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I. Introduction

In [15], McKean posed the problem of constructing a system of N interacting
particles in R with generator

1 &2 1 i oonf{@ 0

L= Y sotam—1) 2.06=x) (axi+axf)' (-1
He conjectured that when the initial conditions are independent and u,, distrib-
uted, and if one looks at the law at time ¢ of the first k particles, k fixed, letting
the number N of interacting particles be larger and Jarger, one restores asymp-
totically at time ¢ the independence of our first k particles (X7, ..., X9, and
that their common limiting (N — o0), distribution is given by the value at time ¢
of the solution of Burgers’ equation:

2

%%=% g;%—u g—z, with initial condition u, at time 0. (1.2)
Such a type of phenomenon is called propagation of chaos (see Kac [12]).
Several results concerning the questions of propagation of chaos and Burgers’
equation have already been obtained, in Calderoni-Pulvirenti [2], where a
smoothing procedure of the d-function is used, in Gutkin-Kac [6], and Kotani-
Osada [13], where the approach for the construction of the N-particle process
and for the propagation of chaos result is rather analytical.

The approach presented here is probabilistic.

We consider a system of N particles satisfying:

dXi=dBi+ ¥ AP(X-X), i=1,.,N, (1.3)
Nj#i
X4 =X(0),

where [2(X'— X/} is the symmetric local time in 0 of X'—X/, B’ are inde-
pendent Brownian motions, independent of the initial conditions (X'(0)), with
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symmetric distribution u,, satisfying:

U {x'=x'=x*} is uy-negligible. (1.4)
d;’stji’nkct
Such a process was constructed with a probabilistic approach in Sznitman-
Varadhan [21], where it is also shown that the process (1.3), is trajectorially
approximated by the “smoothed” processes:

C . ,
N Y (X7 =X 2dt, (1.5)
jFi

X5*=X/0),

dX>*=dBi+

1 N L L .
when « goes to zero, (qﬁa(-)z; 10) (&) is an approximation of the Dirac mea-
o

sure) .

This stability result links (1.3) with (1.1) (take c=1/4), specially if one
notices that (1.1) can be interpreted as the divergence type operator

1 H o
Id+—(x)~ if H;(x)=H(x'—x),

L=div(4 =—
iv(Agrad), A > AN-1)

(H(t)=1(t=0)—1(¢=<0)). This remark concerning the generator (1.1) was a key
point noticed by Kotani-Osada [13].
Let us first introduce a

Definition. If E is a separable metric space, v a probability on E, a sequence
(vy) of symmetric probabilities on E¥ is said to be v-chaotic, if for ¢, ..., ¢,,
continuous bounded functions on E,

lim vy, ¢, ®...00,1®..1> =[] <v, ¢>. (1.6)

N-w 1

In the following M(E) will denote the set of probabilities on E. One can show
(see Tanaka [23], Sznitman [20]), that being u-chaotic is equivalent to

_ 1 X
X NN Y &y (which is a M(E) valued r.v. defined on (EY, vy),  (1.7)
! X, are the canonical coordinates on EV),

converges in law towards the constant v. (M(E) is endowed with the topology
of weak convergence which allows us to define the convergence in law for the
M (E)-valued sequence of r.v. X ).

In this work we obtain the fact that for u,, u-chaotic, (E=R; in the
previous definition), and satisfying (1.4), then the laws Py, on C(R, , R)" of the
processes (X') satisfying (1.3), with initial law u,, are P-chaotic, (now E
=C(R,,R)), where P is the law of the nonlinear process which describes the
asymptotic (N — co) individual behavior of the particles. Roughly speaking, this
nonlinear process is obtained by consi‘dering (1.3), for say particle ‘1, and
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replacing the summation over the other particles by an integration over an
independent copy of the process, namely:

X,=Xy+B,+cE, [ I2(X-Y),], (1.8)

where Y is an independent copy of X.

Section 2 gives a precise meaning to (1.8), and proves a weak uniqueness
result.for the solutions of (1.8). (This together with the results of Sect. 4 gives a
weak existence and uniqueness result for (1.8)). We use Barlow-Yor’s estimates
[1], on the local time of a continuous semi martingale, which allow us to show
that the law of X, has a density u(t, x) dx, with u(z, x)e *([0, T] x R), for every
T>0 (see also Krylov [14], Chap. 2, Melnikov [26]). As a consequence we
obtain that

t
X,=Xo+B,+ | 2cu(s, X ) ds, (1.9)
0

and also that u(t, x) satisfies (weakly), Burgers’ equation

ot 20%2 “C ox

2 2
ou_ 10*u ) ou ). (1.10)

Using the Cole Hopf transform [3], one can then show that u is the classical
solution given by

exp —4c F(x)=(exp —4c Fo) * p, (),
2 x
if p,(x)=~—1_: exp—— and F(x)= [ u(,y)dy. (L.11)
1/275t 2t —®
It is also easy to see that the law m of (X,,B,) on CxC, is uniquely
determined.
When the initial condition u,(dx)=uy(x)dx, with u,(x) bounded, we obtain
a strong uniqueness (and existence result).
Let us now explain the general line of attack to the propagation of chaos
result.
Instead of trying to get direct convergence estimates on the processes (X'),
which is often difficult when one deals with local times, we rather try to obtain
a tightness result on the laws of the empirical distributions ‘

Xylw)= m i;js(xqm), BH®), Xi{w), Bi(w), LIXI — XT) (o)

eM(Cx Cyx Cx Cyx C3), 1.12)

(Cg is the set of continuous increasing functions on R, with value 0 at time
0), and then show that the limit points of these laws inherit sufficiently many
features of the approximating X, so that one can prove they are concentrated
on the probability on Cx C,x Cx Cyx C§, which is the image of m®@m on
(Cx Co)x(Cx Cy)), by: (X*, BY), (X%, B)—(X", B!, X?, B>, /(X" —~ X?)), by
(1.7) one then gets the result.
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We first need a tightness result on (1.12); as one can see casily (see
Sznitman [20]), this amounts to a tightness result on the law of X!, and on the
law of I’(X'—X?), (when N varies), and this is done in Sect.3. There are
several ways of trying to obtain estimates on (1.3). The first guess is that one
should express the local times I°(X’'— XY), using Tanaka’s formula and then
inject the result in (1.3), in this fashion, one can obtain estimates when ¢ is
small enough, but this method does not work for large ¢. One possible reason
for that is that in a multidimensional way (1.3) has a structure near the one

dimensional equation
X,=X,+B,+aIl°(X),, (1.13)

which admits no solution for |«[>1 (see Harrison-Shepp [7]). One may also
try to use the divergence structure of (1.1), and use related estimates (see for
instance Nash [16], where estimates on the first moment are given with the
explicit dependence of the constants on the dimension N, and also Kotani-
Osada [13] and Osada [17]). Here we use a different method; taking advan-
tage of the symmetry of the (X!), we introduce the reordered process
Y <... YN (reordering of X}, ..., X¥). It can be shown that (Y)) satisfy the
oblique reflection problem
ViYWl (1 —gf-) i

t>

2 N »
YE=YE+ W,k—-;- (1—%) yf—i—% (1+§—Vc—) Pl 2<ksN-1, (L14)
=Y+ Wt”+% (”‘21‘\15) 7ot
where W', ..., W are independent Brownian motions and

t
yi=[1(Y}=Y*")dy,, 1<i<N-1, y continuous increasing. (1.15)
[¢]

