cole 
[3]), then W~ is smooth  and 0 < W~. < 1. Moreove r  we have" 

8F~ 8Wx - 4 c  8Fz 8Wa - 4 c  =-- W~. 
8t  = - ~  w~, 8x = ox 

0 2 W,~ 16c2 (SFx] 2 W~-4c 82 Fa 
8x 2 - 18x ! ~ ~ "  

As a consequence,  

8W~. 1 82W;. 4c(  8F~_ 1 O2F~ 2c(OF~tZ I 
8t 2 8X 2 \ 8t 2 8x 2 \ox  ! ! " 

and because of (2.18) we have 

8t 8x z - - - 2 c  \8x1.]2 

(the subscript  (v)2 indicates the regularizat ion by convolution).  Consequent ly  

~ "  ~ ? ~  =8c 2 ~ \Sx j ] X W~. (2.20) 

When  2 goes to zero in (2.20), ~-x 2=(g2)~, converges towards u 2 in 

Ll((e, T - e ) x l R ) ,  and since (uz)2-uZ=(u;-u)(uz+u), (u;.) 2 converges towards 
u 2 in L 1 (e, T -  e) x IR) as a consequence 
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0W 1 02W 

~t 2 c~x 2 '  

By hypoellipticity of 
0t 

in the distribution sense in (e, T-e)x  N (2.21) 

(and since g was arbitrary, in (0, T ) x  IR). 

1 02 
2 ax  2 (see H6rmander [8]), W(t, x) is a C ~ function 

in ]0, T [  x~, ,  which satisfies (2.21) and has values in [0, 1] so (see Friedman 

[5]), 1 ( x - y )  2 
W ( t , x ) = ~ ~ W ( s , y ) e x p  2 ( t - s )  dy, 0 < s < t < T ,  

letting s to go zero, since W(s, y) converges boundedly towards W(0, y) except 
may be at points of discontinuity of F(0 , ' )  (an at most denumerable set), we 
find 

1 (x -  y)2 ds. (2.22) W ( t , x ) = ~ W ( O , y ) e x p  2t 

This proves the statement concerning the laws at fixed times of solutions of 
(2.1), (2.12). Now to prove that S(uo) contains at most one point, it is enough 
to check that any element of S(uo) induces the same law on the sigma fields 
a(Wt, t>>_s)=F S'~176 of the canonical space C(IR+,IR) (W t are the canonical 
coordinates), for any s > 0. But, 

t 

Xt=Xs+Bt-Bs+S2cu(v,X~)dv, t>=s, (2.23) 
s 

and X s has law u(s,x)dx (u(v,x) is given by (2.11)). Since u(v,x), v>s, is 
bounded and Lipschitz, one has uniqueness, in law for the solutions X~, t>s of 
(2.23), this proves the theorem. 

Remark 2.6. In the case where uo(dx)=Uo(X)dx and u 0 is bounded, one can see 
that u(t,x), t>=O, xEN, is bounded measurable, it follows from Zvonkin's 
results [25] (Theorem 4), that there is strong existence and strong uniqueness 
for the equation t 

Xt=Xo + Bt+ ~ 2cu(s, Xs) ds. 
0 

As a result one also has a strong existence (using part IV),  and uniqueness 
result for the solutions of (2.1), (2.12). [] 

IlL A Compactness Result 

We consider now the system of  interacting particles for which we want to 
obtain a propagation of chaos result. In this section we will prove a weak 
compactness result for the law of certain empirical measures. 

We consider some filtered probability space (~2, F, (Ft),__> 0, P) (F complete, 
(F~),>~. right continuous, each F t containing the P-negligible sets of F), en- 
dowed with Ft-Brownian motions B~ . . . . .  B. N, and real valued Fo-measurable 
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r a n d o m  variables  (X~)i~t ' ul, with symmet r ic  dis t r ibut ion u N on IR u, satisfying: 

The  set ~) {x i=x2=x k} is negligible for uN. (3.1) 
i , j , k  

distinct 

It  was shown in Szn i tman-Varadhan  [21], that  for c > 0 ,  one can construct  a 
unique solut ion of 

C 
X t _ X o + B t +  ~ i _ _  J*~ L~ i = 1  . . . .  , N ,  (3.2) 

where L~ is the symmet r ic  local t ime of X ~ - X  ~. The  (X. ~ . . . .  , X.  u) are 
expressed as measurab le  function of (X~) and (Bi.), and as such the laws of 
solutions of (3.2) do not  depend on the space where  they are constructed.  Fo r  a 
= {i,j} (with the no ta t iona l  convent ion  i<j), one defines 

c 1 
V a = r  ~ (e  i -~- e j), n. = ~ (e i -  e j), 

and one can const ruct  (T.).__> o (N+ valued strictly increasing sequences), 
(X")._->o (NN-valued), (J.).eo valued in the set J of  pairs of elements  of  [1, N ] ;  
which satisfy: 

T0 = inf(t  =>0, 3 aeJ, n o . (Xo + Bt)----O}, 

{ jo}={a~J,n , . (Xo+BTo)=O} (it is a singleton a.s.), X ~  and for 
n > 0  

~ n + l  = Yn+l - -  T , = i n f  {s > 0 ,  ~ aq=j,(co), n a . (X"+B"s+ Vj .  L~ B")s) = 0 } 

(with the no ta t ion  B2 = Br .+s -  BT.), 

X "+I=X"+B~+,  + V~. L~ .B") . . . .  , 

{J,+ z} = {aeJ, X "+l. n a = 0  } (it is a s ingleton a.s.), it was shown in the reference 
quoted tha t  a.s. the (T,),>__ o converge to + oo when n goes to infinity, and that  
one has:  

Xs^ro=Xo+BsAro  , s>O, 

X r . + s  . . . .  I=X"+B"* . . . . .  +VJ.(o,~'L~ "B") . . . . .  1, for s>=0, (3.4) 

P a.s., (L ~ (B". nj.)s is the local t ime in zero of the Fr -Brownian  mo t ion  B"..nj,). 
One can also prove  that  the laws Q~ of the solutions of  (3.2) start ing f rom 

x~E=lRU\  U {Xf=XJ=Xk}, on C(IR+, E) form a s t rong M a r k o v  process with 
i , j , k  

distinct 
state space E, and one has the following "Brownian  scal ing" p roper ty :  

the image  of Q~ under  w--.2w./2 z is Q;.~. (3.5) 

Consider  now x = ( x l , ,  xu)sE and - x .., X t - ( X  t . . . .  ,X~)t>=0 , the solut ion of 
(3.2) with initial condi t ion x. We  are first going to p rove  a l e m m a  which shows 

Z 1 . . . .  E s X 1 that  the increasing reordering,  ( t , t ), of  ( ~ , . . . ,  Xt N) satisfies an obl ique 
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type of reflection problem on the set K =  {x 1 < x 2 <  ... <xN}. Notice that:  

Yt k = sup {inf(Xi), A subset of [1, N],  with card A = N + 1 - k}, (3.6) 
lEA 

we can state 

L e m m a  3.1. There exists N independent real valued Ft-Brownian motions 
Wt 1, ..., W~ N and (N-1)  continuous increasing F~-processes 7~, ..., TtN-1, satisfying 

~i = i 1 ,(Yi~ _ yi+s l~d, r~,'i (3.7) 
0 

~ l = r d + w  ) la-1 --5 /t,  
ytk= g~ + wtk i k l k-i, -yaTt+ybTt  2<_k<_N-1, (3.8) 
y N= yoN+ wN~_ 1..u-~ 

' ' t  ~ 2 c '  ~vt , 

w h e r e a = l - 2 ~ , b = l + ~ -  . 

Remark 3.2. As we shall see later, the normal  reflected process in the convex K 
= { x  1 <x 2<_... <_x N} constructed on Y~+ Wt i (see Tanaka  [221), satisfies (3.8), 
with a = b = 1. 

Proof Using Tanaka 's  formula and (3.6), we already know that  y k= yok+ Wtk 
+At  k, where Wt k are cont inuous  local martingales and A~ is a finite variat ion 
process, ke[1 ,  N].  We are going to show by induct ion on n that  for n > 0 ,  

( W~, W J), ^ T,, = (t/x r , )  x b,j, (3.9) 

SA Tn 

Aks^r= ~ [l(Y,k=Y~k-~)+l(Y~k=Y~k+l)JdA~, l<-k<N, (3.10) 
0 

(the expression where ~ or ~ §  appear  are unders tood as being zero), and 
the first term of the right member  of (3.10) is cont inuous and increasing, and 

tAT. tATn 

a ~ dA~l(Y~k=Yf-~)=-b ~ dAsk-ll(Ysk=Y~k-'), (3.11) 
0 0 

for 2<_k<_N. 
If we prove (3.9), (3.10), (3.11), defining 

t 

?k t 2 !  1--yk~d,4k+l 1NkNN--1,  = ~  I ( Y ,  k+ - , , - - ~  , 

one easily obtains (3.7), (3.8). 
Let us first show (3.9), (3.10), (3.11) for n = 0 .  
If T O =0 ,  this is immediate,  else all components  of the starting point  x are 

distinct and there exists a unique permuta t ion  a of [1, NJ, such that Y0k=X~(k); 
moreover ,  y k To = Xa(k) q- B'[(~k)ro, k e[1,  N],  and our  induct ion hypothesis is satis- 
fied. So suppose we proved the induct ion hypothesis for k=<n, let us show that 
it is valid for n + l .  We part i t ion the space f2 in the Fr -measurable subsets 
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Ak, j, 1, with l < j < l < N, l <_ k <~ N - 1 ,  defined by 

A~,j, ~= {j,(co)= {j,/}} ~ {Yr~= Yr~f ~}. (3.12) 

On A~,j,~ one can define an FT -measurable permuta t ion  of [1, N],  ~r (we omit 
the subscript k,j,  l) such that  

YT m - Y ~ ( m )  and a(k)=j,  a ( k+ l )= l .  (3.13) 

N o w  on A~, ~, ~, for m ~ k, k + 1, we find 

,~ _ w - ~ ( , . )  - B ~ > ,  

and 
c 

Tn+t . . . . .  W,~--mf(Bt . . . . .  +~r . . . . . .  , 

/~o(k+ 1) + c LO(/~(k + 1) - . . . . .  _ ~  - B~(k)) t . . . . .  ), (3.14) 

(with the nota t ion  . ~ . = B ' ~ §  m a i l ,  N]), and a similar formula  for k +  1 
with sup instead of inf. Using Tanaka 's  formula  and x / \ y = x - ( x - y ) + ,  we 
find on Ak, j, ~" 

~ A I ~ + I  

Zk _ Z~ _ 
0 

_ 1  o -o (k+  - / ~ ~  . . . .  1" ~a/2 (B ~) (3.15) 

similarly on Ak, j, ~, 

y T  k + l 

t A ? n * l  

0 

+ I ( B  S-~(k+l) (B~-~Ck))dB~-~189176 - B~k~)t . . . . .  �9 (3.16) 

Now using (3.14), (3.15), (3.16), and the induct ion hypothesis,  it is easy to write 
the (F,)-semimartingale decomposi t ion  of the processes Yt~ T,+,, and one checks 
immediately,  (3.9), (3.10), (3.11). [ ]  

In order  to estimate the increasing processes (71), 1 <_ i<_N-1 ,  we are now 
going to obtain a compar i son  result with a certain normal ly  reflected process. 
We first introduce some notat ions:  

We set for 1 _< k ~< N -  1, 

Dk--t --~2~1 (yk+l _ ytk), Htk__~v~l (Wtk+l_Wtk), k_  1 k c t - ~  7 .  (3 .17)  

and we define the applicat ion F from the set 

{(v., c ) a  C(]R+, IR N- i) • (C~)X- ~, v(0)i>= 0 ' ie [1, N - 13}, 

(where C~- is the set of cont inuous increasing functions from IR+ into JR+ with 
value zero at t ime zero) into (C~-) N- 1. 
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where 
N--1  

=2 
i = 1  

L e m m a  3.3. (a) For  all v, c, c', one has for  t > O, 

IF(v, c) - F(v,  c')l, _-<�89 + I~l)Ic- c% 

(b) I f  c = F(v,  c), ~= F(~, -d) and 0 < ~ < 1, then 

F ( v , c . ) ~ = s u p (  1 1 2 -v~  + ~ c ~ ) +  
s<=t 

F ( v , c . ) ~ = s u p  k i k+1+1 k-  ( - -V~+x~C~ -~C~ 1)+ , 2 < - k < - N - - 2 ,  
S<_t 

F(v,  e.)t u -1  = sup ( -  VUs - ~ + � 8 9  2)+, (3.18) 
s<= t 

1 4c2 
a = a b =  - ~ .  We endow C ( F , + , N  ~-1)  with the semi-norms IV[t 

sup Iv*~[, and we consider (Cg) u-1  as included in C(IR+, IR N- l). We have 
s < t  

(3.19) 

2 
] c - g [ t < l _  ~ [ v - ~ ] t ,  f o r  t > O  and v<_g~g<c_ (3.20) 

i (where v < g means for  all i and t, vt < v~). 
(c) P-a.s. 