We obtain estimates by comparison results with a normally reflected pro-
cess in the convex set {x'=<...<x"} (see Tanaka [22]) constructed on a
perturbation of W2, ..., WX,

The last section studies the limit points of the laws of X, it is not difficult
to see that these limit points are concentrated on probabilities m on Cx C,
x Cx Cyx C¢ such that (X!, B!) and (X2, B?) are m-independent (identically
distributed), B!, B? are independent Brownian motions, the law of X} (or X32)
under m is uy(dx) and m-as. X} =XJ+ B!+ A], where A} =cxE, [4,/(X] B)]
(A denotes the C¢ valued coordinate on Cx Cyx Cx Cyx C§). The main
difficulty is to identify A, as I°(X* —X?).

Once this step is performed, one can apply the uniqueness results of Sect. 2.

As a consequence of this propagation of chaos result, one can see, using the
fact that By is approximated by the laws B¢ of (X>%) (see (1.5)), when a goes to
zero, that for sequences «(N) converging rapidly enough to zero, BV is also
P-chaotic. Such a result for sequences a(N) converging slowly towards zero
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was obtained by Calderoni-Pulvirenti [2], see also Oelschlager [27] on related
results.

In the case of initial conditions wuy=u®", with u(dx)=u(x)dx, u(x)
bounded, our result also leads to a convergence in probability of X*¥ towards
the nonlinear process X', “constructed on B’ and X'(0)”;

dX'=dBi+2cu(t, X' dt,
u(t, x) a solution of Burgers’ equation with initial value u

X =X'0). (1.16)

The author wishes to thank here the referees for their very careful reading of
the original manuscript, and the Courant Institute where this article was
written, for its hospitality. -

II. A Uniqueness Result for the Nonlinear Process

In this section we will prove a uniqueness result for the law of the nonlinear
process which is going to describe the limit individual behavior of the interact-
ing system of particles we study. We are first going to prove some lemmas, in
order to define precisely the quantity E,[I%(X —Y)] (Y independent copy of
X), which appeared in the introduction.

Let (2, F, (F);5,, P) be a probability space endowed with a filtration (F),
(F is complete, (F,) is right continuous, and each F, contains the F negligible
sets). We suppose that (2, F, (F), P) is endowed with an F-Brownian motion
(B)izo- We are going to consider a continuous F-semimartingale (X)),

satisfying:
X,=X,+B,+4, (2.1)

where X, is Fy-measurable, and 4, is a continuous increasing process equal to
zero at time zero, and such that A, is integrable for every t.
One has the following:

Proposition 2.1. Let (Q, F, (F), P) be a filtered probability space {(also satisfying
the “usual” conditions) and (Y),, o, be such that for T>0, (Y—Y,),, ; is in the
space H'(Q) (see Dellacherie-Meyer [4], for the definition of H'), and Y has the
same law as the process (X,),s o (defined on Q), then the formula

C,=[I%(X-Y)dP, (2.2)
a

where L°(X —Y) denotes the symmetric local time in zero of the continuous
semimartingale X — Y on the product space Q x Q defines a continuous increasing
process, integrable for every t, which does not depend on the choice of Y (one can
take a copy of Q and X for instance). Moreover P a.s.

Cw)=1im2 | fdsqbn(xs(w)—xs(a))) dP(®), VYt=0 (2.3)
n Q0

if ¢ is smooth positive symmetric around zero, {¢=1, ¢, (*)=nd(n.). The con-
vergence in (2.3) is dominated for t <T by an element H (w)eL'(P).
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Remark. We refer the reader to Jacod [10] for the definition of the continuous

increasing process I2(X —Y).

Proof. Let Y be as in the statement of Proposition 2.1, we know that (Y}, is
2m 1

the limit in probability of Z Yies 120 — Yiyom)? (see Dellacherie-Meyer [4]),

since Y has the same law as X this last quantity converges towards t. So we
can write Y,=Y,+ M,+D,, where M, is a continuous local martingale (in fact a
Brownian motion), and D, (by assumption on Y) has integrable variation on
bounded intervals. (D is not necessarily increasing, for instance in the case
where P is Wiener measure on C(R _, RY, F, the canonical filtation, X =B, if

tal
- - . . X
Q=Q, Y=X and F,=0¢(B;)vF, in this case D,= j XX, ds, and is not

increasing, see Jeulin [11], p. 46).

Consider now X —Y on the product space, one can find a version of the
local time which for any T>0, is right continuous with left limits in the space
variable, with values in C(0, T), (time variable), see Yor [24]. Now, for
L(x, t, , @) the symmetric local time of X — Y in x at time ¢, we have

PRP—as, VxeR, VieR _, (2.4)
L(x, t, w, ®)=1lim 2 5) ). (X, (@)=Y, (D)—x)ds
If we apply now formula (2.4) to X — X, and Y—Y,, we find
Lx, t, o, 6))=lim25) P (X, — X —(Y,—Y)+ X~ Y,—x)ds

=L(Y,— X, +x,t, @, @), (2.5)

if L(x,t, w, @) denotes the symmetric local time of (X —X,)—(Y—Y;). By an
inequality of Barlow-Yor [1], one has:

EpgplsupL(x,t, w, ®)]< CEpgplsup|By|+IM|+A4,+|D|]<oo. (2.6)
x s=t

Defining Z (w, ®)=sup L(x,t, ®, &), PQP as. Ys<t, [X(X - Y),£Z,(w, @) and
as a consequence of (2.6), by dominated convergence, | L}(X —Y)dP(®) defines
2

a continuous increasing process integrable for every t. Since
Zjd)(X Y)ds—fota)a))qﬁ ydx= jLY —X o+ X, b, 0, @) P, (x)dx;

T
we also find that P®P as. 2§ ¢,(X,—Y)ds£Z(w, ®), using (2.4), by dominat-
0

ed convergence, we see that for P a.e. o, Vs=¢,

2{dP(@) i ¢, (X (@)~ Y, (@) du= i 2Ep[§,(X,(w) = X ()] du,
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converges to Cy(w)= | (X — Y)dP(»), and this as. convergence is dominated

Q2
by the integrable H,(w)=Es[Z (w,®)]. So this tells us that C,(w) does not
depend on the special choice of Y, and that formula (2.3) is valid). ]

Notation. Let (X,),», be a process satistying (2.1), we denote by E (X =)
the continuous integrable (on bounded time intervals) increasing process (C,)
defined by (2.2).
Our goal is now to give a more convenient formula than (2.3) for the
computation of Ey[LYX —Y)]. In view of (2.3), if we can show that X, has a
1

smooth density, u(t, x), then a natural formula is E,[I%(X ~Y)]=2 f ufs, X} ds.

0
It turns out that condition (2.1) does not imply that the law of X, is smooth
for every t; the law of X, can even have a purely atomic part. (If we dropped
in (2.1) the assumption A increasing, one can simply build a counterexample
with a Brownian bridge).
In the case of assumption (2.1), one has the following example due to S.R.S.
Varadhan

1
Example 2.2. Consider a Brownian motion B,, define the sequences tn:l-?,
1
nzl, C,=-
— n — —_
Set 4,=0, t<ty, A, =—-B, —C,, nzl, and 4, linear on each interval

[t t,, () and A = —B,, then 4, is continous, consider the set:

D=\ {4,  —4,20}
nx1
we have,
D= ﬂ {B,, ,—B,>C,—C,_;}n{—B,—C, =0}

nz2

Let us show that D has positive probability; this comes from the fact that for ¥
gaussian of variance one,

[TP(Y >(C,= €, ) x (/D =T (1 -P (Yé - ))

nn—1).

na P (vt V2 W ye

nl)
nn—1)

V W/2r
_ One can then define t=inf{r,, 4, . —A4, <0}, 1 is a stopping time (because

A, s (B, s=t,) measurable), and A4,=A, , is a continuous increasing
process which with positive probability satisfies 4, = —B,. So X,=B,+ 4, has
a positive probability of being zero at time 1. [J

In spite of the previous example, we have the following smoothness result:

Proposition 2.3. Let (X )5, satisfy (2.1), then
(1) for f(t, x) a continuous function on [0, T] xR

Af=E, [E 16, X)) ds] <K [E {12, x)ds dx]m, (2.7)

where the constant K depends on T and the H* norm of X, .
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(i1) if u(s, x)eI*([0, T] x R) is the density of X, then

T
E, [I%(X - Y)]= [ 2u(s, X,)ds. (2.8)
4]

2

Proof. Define ¢, ( exp — x , then we know from Proposition 2.1, that

1/2

on the product space Q2 x €,

T
sup § 2x ¢, (X (0)— X (@) ds S Zy(o, o)
PR
which is integrable. As a consequence,
T
sup Epor| { 6,(X,(0)— X, (@) ds|
> 0

=sup [ ds<u,(dx)®uy(dy), d,(x—y)>

A>0 0

SEpgplZ(w, @)]SK XEp [Sgg |B,| +Ar], 2.9)

if u(dx) is the law of X_. Now,
' b (x— )= [ 2 (x—2) b0z —y)dz

T
and the left member of (2.9) is sup | [u,(s, 2)* dsdz

A>0 0 R
if u,(s, 2)=¢, *u,(2). (2.10)

Now for f(s, x) continuous on [0, T] xR, with compact support,

}ds fuy(dx) f(s, x)

E[z 165, X)) ds] -

=|lim }dsjuf(x)f(s, x)dx
A0 0

T 1/2
<KX E;loup B+ A7) x [ ds [dx 265, )|
s= ¢

by Cauchy Schwarz inequality.
This shows that the positive measure of (2.7) defines an element of L*([0, T]
xR). Let us now compute E,[L%(X — Y)] = C,(w). By (2.3), we know that

C (w)=lim 2E,,[§ (X ()~ X () ds], as. and in L} (P).
" Q

Using (2.7), denote by u(s, x) the element of I*([0, T]x R) which for almost
every se[0, T] is the density with respect to Lebesgue measure of u,(d x).
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t
Clw)=lim2 [ uy,(s, X (w)ds, (u, is defined by (2.10)),
n 0

|

<lim inf2E [z 4y (5, X () ~ (s, X ()] ds]

now,

E [\ C(w)— 2‘5)@;(5, X)ds

T
:hm 1nf2 E dS j dy|u1/n(sa y)—u(s, y)l M(S, y)
0 R

T

1/2
Stim inf 2 (s, )l o, e X | § 48 T3 (s, =6 ]
0

We know that u, (s, y) > u(s, y) in L2(R) for a.e. s and

“ul/n(sn y)“IZ‘Z([R) = “M(S, _V)“%,Z(IR)

(se¢ for instance Stein-Weiss [16]), as a consequence

T 1/2
[y ] sl s, y)—uts. 2]

t
goes to zero, and this proves that P-as. V120, Cw)=2 [ u(s, X (w))ds
0
(Notice that the right member of the previous inequality also defines a

continuous increasing process, because P-a.s. VT =0, j u(s, X (w)) ds < o). This
proves Proposition 2.3. [

Remark 2.4. Let us notice that if we had chosen the right continuous version
L°° (respectively the left continuous version I»°) of the local time in zero,
instead of the symmetric local time in zero, formula (2.3) would remain valid,
when choosing ¢ with compact support in IR, (resp. R_) instead of being
symmetric around zero, and the proof of Proposition 2.3 shows that

Ey[LUX - Y] =Ey [L°(X — V)]
t
=E [L;°(X - Y)]={2u(s, X )ds. ] 2.89
Q
We are now going to define the nonlinear process which is associated with

the propagation of chaos result, we have in view. Let ¢ be a strictly positive
number, u, be a probability on R, define the probability v, on R, (¢>0), by

exp —4cF(x)=(exp —4cFo)*p(x), >0, (2.11)
22

1
— CXpP ———.
V2nt P

with F{x)= ? uldy), t=0, and ¢,(z)=
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We are going to study the laws of the processes (X)), , defined on some
probability space, satisfying (2.1) and such that:

X, has law u, and 4,=cE,[I(X - Y)]. (2.12)

Denote by S(u,) the set of the laws on C(R _, R) of these processes. We have
the following weak uniqueness result:

Theorem 2.5. The set S(u,) has at most one element, and if PeS(u,), X,c P=u,,
where u, is defined by (2.11).

Remark. As a consequence of the propagation of chaos result that we are going
to prove, one has in fact S(u,) non-empty, and so reduced to a singleton.