( ck. ) = F ((Dko + Hk.), ck.). 

Proof.  (a) F r o m  (3.18) we see that  for t > 0 ,  

N - 1  

sup ]F(v, c ) ~ - F ( v ,  c')~] < ~ �89 + le[) sup Ic~-c;~[ 
i = 1  s<=t i s<=t 

(3.21) 

which proves (3.19). 
(b) If 0<c~<1 ,  the fixed points c and c' are obta ined by i terat ion (by a 

cont rac t ion  argument).  Setting e 1 = F(v,  0), c k+ 1 = F(v,  c k) (resp. g' = Fff ,  0), U + 
=F(~ ,  yk), we find 

Ic l-~ll~=<lv-vl~, le k+l-~k+lf,__<lv-~l,+ ~ te~-~l,. 
By induct ion one gets: 

leg+l--~k+llt<=[~--V[t 1 +  + . . . +  - -  < - -  Iv--g[t , =l - I~ l  

letting k go to infinitY, we obtain the first part  of (3.20). Fo r  the second 
statement  of (3.20), suppose v<~,  then, c l = F ( v , O ) > = g l - - F ( g , O ) ,  suppose that 
we know that  c ">  ~", then: 

n + l  k c t ' = s u p (  k - 1  , k + l + ~  , , k - l )+  - - l ) s  t ~ O ~ C  s" - -  ~ C  s 
s<_t 

__>sup ( -  ~+�89 'k+l _~c~-1 ,,,k-1)+ 
s<=t 

= ~ t +  1 ,k  

(with the convent ion g."' 0 = g.,. u = 0 = c~. ' o = c".' N). So by induction,  c" > ~-." and we 
get c > g in the limit. 
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(c) By (3.8) we get 
a 

g 2 -  ~ l=  Y ~ -  Yg + w / -  w? + # - -  i ~}, 

y? ~2=y3 y g + w ?  2 ~ 1 3 1 ~ - - -Wt  + T t - ~ a T ~ - g b ? t ,  
(3 22) 

Y t k + l  y t k _ _ y k + l  g k  1_ w t k +  1 __ ~/~tk ~ ,~k __ 1 k 1 "  k - 1  

-- _ --~o?t , 

multiplying the k th line of (3.22) by b -(k- 1), we get 

( "1  1 ~ f , 2  

D} = D~ + H~ + C ~ �89 C} ~ Ct 
(3 23) 

D, ~ = D~ + H~ + C~ ~ ~ ' ~ + 1  , ,-~ 

pt N-1 = Do N - 1  _it_ H~- I  + C~ -1 _ 1 C N -2 

k ~ k k k We know that C~-  ~ I(D~-0)dC~, and D t >__0, (by (3.7)), so the solution of 
0 

Skorohod's problem (see Ikeda-Watanabe [91, p. 120) tells us that C--F((D o 
+H.),  C), which proves (c). [] 

We introduce now the martingales ~vttk-- - VVt~+ ~ HI, 1 <_% k-< N, we have 
l ~ k - 1  

I7Vtk= ~ W t ' X b J ~ ( b - 1 ) + b J - ~  2 W k 2<k<N (3.24) t - -  t ~ t '  - -  - -  " 

2<=l<=k--1 

We now introduce the normally reflected diffusion at the boundary of the 
convex K ( = { x  l_<...<xN}), based on ITvt=(~ 1, ..., ~N). More precisely (see 
Tanaka [22], Theorem 3.1), for xeK ,  we consider the unique couple 
(Z., k.)e C(IR., K) x C(IR+, IR e) such that 

Z t = x + ~ + k,, (3.25) 
t 

and k. is of bounded variation, lk]t= ~ l(ZseOK)d[kl ~, and 
0 

t 

k,= ~ v, dilG 
o 

where G is a unit vector in the cone of inward normals to the convex K, dlkl~ 
a . s .  

Remark 3.4. K is the intersection of the hyperplanes H~={x~<x~+l}, l<i<_N 
-1,  if a point x belongs to H~\ ~ H~, the inward normal at x is simply n~ 

1 j:l:i 
]/~ (ei+~ el), moreover it is easy to see that when x belongs to i~i O Hi' 

I c [ 1 ,  N - 1 1  (and not to ~H~, for J containing strictly I), then the cone of 
ieJ 

inward normals of K at x is the same as the cone of inward normals of the 
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convex set ~ { n i . y > 0 } ,  at x, which by an easy argument on dual cones is 
simply i~ 

/(i  = {n= ~ 2  i hi, 2i=>0 , ir (3.26) 
ial 

Notice that the system {nl, isI} is linearly independent and the )~ in (3.26) are 
uniquely determined. 

We now see from (3.25) that there exists continuous increasing processes U~, 
1 _< i < N - 1, such that 

Z t  1 . 1 - -  ~ z l  1 t~l =- x -t- vv t - - ~ t ,  

ZI=xl+~/I lvl_Ll~l-1, 2<_I<_N-1, (3.27) 

z N  = NN @ I~/N l_ l b N - 1  
r r  t I ~ I ~  t 

with 
t 

ki= ~ l(Zr [] (3.28) 
0 

We now have 

Proposition 3.5. There exists constants d > 0, el>0, such that for N > 2c, and any 
x~lRU\ U {x~=xJ=xk}, starting point of (X~), one has 

i , j , k  
distinct 

fort>O, E e x p ~  1 

Proof. Observe first by the scaling property that it is enough to prove (3.29) for 
t =  1, moreover, since clearly the Brownian motion B~ satisfies a similar con- 
dition, it is sufficient to show that there exists d, d > 0  such that 

C 
By (3.8), we know that ~ ~ L~ is the bounded variation term of Yt 1 

i * j  

2 C  ~1 1). N -  1 N 1 +. . .+Yff ,  that is ~ ( t + . . . + 7 ~ -  Notice that (7t ~+ . . .+Tt  ) <b  (C~+. . .  

+ C ~  -1) by (3.17), and the sequence bN= f 2c\N ( 1 + ~ - )  is bounded tin N). By 

Lemma 3.3, we know that (Ct) is the fixed point of F(v,.), associated with 
v=(Dko+Hk.), and C is inferior (in the sense of Lemma 3.3) to the fixed point 
(recall that 0 < ~ < 1), associated with F(~, ") if ~= (H.k) ', (D~ =0), we also know 

that if we pick instead of D~ = 0, the initial D~ = 1 ,  the corresponding fixed 

N 2 
point ~ will satisfy C~ + . . .  + ~N- 1 > C~ + . . .  + C~- ~ by (3.20). 