Proof. Let X,, on some filtered probability space satisfying the assumptions of
the beginning of this section, satisfy (2.1) and (2.12). Denote by u(s, x)
(eI*([0, T] xR), V T >0) the density of the law of X, with respect to Lebesgue
measure, by Proposition 2.3 we have:

t

X,=X,+B,+2c|ufs, X,)ds. (2.13)

0
Let ¢(s, x) be a C* function with compact support in ]0, T[ xR. By Ito’s
formula

0=E[¢(T, X7)—9(0, X,)]

=Eﬁ (a¢ 16%4 o

1% +3 ) +2cu Hax) (s, Xs)ds]

T 3 102 b
- 9,09 99 2. 2.14
gdslj{dx(as+2 5x2)><u+2c o (2.14)

So (2.14) tells us that u(s, x) satisfies Burgers’ equation:

ou 10%u o(u?)
“at2ae T ox

0 (2.15)

in the distribution sense in ]0, T{ X R. So far we do not know if u is smooth.
Define on J0, TL xR

X

F(t,x)= [ u(y)dye[0,1]. (2.16)

-~ Q0

We have —Z—zu {(in the distribution sense) and
X

0 OF 108*F d
o T T Y =20 —— (u?). 2.17
ax( 6t+26x2) ¢ o @) @17
OF 2 L.
So —a—t%%—g and 2cu? have the same space derivative in ]0, T[ xR,
X

consequently their difference is a distribution invariant by translation in the x
direction (see Schwartz [18], p. 55).
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Let ¢ (t, x) be a test function, we have

OF 1*F ,
<“a7+5 a2 ’¢>
16%¢

=[F(, x)( ¢ (t,x+z)+3 3 352

(t, x—l—z)) —2cu p(t, x+z)drdx

0
for any z Letting z go to +oo, we have fdtdxF(t,x—z)(-d—) (t, x)
0% ¢

ot
3752 (t, x)) which converges towards zero by bounded convergence, and
fu?(t, x—2) ¢(t, x)dt dx goes to zero because u?(t, x)e L' (]0, T[ x IR).

As a consequence

+

6F 1 ¢*F

~ +5 57 —2cu*=0 (2.18)

in the distribution sense in ]0, T[ x R. Working now on the open set (¢, T—e)
x IR, let F,(t, x) be a regularization by convolution of F, on (¢, T—¢) x R (in the
time, space, variables). Set

W,(t,x)=exp —4cF,(t,x) on (6, T—g xR (2.19)

(this is the linearizing Cole-Hopf transform for Burgers’ equation, see Cole
[3]), then W, is smooth and 0 < W, £1. Moreover we have:

oW, OF, oW,
= — ——W — =
o - re e 3y
>wW, OF, OF,
16 2( ) W,—4c
ax? “ \5x o W

As a consequence,

0 10°W, ) 102 0F,\2
W, 10 Wf_=4c< OF+ O°F 2c( A))XVVM

it 2 0x* ot 2 0x? 0x

and because of (2.18) we have

’F, OF\?
2"—26[(—)] =0 in (¢, T—e)xR
X ox/ la

(the subscript (v), indicates the regularization by convolution), Consequently

ok 1
ot 2

oW, 18*W, _ ,([(0F\V] [OF,
/'—4——;—_— —_— 2. 0
ot 2 dx* B¢ ([(8x)] (6x))XW (2:20)
oF

When A goes to zero in (2.20), [( )] =(u?),, converges towards u* in
A

0x
I'{(e, T-¢)x R), and since (u,;)*—u*=(u,—u)(u, +u), (u,)*> converges towards
u? in L'(e, T—¢) x R) as a consequence
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oW _19°W
ot 2 0x*’

in the distribution sense in (g, T—¢) x R (2.21)
(and since ¢ was arbitrary, in (0, T) x R).

2

o a 128 ]
By hypoellipticity of TR (see Hormander [87]), W(t, x) is a C* function

in 10, T[ xR, which satisfies (2.21) and has values in [0, 1] so (see Friedman
[5]),

[ Wi(s, y)exp— (x=y)°

1
V2r(t—s) R 2(t—s)

letting s to go zero, since W(s, y) converges boundedly towards W0, y) except
may be at points of discontinuity of F(0,*) (an at most denumerable set), we
find

Wit x)= dy, O<s<t<T,

(x—y)?
2t

W(t, x)= [ W(0, y) exp— ds. (2.22)
R

it

This proves the statement concerning the laws at fixed times of solutions of
(2.1), (2.12). Now to prove that S(u,) contains at most one point, it is enough
to check that any element of S(u,) induces the same law on the sigma fields
o(W,,t=s)=F>%, of the canonical space C(R,,R) (W, are the canonical
coordinates), for any s>0. But,

11
X,=X,+B,—B,+[2cu(v, X )dv, t2s, (2.23)

and X, has law u(s,x)dx (u(v, x) is given by (2.11)). Since u(v, x), vZs, is
bounded and Lipschitz, one has uniqueness, in law for the solutions X, t=s of
{2.23), this proves the theorem.

Remark 2.6. In the case where uy(dx)=u,(x)dx and u, is bounded, one can see
that u(t, x), t=0, xeR, is bounded measurable, it follows from Zvonkin’s
results [25] (Theorem 4), that there is strong existence and strong uniqueness
for the equation

t
X,=Xo+B,+ [ 2cu(s, X,)ds.
)

As a result one also has a strong existence (using part IV), and uniqueness
result for the solutions of (2.1), (2.12). O

III. A Compactness Result

We consider now the system of interacting particles for which we want to
obtain a propagation of chaos result. In this section we will prove a weak
compactness result for the law of certain empirical measures.

We consider some filtered probability space (Q, F, (F),» o, P) (F complete,
(E),~,. right continuous, each F, containing the P-negligible sets of F), en-
dowed with F-Brownian motions Bl,..., BY, and real valued Fj,-measurable
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random variables (X5),.; nj, With symmetric distribution uy on RY, satisfying:

The set () {x’ —x’—xk} is negligible for uy. (3.1)
i, j. k
dlsilmct
It was shown in Sznitman-Varadhan [21], that for ¢>0, one can construct a
unique solution of

=X\ 4Bt YIOX -XY), i=1,...,N, (32)
N jFi

where [°(X'—X/), is the symmetric local time of X*— X’. The (X?, ..., XV) are
expressed as measurable function of (X}) and (B!), and as such the laws of
solutions of (3.2) do not depend on the space where they are constructed. For a
={i,j} (with the notational convention i< j), one defines

1
V= ]/2 (e;+e)), na:]7,2— (e;—e)),
and one can construct (7)., (R, valued strictly increasing sequences),
(X", o (R¥-valued), Unuzo valued in the set J of pairs of elements of [1, N7J;

which satisfy:
T,=inf(t=0, 3acl, n,- (X, +B,)=0},

{oy=1aeJ,n, - (Xo+B;)=0} (it is a singleton as), X°=X 4B, , and for
nz=0
T

T n+1

T,=inf{s20, Ja%j,(w), n,- (X"+B+V, - L’(n; - B"))=0}
Br, ,s—Br,),

Xml=X"+B: +V, -L’(n, -B"

Tn+1

n+1;~

(with the notation B'=

Tn+1’

{jus 1y ="{aed, X"*1.n,=0} (it is a singleton as.), it was shown in the reference
quoted that as. the (T,),,, converge to + oo when n goes to infinity, and that
one has:

XSAT0=X0+BS/\T07 Szo’
XTn+S/\T 1 Xn+B:ATn+1+V' (w)'Lo(n' ‘B )S/\tn+1’ for Sgoa (34)

Pas., (I°(B"- n; ), is the local time in zero of the Fy _-Brownian motion B -n;).
One can also prove that the laws @, of the solutions of (3.2) starting from
xe E=RM\ U {x'=x/=x*}, on C(R ., E) form a strong Markov process with

Lk
distinct

state space E, and one has the following “Brownian scaling” property:
the image of @, under w—Aw /A% is Q,. . (3.5)

Consider now x=(xy,...,xy)eE and X,=(X;, ..., X}),,,, the solution of
(3.2) with initial condition x. We are first going to prove a lemma which shows
that the increasing reordering, (Y,', ..., ¥}V), of (X1, ..., X¥) satisfies an oblique
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type of reflection problem on the set K= {x!<x?<...<x"}. Notice that:
Y =sup {inf(X?), 4 subset of [1, N], with card A=N+1—k}, (3.6)
icd
we can state

Lemma 3.1. There exists N independent real valued F-Brownian motions
W ..., WY and (N —1) continuous increasing F-processes y}, ..., yN~2, satisfying

i =Y dy,, (3.7

0
Yt1=Y01+ml_§ayta
Yr=Yo+WE—Sayi+3byf !, 2<k<N-1, (3.8)
YtN=YON+ VV;N‘{“%b'))iv_l,

N N

Remark 3.2. As we shall see later, the normal reflected process in the convex K
={x1<x*<...<x"} constructed on Yj+ W} (see Tanaka [22]), satisfies (3.8),
with a=b=1.

Proof. Using Tanaka’s formula and (3.6), we already know that Y= Y&+ W}
+ A¥, where W} are continuous local martingales and Af is a finite variation
process, ke[1, N]. We are going to show by induction on » that for n>0,

2
(where a=1-2 i, b=1+—c).

(WL Wiy, =(EAT) x5, (39)
A g = 5 U= YD)+ L= ¥*1]d4s,  1<kSN,  (3.10)

(the expression where Y° or Y¥*' appear are understood as being zero), and
the first term of the right member of (3.10) is continuous and increasing, and

AT tAT,
a j dA"l(Y" YEoNh=—b | dA}- T 1(Y}r=Y}T), (3.11)
0
for 2£k<N.
If we prove (3.9), (3.10), (3.11), defining

Qr‘ll\)

t
== [L(Y}1=YHdAk!, 1<ks<N-1,
0

one easily obtains (3.7), (3.8).

Let us first show (3.9), (3.10), (3.11) for n=0.

If T, =0, this is immediate, else all components of the starting pomt X are
distinct and there exists a unique permutation ¢ of [1, NJ, such that Yf=x_,;
moreover, Y ;. =x,,,+ B . ke[1, N], and our induction hypothesis is satis-
fied. So suppose we proved the induction hypothesis for k<n, let us show that

it is valid for n+1. We partition the space Q in the F; -measurable subsets
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A wWith 1=j<I<N, 1Sk=N -1, defined by
Ay = Uno)=4, B n{Yy, =Yr7 1 (3.12)

On A4, ;, one can define an F, -measurable permutation of [1, NJ, ¢ (we omit
the subscript k, j, I) such that

Ypr=X3", and ok)=j, ok+1)=L (3.13)
Now on A4, ; ,, for m=k, k+1, we find

Y e~ VR B, B,

ntIATn+ nttATh+1

and

— Is _ _
k k k) 0 k+1) (k)
YT,.+tAt,.+1—_YT,l'1nf(Ba( +NL(BG( __BU )t/\fnfl’

EATn+1

EATys g

Broabr < LE OB ), (3.14)

{with the notation B’_”:B’;n+,~B§Z", me[l, NJ), and a similar formula for k+1
with sup instead of inf. Using Tanaka’s formula and xAy=x—(x—y) , we
findon 4, ; :

TATn+1 _ _ _
Vi binm— Y1, = [ 1(BIW(BI* D) dBI®
0
+1 (fga(k+ 1)<]§:(k)) dé:(lwr 1
—$al’(Bok+ DBty (3.15)
similarly on 4, ; ;,
Yol _ YT"“:MTHI(E““‘KB"”‘* D) g Botk+ v
n ATp+ 1 n 0 s s S
+1(BI*+ D (BI®) dBIW 43I0 (BO*H D — go®y, (3.16)

Now using (3.14), (3.15), (3.16), and the induction hypothesis, it is easy to write
the (F)-semimartingale decomposition of the processes Y ;. . , and one checks
immediately, (3.9), (3.10), 3.11). O

In order to estimate the increasing processes (y), l<i<N—1, we are now
going to obtain a comparison result with a certain normally reflected process.
We first introduce some notations:

We set for | SkSN -1,

1 1 ) 1
Di‘:bﬁ(y‘tk+1_xk)’ Hi‘zbk—l VV[k—*—l_VV;k)y szwyf, (3.17)

and we define the application F from the set
{0, c)eCAR,  RY=1)x (C5)¥ 1, v(0), 20, ie[1, N~ 1T},

(where Cg is the set of continuous increasing functions from IR, into R, with
value zero at time zero) into (CF)¥~!:
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F(v, c.)f =sup(—v; +30c),

s=t
F(v,c.)f=sup(—vh+5aci™ +5ci71),, 25ksN-2,
s=t
F,e )N ! =su p( AR YA TN (3.18)

2

Wl’]lver? a=ab=1—ﬁcz—. We endow C(R_,,R""') with the semi-norms |v],

= Y sup|v|, and we consider (C$)"~* as included in C(R _, RV~*). We have

i=1 s=t

Lemma 3.3. (a) For all v, ¢, ¢/, one has for t 20,
|F (v, ¢) = F (v, ), =3(1+]a) [e =], (3.19)
(b) If c=F(v,¢), c=F(7,¢) and 0<a <1, then

2
le—¢l, = lv—1|,, for t=20 and v<T=c¢Zc 3.20
1—a !