So we have = 2c2' 

L + .. + N = N  (C~+. . .+C~r  N �9 2c 2" 
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As a consequence of these remarks, it is sufficient in order to obtain (3.29), to 

( _1 ..... N - l )  ~K'thefixedpOint(C')N prove that when one starts with y =  0 , ~  

associated with F(v, .), where v. = y + H. satisfies 

~ d , d > 0 ,  V N > 2 c ,  E e x p ~ - ( C l + . . . + C N _  D <d  N. (3.30) 

Consider now (Zt)t> 0, the normally reflected process on K, starting at y. By 
(3.27), (3.28), one gets that 

1 1 2 I = ~ + H  ' +k I Z t - Z  t --�89 2 

l 1 z 1/~I+1 1~i-1 2 < l < N - 2 ,  _,;Z z + l - Z  = ~ + H t + k z - - ~ , ~ t  - -~ ,~  , - _ 

1 
Z , ~ - Z , N - ' : ~ + H ,  ~ ' + C - '  '~-* 

' - i t ( z ' / ' = z ' ~ )  ' k~- dks, I <_I<_N-I, 
0 

from this we deduce, as in (3.23), using Skorohod's problem that 

(_i_m , ~) k~ =sup s~  \ N ,+~k~ + 

( 1 t 1 / -1)  2 < / < N - 2 ,  (3.31) k ' , = s u p  - - H ' s + � 8 9  + ~ <  , _ _  
s<t + 

k ~ - ' = s u p  ( - i - H N - '  +�89 2) 
~_-<t \ N s +- 

So we have on one hand C=F~(y+H., C) where C is obtained by iteration 
(since 0 < e < l ) ,  and on the other hand k=Fl(y+H., k). But it is elementary to 
check by induction that for every element of the approximating sequence (C."), 
one has C'.'__< k., so that in the limit one gets C =< k. To prove Proposition 3.5, it 
will suffice to exhibit d, d > 0  such that for N > 2 c :  

d 
E[exp  ~ (k] + .,. + k ~ - ' ) ]  N(d) N. (3.32) 

Following Tanaka [22] (Theorem 3.1), by (3.27) we have 

N t 

2 121--2~,12 =2~ (Z~-Zo) d~ d 
i ~ 1  i 0 

N - l t  ~ t 
_t_ ~ ~ [ (Z t+ l  ZZ+ I )_  i i i 

�9 (z~-Zo)] dk,+ .[ d<fr 
i ~ l  0 i=1 0 
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Notice that dkls a.s. Z~s +1 =Ws, so that we obtain: 

N 1 
2 i i 2 (kt 1 + + k~- x) IZ,-Zol + ~  ... 

i = 1  

<2 ~ Z i - i  n t 5(Z~- o)dW~ +co s . N . t  
i = l  0 

(3.33) 

(the constant in (3.33) is independent of N). 
d 

Consider now the covariance matrix ~ (t2/i, W~),, we have by (3.24), 

o<=d (17V~,17VJ)<const. ( l + 3 i j ) = a u .  

Notice that a u has an operator norm uniformly bounded in N, if IR N is 
endowed with the usual euclidean norm. As a consequence, 

i i - i  ~ - ~ 2  i i 7 j _ z j  a i j d  S (Zs -Zo)dW~ IZs -Zo l  - s  o 
ij 0 

t 

__< c x Z Y I Z ~ - Z g l  2 ds. 
i 0 

(3.34) 

Now, using (3.33), we see that in order to obtain (3.32), it is enough to estimate 
N 1 

expd z ~ i i - i  (Z , -Zo )  dW s , and using the exponential martingale, we know that 
i = 1 0  

E[expd~i i(Z:-Zio)dI7V, i ] 
0 

< exp 2 d ~ ~ (Z _Zo)dlTVi_Zd 2 ~ , = (Z*-Zo)dI7Vff 1/2 
0 

x E  exp2d z ! (z~-W~ ,/2 

[ ' ] __<E expd 2Cy~ lZ~-Z{ )12ds  
0 i 

(we use that for x=>l, ] / x < x ) .  Using now the convexity of the exponential 
function, it will suffice to find d, d '>0,  such that for N > 2 c  

1 

[ E [ e x p d E  i i 2 l / s -N0[  ] ds<=d N, (3.35) 
0 i 

and we will obtain (3.22). By Ito's formula, we have: 
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i i 2 
e x p 2 ~  [Z ' -Z~ 

i ( t+ l )  
~_. ~ , i l Z s _ Z o [ 2  

< 1 + z . .J  22 (Z~ - Zo) exp 2 d lTVs ~ 
~=1 o s + l  s + l  

~-~ ~r ( z i F ' - G  +~ ~ ' I z~-Zo?  
+1 ~ a ) - ( Z ~ - Z ~  exp2 (s+l)  dk~ 

i=1 o s + l  
1 ]Z~-Zol 2 [ 422 [Z~-Zol 2] 

+~ i exp2 (s+l)  \ (s+l)  2 ~ l Z i s - Z ~ l  J -  J / ds - -  [Z s gotai j -2)~ (s+l)2 
0 i , j  

+ CN-i exp2 [Z~-Z~ ds. 
o s + l  

1 i i J - -  ; 2 l Z s - Z o l 2 < O  As a Observe now that for 2< 4 2 [ Z s - Z o I ] Z  ~ Zolai j -  = . 
consequence, we have 2 ~ '  

IG-z~  i I G - z ~  
exp2 ( t+ l )  < I + C N o  e x p 2  (s+l)  ds+local martingale. 

]Zt-Zol  2 
Calling U~=exp2 ( t + l ) ~ '  we have for any stopping time T such that the 

stopped local martingale and U. ̂  r are bounded E [U t ̂  r] < 1 
t 

+ c. N- ~ E [ U~ ̂  r] d s, which by Gronwall's lemma implies E [ U t ̂  r] ----< exp CN t. 
0 

Letting T go to infinity, we find using Fatou's lemma, 

[ 1 'Z r - -Z~  
E exp 8[a~- ( t+ l )  <eCru' (3.36) 

from which we deduce (3.35) immediately, and which finishes the proof of 
Proposition 3.5. [] 

We are now going to use Proposition 3.5 to obtain estimates on the 
individual components X I. 

Proposition 3.6. There exist constants d>0, d>0, such that Jbr N >  2c and any 
x~IRN\ ~ {xi=xJ=xk},  starting point of X~, one has: 

i , j , k  
distinct 

[ = d (X~-X~)] <d. (3.37) yor i EX, Nl, t>0,  texPct 

Proof Again by the scaling property it is enough to prove (3.37) for t=  1, and 
one also sees that it is enough to show the existence of d, d>0, such that for 
i~[1, N] 

d 
E[exp ~ j~. iL~ XJ)l] <=d 

(i is fixed in the previous expression). 
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For notational simplicity we will choose i=  1 in the proof. 
Let f(y) denote the function (Artg y)+, if(y) the function equal to 0, y<0,  

1/2, y=0,  
1 

l + y 2 ,  y>0,  

g(y) the function 
(y)+ 

(1 + y 2 ) 2 "  

Using Tanaka's formula (see Jacod [1]). 