(where v<T means for all i and t, v <T).
(c) P-as.
(CH=F((D+HE), CY). (3.21)

Proof. (a) From (3.18) we see that for ¢ =0,

N-1

Y, Sup|F(v, ¢);—F(v, )<Y 5(1+]al) SUPIC
i=1 s=t i
which proves (3.19).
(b) If 0<a<1, the fixed points ¢ and ¢’ are obtained by iteration (by a
contraction argument). Setting ¢ = F(v,0), ¢**'=F(v, ¢*) (resp. ¢ =F(,0), c**!
=F (v, 2", we find

Icl__Elhéﬁv__Ehﬂ |Ck+1 —k+1[<<lv-7

c ’_Eklt'

(1+lfxl)
2

By induction one gets:

_ o L+ 1af Lo \F 2 _
|ck+1—ck+1lz§'"_vlt(l+ 2 +...+( > ))gl_lal lv—1],,

letting k go to infinity, we obtain the first part of (3.20). For the second
statement of (3.20), suppose v<7, then, ¢c'=F(v,0)=¢' = F(7, 0), suppose that
we know that ¢"=¢", then:

k X Jk—
ek =sup (— o+ foel gt
s=t
7 =n, k A k—
Zsup (=7 +3ue; 3¢
s=t

— A+ 1k
=G

+

(with the convention &"°=¢»N=0=c"°=c¢""). So by induction, ¢" =" and we
get ¢=¢ in the limit.
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(c) By (3.8) we get
a
KZ—KI‘—‘YOZ"YOI‘{'W:Z—ml‘*"VzI*E“/fa

Y2 Y2 =Yg — YR+ WP =W 437 —Say] —5by/,

3.22
e A R T R T
O RS AR AR B E o)
multiplying the k'™ line of (3.22) by b=%~ Y we get
D!=D{+H!+C!—30C},
D}=D}+H}+CZ—1aC}—3C;, (323)

DE=Di 4 H: 4 Ch—daCFel —3CH Y,
DY-1 =Dyt HY 4 O 3O

t
We know that Cf=([1(D¥=0)dC% and DFz0, (by (3.7)), so the solution of

0
Skorohod’s problem (see lkeda-Watanabe [9], p. 120) tells us that C=F((D,
+H,), C), which proves (¢). U

We introduce now the martingales W*=W*+ Y H! 1<k<N, we have
1<k—1

- - 1 1
Wr=w!, W= ) thxﬁj(b'l)ﬂLEr_z Wr,  2<k=N. (324)
25Isk—1
We now introduce the normally reflected diffusion at the boundary of the
convex K(={x'<...£x"}), based on W,=(W,, ..., WN). More precisely (see
Tanaka [22], Theorem 3.1), for xeK, we consider the unique couple
(Z.,k)eCR,,K)x C(R,,RY such that

Z,=x+W+k, (3.25)

H
and k, is of bounded variation, |k|,= | 1(Z,€dK)d|k|;, and
0

t
ke={ v, d|kl
b

where v, is a unit vector in the cone of inward normals to the convex K, d|k|;
a.s.

Remark 3.4. K is the intersection of the hyperplanes H;={x,<x;,}, ISisSN

—1, if a point x belongs to H\|JH,, the inward normal at x is simply n
1 iEi

=—§—(ei L1—e€), moreover it is easy to see that when x belongs to (|H,,

tel
I=[1, N-1] (and not to ﬂHi, for J containing strictly I), then the cone of
ieJ
inward normals of K at x is the same as the cone of inward normals of the
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convex set (){n;- y=0}, at x, which by an easy argument on dual cones is
simply el
K;={n=Y An;, 2,=0,iel}. (3.26)

iel
Notice that the system {n;, ieI} is linearly independent and the /, in (3.26) are
uniquely determined.
We now see from (3.25) that there exists continuous increasing processes k.,
1£i<N—1, such that
Zi =t W =4,
Zi=x'+ W —Ski+3k~!,  2<ISN-—1, (6327
ZF = W3,
with
t
ki=[1(Zzi=Z"dkl. O (3.28)
0
We now have

Proposition 3.5. There exists constants d>0, d>0, such that for N>2c, and any
xeR™ J {x'=x7=x*}, starting point of (X,), one has

d;’s,tj;’nl(ct d N . _
for t>0, E[exp 7 > (X;—xi)] <d~. (3.29)
t 1

Proof. Observe first by the scaling property that it is enough to prove (3.29) for
t=1, moreover, since clearly the Brownian motion B, satisfies a similar con-
dition, it is sufficient to show that there exists d, d >0 such that

E[exp % 5 L"(X"—Xf)l] <dn.

iFj
By (3.8), we know that % Y I’(X'—XY), is the bounded variation term of ¥;*
iFj

2 .
+..+ YN, that is ﬁc(y3+...+yf“). Notice that (! +...+ 7"~ <b¥(C! + ...

2¢\F .
+CI1) by (3.17), and the sequence b¥= (1+7) is bounded (in N). By

Lemma 3.3, we know that (C,) is the fixed point of F(v,*), associated with
v=(D% + H¥, and C is inferior (in the sense of Lemma 3.3) to the fixed point
(recall that 0<a<1), associated with F(B,) if o=(HY), (D%=0), we also know

L 1 . '
that if we pick instead of D%=0, the initial DB:ﬁ’ the corresponding fixed
_ _ N2
point € will satisfy C} +...+ C}~'=2C! +...+ C) ' ———, by (3.20).
So we have 2¢

1 1 _ _ N
75 (Cit A QNS5 (Cl 4+ O )4
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As a consequence of these remarks, it is sufficient in order to obtain (3.29), to

1 N-—
NN 1>EK, the fixed point (C.)

associated with F(v,-), where v, =y+ H_ satisfies

prove that when one starts with y= (0,

3d,d>0, VN>2c, E[exp % (Cot...+ CN_I)] <& (330)

Consider now (Z)),,,, the normally reflected process on K, starting at y. By
(3.27), (3.28), one gets that

1
VAR Ax =—Z\7+H} +kl =%k

1
Zi = Zi=—+ Hir K314k, 221N -2,

1
ZY -7 HY R,

t
K={1(Zr =2k, 1<ISN-1,

0

from this we deduce, as in (3.23), using Skorohod’s problem that

1
k! =sup (—N—Hi +%k§)

st +

1
K = sup (—N—Hi+%k‘s+1+§kﬁ'l) . 2<IEN-2, (331)

s=t +

kN—1=sup <—~i—H§" ! +%k’s‘(’2) )
st N BN
So we have on one hand C=F(y+H_, C) where C is obtained by iteration
(since 0<a<1), and on the other hand k=F,(y+ H_, k). But it is elementary to
check by induction that for every element of the approximating sequence (C"),
one has C?<k,, so that in the limit one gets C<k. To prove Proposition 3.5, it
will suffice to exhibit d, d>0 such that for N> 2c:

d -
E[expﬁ (ki+...+kf—1)]§(d)’v. (3.32)
Following Tanaka [22] (Theorem 3.1), by (3.27) we have
N . . t . . —_ .
L NZi= 74P =23) [(Zi~Z}) dW
i=1 i 0
N-11

+ Y ([ZHF =Z5Y—(ZL=Z)1dki+ Y, [d<w,.
] 0 i 0

i=1 i=1
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Notice that dk. a.s. Zi*'=ZI, so that we obtain:

N

R |
Y IZ;—ZW—FN (k4 ... +k¥-1)
i=1
(Zi—ZL)dW'+const. N -t (3.33)