~- 2,1 s(xt-x~)-j(x~-x~o) 
t . . C i =% E,I ! f , (x~-  , 1_ , _ Z /'<x~-x~tdL~ N S X~)d(B~ BS)+N2 j,1 o 

k * l  

c i _7@ Z Z f '(XJ-Xj)dL~ 
j@l  k * j  0 

1 _ o 1 . 1 i g ( X s  - X ~ ) d s .  
j * l  l~/ j * l  0 

As a consequence we get the fact that exp ~ ~ L~ 1-  X')t + 22 S t -  222Ut 
is a martingale (exponential martingale), if s* 1 

t 

1 ~ f(Xtt_X/)_f(X~_XSo)+~T ~, ~f,(X~_X~)dLO(X1Xk) ~ St= N , ,1 j ,1 o 
k4:1 

t 
C N~ ,~,1 2 !s'(x:-x~idco(x,-X~ls 

�9 k * j  

1 t 
i j + ~  ~ ! g(X~ - Xs)ds, (3.39) 

2 
U t = N 2  E i ,2 1 f ( X ~ - X ~ ) d s + ~  Z i f ' (X2 s , 1 k - X , ) f  (X~ -X,)ds.  (3.40) 

j *  l 0 j * k  0 
>1 

If we choose 2E]0, 1], we have 

= E  e x p ~  y~ L~ G + 2 2  G - 2 S ~  
j * l  

<(E[exp 2)[ 2 U 1-2J.$1]) 1/2 

(using Cauchy-Schwarz and the exponential martingale) 
22c )1/2 

<Const. x ( E [ e x p ~  T ~ L~ . (3.41) 
\ L j t k  J 
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[ d ~ X ~ - x  i] <d,  this implies that for possi- By (3.29), we know that E exp ~ t 
bly different d, d, 

d 
E[exp ~ ci~. jL~ XJ)l] <d. (3.42) 

As a consequence of (3.41), (3.42) we obtain (3.37). [] 

We are now going to derive estimates that will be useful in order to prove 
tightness for certain empirical measures. 

Proposition 3.7. Let u N be a sequence of initial law for X 1 ( ~ .. . .  ,X~), such that 
IRN\ ~ {xi=xJ=x k} is u u negligible for every N, there exists C > 0  such that 

i ,j ,k 
d i s t i n c t  

for N>2c:  
V iE[1, N] EKIX~-Xisi41<=Clt-sl 2 (3.43) 

V i+j  E[IL~176 < C It-sl 2 (3.44) 

Moreover if the u N are symmetric, the laws of the processes (XI)i~[1,N] are 
symmetric. 

Proof. The last point can be seen for instance from the fact that the (X!) are 
approximated, as shown in Sznitman-Varadhan [213, by the solution of 

i 2c 1 i,=_ j,~ 

where ~b is a mollifier, when c~ goes to zero. 
Formula (3.43) is an immediate consequence of the markov property of X t, 

i i and Proposition 3.6, together with the fact that X I - X  0 > W,. We also have: 

E ~, L~176  ~. L~176 <=Clt-sl 2. 
j t i o  IV j~io 

Now using Barlow-Yor's estimates [1], 

0 ( s i o _ x J o  4. < [ io jo io Jo , 4  E [(L~ (Xio - xJo),-12 )~]=CE[IB. - B .  - ( B  s - B ,  )It 

(;- (;- + ~ L ~ 1 7 6  ~') + ~ l ~ 1 7 6  jl) <C'[ t -s l  2. 
il * io Jl *jo 

(We have also used the fact that one does not need to take into account the 
value of the semi martingale at time zero, in Barlow-Yor's estimates, as this 
was explained in the proof of Proposition 2.1), so we get Proposition 3.7. [] 

Remark. When u N are symmetric probabilities, the estimates (3.43), (3.44), 
follows from a very general result of Osada [17], concerning fundamental 
solutions of divergence form equations. [] 



604 A.S. Szn i tman  

Let us now consider M(H), the space of probability measures on 

H = H  x H x C~ (IR+, IR), (3.41) 

where C + is the set of continuous increasing functions on IR+ with value 0 at 
time 0, and 

/~= {(X., B.)~C(~,+, IR) x Co(A+, ~) ,  X . - X o - B . ~ C ~ ( I R  +, IR)}. (3.42) 

We will denote the canonical coordinates on H by (X. ~, B. ~, X 2. , B 2. , A.). Clearly 
H is a closed set of C 2 x C 2 x Co, endowed with the product topology. 

Let us consider the law Ps of the "empirical distribution" variables: 

1 
~o~(2-~)(N(~O)-N(N_I) 2 tS(Xi,Bi, XJ, BJ, L ~x~_xj).)~M(H). (3.43) 

i~-j 

In the following, we endow M(H) with the topology of weak convergence. 

Remark 3.7. The laws PN also do not depend on the particular space where the 

solution of (3.2) is constructed, because L~ i -  X J). = lim 2 i q~,(Xis-X~)ds, and 
n 0 

X i. are measurable functions of X~ and Bi.. [] 

Proposition 3.8. Suppose that the law u s of the initial condition (X~) are u- 
chaotic (see (1.6)), and that the set U { x i=x j=xk}  is u N negligible, then the 
laws fin are tight, i, j, k 

distinct 

Proof Using the result in Sznitman [20], the tightness of (PN) is equivalent to 
the tightness of the intensity of the random measure Xs (defined by #( f )  
= E [ ( ) ~ s , f ) ] ) .  Using the symmetry and the fact that H is closed in the 
ambient space C2• c z •  C~-, it is sufficient to check that, the laws of the 
processes (X. 1) and (L~ * -X2) . )  are tight, this is a consequence of the fact that 
that u s is u-chaotic (so (Xo 1) are tight), and Proposition 3.6. [] 

IV. The Propagation of Chaos Result 

Our goal in this section is to consider the laws PN of (X. ~, .. . ,  X. s) when the 
laws u N of the initial conditions (X~o) are u-chaotic, and show that the sequence 
PN is P-chaotic, if P is the unique element of S(u) (S(u) is the set of the laws of 
the processes satisfying (2.1), (2.12)), as a result of this section we will obtain 
that S(u) is not empty. 

We denote by (Gt)t>o, the canonical filtration on the space H (defined by 
(3.41)), we are going to prove 

Theorem 4.1. Let u be a probability on R.  The set S(u) has a unique element pu. 
I f  (uN) is u-chaotic and u s satisfies (3.1)for every N, then the laws PN of 
(X ~. . . . . .  Xu.) satisfying (3.2), with initial conditions (X~), us-distributed, are pu_ 
chaotic. 
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Proof We are going to show in several steps that the sequence of random 
1 

probabilities ~ Zex! concentrates its mass on S(u), since it is always possible to 

construct (uN), u-chaotic with u N satisfying (3.1) for every N (for instance u N 
- - - -  U2(N )| , for a suitable smoothing sequence u,tN) of u), we will obtain that S(u) is 
not empty. 

Consider /5~ a limit point of the laws of the random variables )(N defined 
by (3.42), using Proposition 3.8. We have 

Proposition 4.2. For /5o~ a.e. m~M(H), (X~., B~.) and (X2., B2.) are m-independent, 
(B~., B2.) is a two dimensional G,-Brownian motion and the law of X~ (or X 2) 
under m is u. 

X ~ Proof First let us show that for t5oo a.e. m, ( . ,B  1) and (X2, B~.) are m- 
independent. Let f (X ,  B) and g(X, B) be two continuous bounded functions on 
/4. We define: 

F(m) = (m, f (X  ~, B 1) g(X 2, B2)} - (m, f ( X  1 , B1)} (m, g(X 2, B2)} 

for roaM(H). F is a continuous bounded function on M(H), and it is enough to 
show that 

t5oo a.s. F(m)=0. (4.1) 
We have 

E [(-N 1 ~, f (Xi ,  Bi)g(XJ, B j) Ep~[F(m)a]=limiv~ e~ ( N - I )  i , j  

N ~ N . g(XJ' B~) 

= 0 ,  

and this proves (4.1). 
_ _  1 Now let us prove that for t500 a.e. m, Bt-(Bt ,  B 2) is a two dimensional G t- 

Brownian motion. Let us define for O<s<t 

F(m)=(m, [ f (BO-f (B~)-~  ! A f(B~)du] x H(w)) , (4.2) 

where f is C 2 with compact support, and 

k 
H ( W ) :  1-I x l  1 2 2 (4.2)' gp( ~p, B~p, Xsp, Bsp, Asp ), 

p=l 

with O<sl<. . .<sk<s<t,  and gp bounded continuous functions on IR 5. F is 
continuous bounded on M(H), and it is enough to show that for functions F as 
in (4.2), 

E , ,  If(m) 2] = O. (4.3) 

Similarly with obvious notations 
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( 1 j i j 
Ep~[F(rn)a]=limEe~"~u,~ N ( ) V - 1 ) i . j ~  f ( B i '  Bt) - f (B~,B~) 

- ~ Af(B~., B~)du Hii(co) 2 

< lira sup c _ 0 
k ~ o o  N k 

(because the FcBrownian  mot ions  B! . . . . .  B. s are independent ,  and the H ij are 
F~-adapted); this proves (4.3). Let  us now prove that  Poo-a.s., the law of Xo 1 (or 
X 2) under  rn is u. In t roduce  the cont inuous function h: w E H - - . X ~ ( w ) s l R .  For  
m e M ( H ) ,  let horn be the image of rn under  h, r n ~ h o r n  is a cont inuous map 
from M ( H )  into M(N) ,  as such (hom)oPu~ converges weakly towards 

-- -- 1 Nk 

(h o rn) o P~o. But (h o rn) o Pu~ is the law of the r andom measure ~ ~ bxg(~), which 

converges towards b, since u u is u-chaotic. So, (h o rn)o/5| = b , ,  that  is, Poo a.s., 
h o m = u; this proves Proposi t ion  4.2. [ ]  

We denote  by A~., i =  1, 2, the cont inuous increasing processes defined on H 
by i i i i A , = X t - X o - B t ,  t>__O (see (3.42)). The  next step is to prove 

Proposit ion 4.3. F o r / 5  a.e. m, 

A 1 = c x E m [ A j a ( X t . ,  B.*)] (4.4) 

(and A 2 = cE m [ A J a ( X  2, Bz)]), 

H,=IX~-X21-1X&-X2 I 
t t 

- ~ s i g n  + ( X  1 - X ~ )  1 �9 + 2 t dA s - ~ sign ( S  s - X s) dAa~ - A,,  (4.5) 
0 0 

is a continuous supermartingate, and 

Dt=IX~-X2, I-IX~-X~I 
- ~ s ign-  (X~ 2 1 - X s ) dA  s sign- (X~ 1 2 - - X ~  ) d A ~ -  A t (4.6) 

0 0 

is a continuous submartingale. (sign + and sign- are respectively the right con- 
tinuous and left continuous version o f  the function sign). 

Proo f  Let us first prove (4.4), let sp, p~[1,1]  be such that  0 
= S o < S l < . . . < s z < o %  and let g~p, p c [ l , / ] ,  be cont inuous functions on N2, 
bounded  by 1, we define: 

F ( m ) = ( m ' ( c A ' - - A ~ ) x [ I g s p ( X s * ~ ' B s l v ) >  (4.7) 
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we want to show that 

F(m)=0,  t5oo a.s. (4.7)' 

Consider e>0,  fixed, introduce Fc(m ) which is defined in the same way as F(m), 
except that A~-A~ is replaced by AtAC-A*,AC, Fc(m) is bounded and 
continuous on M(H), and we have 

For k<= oo Ep~, [lF(m)-Fc(m)[ ] 

<Ep~, Elfm, (A,-  C)+ +(A~ - C)+)]] <~t),v"" (4.8) 

because of Proposition 3.6 (with the notation /SN~ ~ =/5~o ). We can take C large 
enough such that this last quantity is less than e. So: 

EI,~ [I F(m)l] < E + E ~  [I Fc(m)l] = ~ + lim EpN k [I Fc(m)l] 
Nk 

<2e+c lira sup EP~"~Nk N ( N -  1) i , j ,  I2t(X -XJ) 

N EL~ x gsp(Xi,,,B'sp) 
k@i p = l  

= 2 a +  c lim supN~ eN~ ~ ~. ~L~ 
j=M 

1 ) h  ]] 
S EL~ x g p(X s;,Bs ) 

k # i  p = l  

--<2e. 

Since ~ was arbitrary, we have proved (4.7)'. Let us show now (4.5) (the proof of 
(4.6) is similar). Consider O<s<t, and G(w) as in (4.2)' with the supplementary 
assumption that the functions gp a r e  positive continuouS and bounded by one. 
Define 

F(m)= (m, (Ht- H,) x G(w)), (4.9) 

(by Proposition 3.6 one has the fact that E~[(m, IHtl)J<oo ), we want to 
prove that F(m) is negative t5oo a.s. It is enough to check that for any positive 
bounded continuous function K(m) bounded by one 

IF (rn) K (rn)] =< 0. 