™M=
O Sy

<2

i=1

(the constant in (3.33) is independent of N).
A A
Consider now the covariance matrix It (W' W75, we have by (3.24),

d .= 1
0Z— (W W/><const. [—+96;.)=a,,.
“dt< Wis (NJr ”) H
Notice that a;; has an operator norm uniformly bounded in N, if RY is
endowed with the usual euclidean norm. As a consequence,

t t
(S {@-zoam)sy (122120 24 ays
i 0 ij 0
t
<CxY [|Zi—Zi ds. (3.34)
i 0

Now, using (3.33), we see that in order to obtain (3.32), it is enough to estimate
N 1
expd Y [(Zi—Z})dW/, and using the exponential martingale, we know that
i=10
. t N
E[expay [(Zi-Z0) a7
i 0

t N
gE[expzdzj(zg—Z‘;))dVT/;—Zd2<Zj(Zi— ‘;))dWs">]
i 0 7o t
. 12
x E[exp 2d? <Z j(Zi—Zé)dWsi>]
i i 0 4
gE[expd2 ClYI|Zi-Z,) ds]
0 i

(we use that for x=1, ]/ ;gx). Using now the convexity of the exponential
function, it will suffice to find d, d’' >0, such that for N>2¢

1 . . -

[Elexpd Y |Zi—ZL[*]ds<d", (3.35)
(4] i

and we will obtain (3.22). By Ito’s formula, we have:
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] IZi_zi |2
eprZﬁ
i i _ 2 _
<1 Z §2) Z, +f°) exp 2 12, +Z1°l dw;
i=10 s
L 2 -2 2T
s ) s K
i;g s+1 eXp (s+1) ak;
1! |Z,—Z,)? 4,2 NZ,—Z)?
- s i i Zj J '} s
+2£exp GTD) ((S+1)2 Y\Z=Z |\ Z{ - Z}| a;;—2 N )ds
p 1Z,~Z,)?
N(f)expzl i ds.

1 .
Observe now that for )~<—2——, 422 = Z\\1Z1=Z}| a;;—2|Z,~Z,|* £0. As a
consequence, we have lai

2 2
exp A L—(—ﬁl—_ 1+ CNj exp A % ds+local martingale.
. NZ,—=Z,)? . .
Calling U,=exp 4 W’ we have for any stopping time T such that the

stopped local martingale and U, , are bounded E[U,, ,]<1
t
+c¢-N-|E[U,, ;1ds, which by Gronwall’s lemma implies E[U, , 7] <exp CNt.

0
Letting T go to infinity, we find using Fatou’s lemma,

1 |Zt_ZOI2:| CNt
E oo ol Y« , 3.36
[eXp 8la ¢+l 1=¢ (3.36)

from which we deduce (3.35) immediately, and which finishes the proof of
Proposition 3.5. J

We are now going to use Proposition 3.5 to obtain estimates on the
individual components X;.

Proposition 3.6. There exist constants d>0, d>0, such that for N>2c and any
xeR™ | {x'=x/=x"}, starting point of X,, one has:

i, J, k
distinct

for ie[1, N], t>0, E[exp d

1/’

Proof. Again by the scaling property it is enough to prove (3.37) for t=1, and
one also sees that it is enough to show the existence of d, d>0, such that for
ie[1, N]

(Xi-X)|=d. (3:37)

E[expN Y I(X - X’)]

j=Fi

(i 1s fixed in the previous expression).
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For notational simplicity we will choose i=1 in the proof.

Let f(y) denote the function (Artg y),, f'(y) the function equal to 0, y<O0,
1/2, y=0, )

e

W,
1+y**

Using Tanaka’s formula (see Jacod [1]).

y>0,
2(y) the function

~ Zf(X1 X)—f(Xo—X9)

]=F1

o T IS XDAB B+ G T [ F O - XD (K XY,

N %10 N2 j*1 0
‘ k*1
LY Y /X - X)AI (X - X¥),
N j*1 k*j 0
1 ¢ .
+ ZLO(X1 XJ) — Z jg(Xj——Xﬁ)ds.
]ff-"l N j¥1 0

As a consequence we get the fact that exp Y (X=X, +218,-22* T,
isa martmgale (exponential martingale), if j*t

=N Zf(X1 X)—f(X5— Xe>+N2 2 if’(X;—X;')deJ(Xl—X")s
}¢1 j¥1 0
k¥1
C

5T L L jf/(Xsl—Xé')dLo(X"—X")s

2
N* F1 550

1 t .
+— % [g(Xi—X)ds, (3.39)
N j*¥1 0
2 ! . 1 : .
U=—5 Y [fPX!=X)ds+—5 Y [ f(XI-X) [(X}—XYds. (3.40)
N j¥1 0 N j¥k 0

>1
If we choose 1€]0, 1], we have

E[exp N Y (X' -XY), ]

J*1

:E[exp S T =X, 18, 22Uy + 22U, - xs]

j¥1l
S(E[exp2A* U, —248,])'?
(using Cauchy-Schwarz and the exponential martingale)

< Const. x (E[exp N Y P(XI-X"Y, ])1/2. (3.41)

J¥k
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By (3.29), we know that E [exp i Z Xi—x ] <d, this implies that for possi-
bly different d, d,

E [exp % ¢ Y IP(X —Xf)l] <d (3.42)
iFj

As a consequence of (3.41), (3.42) we obtain (3.37). [

We are now going to derive estimates that will be useful in order to prove
tightness for certain empirical measures.

Proposition 3.7. Let uy be a sequence of initial law for (X!, ..., X¥), such that
R™ |J {x'=x/=x*} is uy negligible for every N, there exists C>0 such that
distjmkct
Jor N>2c¢: o
Vie[l,N] E[X—X*1<Clt—s|? (3.43)
Vikj E[LX - X9~ L(X ~X) < Clt—s]? (3.44)

Moreover if the uy are symmetric, the laws of the processes (X1}, y are
symmetric.

Proof. The last point can be seen for instance from the fact that the (X?) are
approximated, as shown in Sznitman-Varadhan [21], by the solution of

2c 1 /Xbe—Xie
dX:*=dBi+— % -~ (—;—) dt 3.45
N ];i Z9 » (3.45)
where ¢ is a mollifier, when o goes to zero.

Formula (3.43) is an immediate consequence of the markov property of X,,
and Proposition 3.6, together with the fact that X} — X = W} We also have:

1 o Y
E[(f Y 00— X~ ¥ LO(X“’—XJ)S> ]§C|t—s\2.
Nj*io Nj*io

Now using Barlow-Yor’s estimates [1],

E[(I° (X" — X%),— [9(X'*— X/)}] < CE [lBt’O —Bio— (B —Bi)[#*

1 . A | : oV
+ (_ Z LO(Xlo_Xn)ts) + (k z LO(XJO_X]I);) ]é C,|t-—S|2.
N i Fio N 55
(We have also used the fact that one does not need to take into account the
value of the semi martingale at time zero, in Barlow-Yor’s estimates, as this
was explained in the proof of Proposition 2.1), so we get Proposition 3.7. []

Remark. When uy are symmetric probabilities, the estimates (3.43), (3.44),
follows from a very general result of Osada [17], concerning fundamental
solutions of divergence form equations. [
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Let us now consider M (H), the space of probability measures on
H=HxHx C{(R,,R), (3.41)

where CJ is the set of continuous increasing functions on R, with value 0 at
time 0, and

H={(X.,B)eC(R,,R)x Co(R,,R), X,— X, ~B.eC{ (R, R)}. (3.42)

We will denote the canonical coordinates on H by (X!, B!, X2, B2, A.). Clearly
H is a closed set of C* x C? x C{, endowed with the product topology.
Let us consider the law P, of the “empirical distribution” variables:

- 1
CL)EQ—’XN(CO)Zm Z 5(Xi,Bi, XJ, Bi, L (Xi_Xj).)eM(H)- (343)

i+j

In the following, we endow M (H) with the topology of weak convergence.