Fix e>0,  and define Fc(m)= <rn, (HC-H c) x G(w)>, where 

HC = hc(IX~t - X21 - I X*o - X21) 

- i sig n+ (X~ - X  2) d(A 1/x C)s 
0 

- i sig n+ ( X2 -X1)  d( A2/x C)s-(A/x C)t, 
0 

(4.1o) 

(4.1) 
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(where hc(x)=x when ]x[<=C and Cxsign(x)  
sign + (x) as the decreasing limit 

sign + (x) = lira qS,(x), 
n 

qS,(x) = - 1, on ] - 0% - 1/n], 

= 1, on R+ ,  (linear in between). 

The map 

otherwise). We can write 

t 

wEH ~ ~ dp,(X~ ( w ) -  X2(w)) d(A ~ (w)/x C)~MR 
0 

is continuous for every n, as well as F~(m)=(m, G(m) x(HC'"-HC'"~ ~ , ~  ,~, where 
H c'~ is obtained by replacing sign + by 4~ in (4.11). So we have 

F c (m) = lim T F~ (m), (4.12) 
n 

(F c is bounded lower semicontinuous). 
Moreover, by Proposition 3.6 (as in (4.8)), we can pick C large enough so 

that 
Vk<=oo, Ep~,k[lF(m)-Fc(m)l]<a 

So we have 
Ep~ [KF(m)] < Et, ~ [KFc(m)] + e (4.13) 

(and because of (and 4.12)) 

< lim inf Ee~ k [KFc(m) ] + e 
N k  

< 2e + lira inf Ep,,k [KF(m)] 
N k  

= - I x s - x s l )  2e+l i  nfEp~,~ K(XN)•  N ( / V - 1 ) i , j  

t 1 

- c S  sig n+ (Xiu- X~) ~ Z d L ~  Xk) 
s i ~ k  

, 1 ) 
- c S sign + (X~-  Xi,) x ~ ~ dL ~ (X j -  xk) ,  -- L ~ (X ~ -- XJ)t 

s j q : k  

I 1 

x ~ g,(X~,  B~, X~,  B~, 
J 1 

We know from the construction of the process (X. 1 . . . . .  X.N), that when i,j, k 
are distinct, PN-a.s. for a l l  t>0 ,  (XI, X], X~) is not on the diagonal {(x, x, x,), 
xMR} of IR 3, so that 

t t 

sign + ~ j (Xs - X ~) dL ~ (X i - Xk)~ = ~ sign (X~ - X~) d L ~ (X ~ - xk)s, 
0 0 

(because dL~  is supported by the set {s]Xi~=X~}). Consequently, the 
last expression of (4.13) can be rewritten 
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( 1 i j 
2 ( ] X t _ X t  I i j 2e+liminfEeNN~ K(J~N) x N ( N - 1 )  i 4 : j  --IXs--Xs[) 

t 
- c ~  " i 1 slgn(Xu--XJu) g ~. d L ~  

s i:~k 

1 ) 
- c ~ sign (X{ - X~,) x ~ dL ~ (X j -  Xk), - L ~ (X ~ - X~)t 

s j a k  

" 0 1 

with obvious notations.  This last expression is equal to 

2 ~ + l i m i n f E p  [K(52N) x 1_ ~,~(! . i j (-I )]  sign (X~ - X.)  d (BI, - B~) x g/pJ 
N~ ~'~[ N ( N -  1) i " 1 ' 

(4.14) 
1 t 

�9 i - -  ~ s l g n ( X , - X ~ ) d ( B  i . . . .  -BJ]  is less and the square of the L2-norm of N ( N - 1 )  ~.~ 
than: s 

N2(N - 1) 2 x C x N 3 = O  (C independent  of N). 

As a consequence,  Ep~[KF(m)]<2e ,  since e was arbitrary,  we obtain (4.10), 
and this proves Proposi t ion  4.3. [ ]  

Our  purpose now is to show that A t is in fact L~ 1 - X 2 ) t  for / 5  a.e. m, 
and then to deduce from this fact that  for/3oo a.e. m, the law of X 1 (or X 2) is in 
S(u). We have 

P r o p o s i t i o n  4.4. For ff~ a.e. m, A t is the symmetric local time in zero of  X 1 - X  2, 
and the law of  X 1 and X 2 is in S(u). 

Proof. F r o m  (4.6), we know that  for/5~o a.e. m: 

Dr= IX• -,X2t [ - IX ~ -  XgI - i sig n+ (X~ - X~) dA ~s 
0 

i sign-  (X 2 1 2 - X ~ ) d A ~ - A , + 2  S I(X~ 2 - = X s ) d A  S ; (4.15) 
0 0 

is a submartingale.  By Tanaka 's  formula,  

Dr= sign+ (X~ - X 2 ) d ( B 1 - B Z ) s + I J ' ~  ~ l(Xsl =X~)dA~,E 
0 0 

( / J ' ~  is the left limit of the local t ime of X ~ - X  z in 0). So we find 
that 

t 

A t + K ,  / J ' ~  I ( X ~ -  2 1 = - X~ ) dA~, (4.16) 
0 
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where (Kt) is a continuous increasing, integrable (for fixed finite time) process. 
Let us denote by rfi the law of (X 1, B 1) on /~ (see (3.42)), and let us consider 
E,, [/J' ~  l, B1)], since (X l, B l) and (X 2, B z) are m-independent with 
law r~, by Remark 2.4, we find: 

1 

E,,ElJ' ~ - X2)](X ~, BI)] = ~ 2u(s, X J) ds, 
0 

where u(s, x)eL2([0, T] x IR) for every T > 0 ,  is the density of the law of X~ 
under N for a.e. se[0,  T]. Taking conditional expectations in (4.16) with respect 
to the ~-field a(X 1, B.1), we find using (4.4): 

' i 1A~+C~=y2u(s,  XJ)ds+2 p(s, ~ - X~ ) dA s , (4.17) 
C 0 0 

where p(s, x)=  ~ l (X, = x) din, and C~ is an m a.s. increasing continuous process 
adapted to ~r(X~,B~, s<t), (it is continuous as the sum of continuous pro- 
cesses). 

Now we can write 

as a consequence of (4.17), we have the fact that 

so that l (p(s ,X 1 ) < l / 4 c ) d A ~ d s .  Let us now study the measure 

1 [p(s, Xls)>>_~] dA~, its support is contained in the set 
@ x  

\ -4c1  

F={t>_=O, 3x6IR, p ( t , x ) > l } .  

F is a closed set (consider t, converging towards t, u~.(dx) are tight-probabili- 
ties on N, so there exists a compact set K such that for n <  o% u,~(KC)< 1/8c, 

1 
so we can choose a sequence a, eK, satisfying p(t, an)>~c , extracting a sub- 

1 
sequence we can suppose that an converges towards a, and then u,({a})>~c c, 
which implies teF). 

So F is a closed set of zero Lebesgue measure. We are now going to show 
that F can at most be the set {0}. If F is not included in {0}, then we can find 
an open interval I=]a, b[, with I c F  ~, and b~F, (b< oo). Since I c U ,  on I we 

have dA~=l(p(t ,X~)<4~c)dA ~, so l i x d A  ~ is absolutely continuous w i t h  

respect to Lebesgue measure. 
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Exploiting the fact that H t is a supermartingale, and 

H t = I X ~ t - X Z t t - I X ~ - X ~ [  i i n + - s g (X~l _X~)dAs2 t 

0 
t 

i s i g n -  (X~ 1 2 _ A t _  2 ~ 1 _ z - - X s ) d A  ~ I (Xs -X~)dA~  
0 0 

=~sign  +(X] X 2) d(B~ 2 10 - - B s ) + E '  ( X - X 2 ) t - A t - 2  I (XI=X2)dAEs ,  
0 0 

we find 
2 1 dA~>=dl],~ 1 - X 2 ) t -  2 x I(X~ = X s ) d A  2. 

restricting our attention to I, since dA2s~ds on I, we obtain with (4.16) that 
d A t = d I A ' ~  on I (because 2 1 2 1 1 t ( X  s =Xs)  dAZ~ = 0 =  l(Xs =X~)dA~). 
Pick a 1 in I, for t > a  ~, on /4 define 3; t, O < t < b - a  I to be Xt+al, adapted to 
the filtration translated to time al. Moreover we  have/J" o(j?~ _ j~2)t =/j' o(x 1 
--X2),+ a~- lJ' o (X  ~ - X z),I (now on the space H x/ t) ,  

J ? ~ = 2 o + / ~ + c  ~ I J ; ~  t>O 
// 

( / } t=  Bt+a~- B,~, on / t ) .  We have obtained this for any measure m in t h e / 5  set 
of measure 1, defined by Proposition 4.2, (4.4), (4.5), (4.6). 

This means that Jft satisfies (2.1), (2.12), for t < b - a  1, by Theorem 2.5, we 
find 

exp - 4 c/3 t (x) = (exp - 4 c Fo) * qS,(x) (4.18) 

where ~ ( t )=  i ut+a~(dY) (u~(dy) is the law o f X  t under r~). 
-oo 

As a consequence of (4.18), for t near b - a  1, exp-4c f f t (x  ) is uniformly (in 
t) continuous in x, bounded above and below (by 1 and exp - 4 c  respectively), 
so this precludes the possibility that ffb-,~ is non-continuous, and as a con- 
sequence beE. this shows that F is contained in {0}. As a consequence we can 
hold the previous reasoning with a=0 ,  and we find that A~=IA'~  
= L ~  ~ - X 2 ) t  (since I(X 2 ~ 2 2 = X s ) dA~ = 0 = 1 (X~ = X 1) dA~s) and that 

t 

X t = X o + B t + 2 c ~ u ( s , X ~ ) d s  , r~ a.s. on/4 ,  (4.19) 
0 

where u(s, x) is given by (2.11) and is the density of the law of X, for s>0,  and 
we have obtained that the law of (Xt) under r~ lies in S(u). This, together with 
Theorem 2.5 proves that S(u) is reduced to {P}. Formula (4.19) implies that r~ 
is the image of P by the application. 

C ~ x . ~  (x.,  x .  - X o  - i 2cu(s, X ~) ds)  ~H, 
0 

and m is the image of r~| under the application / t x / ~ ( ( X 1 ,  Ba), 
(X 2, B2))"-+ (X 1, B 1, X 2, B 2, L ~  1 - X 2 ) ) .  This shows t h a t / 5  is concentrated on  
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this probability independently of the subsequence Nk, we started with, and we 
have proved Theorem 4.1 as well as Proposition 4.4. [] 

Remark 4.5. As a consequence of Theorem 4.1, we have obtained that for the 
reordering (Yt I . . . .  , Yf) which satisfies the oblique reflection problem (3.7), (3.8), 

1 
and has initial distribution (Y~, ..., YoN)oUN, one has the fact that ~ ~'er~ 
converges to u(t, x )dx .  

In the case where we have proved trajectorial uniqueness, for the nonlinear 
process, we will obtain a "trajectorial propagation of chaos result", namely, 
suppose 

u(dx) = u(x) dx, u is bounded (4.20) 

and define 21 satisfying 

t 

X,-- i -  Xoi + Bti + ~ + 2cu(s, f~i) ds, (4.21) 
0 

(using Zvonkin's result [25]), (the Xio are independent and u(dx) distributed). 
Then we have 

Proposition 4.6. Suppose the (X~o) independent, u(x)-distributed, consider the 
processes (Xi.) defined by (3.2), then for any T>0 ,  

sup IX~-211 converges in probability towards zero. (4.22) 
t<-_T 

Proof The proof is similar to the proof of Theorem 4.1, one now takes the 
random measures ~'N 

1 
N ( N  - 1) ~" ~(x~, B~, x,, xJ., BJ, xJ, L~ (X~- XJ))~M( ffI • C • I-1 X C X Cg ) 

whose laws are tight, and one then notices that for any limit point P~o, Poo -a.e. 
m will be such that m-a.s. 

t 

X" = 2~ + B~ + ~ 2cu(s, 21) ds 
0 

(and the same for 22), because for t >  s > 0, 

{ } - 1  1 1 ~ 1  - x s  - Be - B s + ~ 2cu(h ,  ~ 1 )  dh 
s 

is closed in 10 x C x / / x  C x Co, and supports the random measures YN- As a 
consequence of the proof of Theorem 4.1, we see that for/5oo a.e. u, X 1 and j~l 
are solutions (trajectorially) of (2.1), (2.12), so that by Remark 2.6, X.~ =J (  J m 
a.s. (and similarly X2= X.2 m-a.s.), as a consequence, the ~'N are converging in 
law to the Dirac measure concentrated on the law of (j~.l, B.i j?.l, j~2, B.2, j~.2, 
L~163 1 -  3;2)). Formula (4.22) is then the consequence of this convergence in law 
result applied to the continuous bounded function: m--*(m, suplX i 

-i 1>. [] s-<r - X ~ l / '  
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