Remark 3.7. The laws By also do not depend on the particular space where the

solution of (3.2) is constructed, because L° (X'~ X7),=1im 2 [ ¢,(X.— X7} ds, and
n 0

X! are measurable functions of X} and B!, [

Proposition 3.8. Suppose that the law uy of the initial condition (X}) are u-
chaotic (see (1.6)), and that the set | ) {x'=x/=x*} is uy negligible, then the
laws Py are tight. bk

distinct

Proof. Using the result in Sznitman [20], the tightness of (B,) is equivalent to
the tightness of the intensity of the random measure Xy (defined by u(f)
=E[{(Xy,f>]). Using the symmetry and the fact that H is closed in the
ambient space C?x C?>x Cg, it is sufficient to check that, the laws of the
processes (X1) and (I°(X* — X?),) are tight, this is a consequence of the fact that
that uy is u-chaotic (so (X3) are tight), and Proposition 3.6. []

IV. The Propagation of Chaos Result

Our goal in this section is to consider the laws By of (X1,..., X") when the
laws u, of the initial conditions (X}) are u-chaotic, and show that the sequence
B, is P-chaotic, if P is the unique element of S(u) (S(u) is the set of the laws of
the processes satisfying (2.1), (2.12)), as a result of this section we will obtain
that S(u) is not empty.

We denote by (G,),s,, the canonical filtration on the space H (defined by
(3.41)), we are going to prove

Theorem 4.1. Let u be a probability on IR. The set S(u) has a unique element P
If (uy) is u-chaotic and uy satisfies (3.1) for every N, then the laws By of
(XL, ..., XMy satisfying (3.2), with initial conditions (X}), uy-distributed, are P*-
chaotic.
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Proof. We are going to show in several steps that the sequence of random
probabilities N X ey concentrates its mass on S(u), since it is always possible to

construct (uy), u-chaotic with u, satisfying (3.1) for every N (for instance uy
=uly,, for a suitable smoothing sequence u avy Of 1), we will obtain that S(u) is
not empty.

Consider P, a limit point of the laws of the random variables X, defined
by (3.42), using Proposition 3.8. We have

Proposition 4.2. For P_ a.e. me M (H), (X!, B}) and (X?, B?) are m-independent,
(B!, B?) is a two dimensional G-Brownian motion and the law of X§ (or X3)
under m is u.

Proof. First let us show that for P, ae. m, (X!,B!) and (X?, B2) are m-
independent. Let f(X, B) and g(X, B) be two continuous bounded functions on
H. We define:

F(m)=(m, f(X*, BY) g(X?, B*)) — (m, f(X*, B')) (m, g(X?, B*)>

for me M(H). F is a continuous bounded function on M (H), and it is enough to
show that

P, as. F(m)=0. (4.1)

[ee}

We have
, 1 i BN o(X) B
Epw[F(m)2]=1}V1ilEPNk[(m Y f(X'. BY)g(X/, B))

i¥j
5 DA By X 30 B |
N 5 ’ N 5 ’
=0,
and this proves (4.1).

Now let us prove that for P, a.e. m, B,=(B!, B?) is a two dimensional G,
Brownian motion. Let us define for 0<s <t

t

Fim)= <m [ 1B)-r )3 (418 du] x H(w)>, 42)

&

where f is C* with compact support, and
k
Hw)=[] g,(XL, BL, X2, B2, A,), 4.2y
p=1

with 05, <...<s,<s<t, and g, bounded continuous functions on R>. F is
continuous bounded on M (H), and it is enough to show that for functions F as
in (4.2),

Ep_[F(m)*]=0. (4.3)

Similarly with obvious notations
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Ep P01 =lim By, [ (o —5 T S8 B) 185, B)

- % Af(B., B{;)du) Hij(w)z]

S

ST S —

. c
<limsup —=0,
k- w %

(because the F-Brownian motions B!, ..., BY are independent, and the H" are
F.-adapted); this proves (4.3). Let us now prove that P_-as., the law of X (or
X?) under m is u. Introduce the continuous function h: we H — X §(w)eR. For
meM(H), let hom be the image of m under h, m—hom is a continuous map

from M(H) into M(R), as such (hom)o'l_},k converges weakly towards
Ni

(hom)o P_. But (hom)o By,_is the law of the random measure N Y 5Xio(w), which
k1

converges towards &, since uy is u-chaotic. So, (hom)o P, =3,, that is, P_ as.,
heom=u; this proves Proposition 4.2. []

We denote by 4, i=1, 2, the continuous increasing processes defined on H
by Ai=X!—Xi — B!, t=0 (see (3.42)). The next step is to prove:

Proposition 4.3. For P, a.e. m,
Al =cxE,[A/o(X}, B})] (4.4)
(and A}=cE, [A,/o(X?, B?)]),
=|X; - X7|-|X5 - X3l

14 t
— [ sign* (X! —X?)dA! —[sign* (X2 —X})dA]—4,, 4.5)
0 0]

is a continuous supermartingale, and
D,=|X, - X?|-|Xo— X3
t t
—[sign™ (X! —X?)dA! —[sign~ (X2 -X1)dA2—A4, (4.6)
0 0

is a continuous submartingale. (sign* and sign~ are respectively the right con-
tinuous and left continuous version of the function sign).

Proof. Let wus first prove (44), let s, pe[l,[] be such that O
=5,<8; <...<s;<oo, and let g, , pe[l,[], be continuous functions on R?,
bounded by 1, we define:

F(m)= <m (cA,—a)x [ ] g, (XL, B:p)>, @)
1
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we want to show that

Fm)=0, P, as. 4.7y

Consider &> 0, fixed, introduce F.(m) which is defined in the same way as F(m),
except that A,—A} is replaced by A,A C—A!'AC, F.(m) is bounded and
continuous on M(H), and we have

For k<o Ep [|F(m)—Fc(m)l]
; K(1)

SEp, [IKm, (4,— C), +(4; = O) DI]= = (4.8)
because of Proposition 3.6 (with the notation Py_=P,}. We can take C large
enough such that this last quantity is less than & So:

Ep [IFm)]1=e+Ep, [ch(m)I]=8+1Iivm Ep, [IFc(m)]

| ) .
< oy L() XL_XJ
28+Chrr§viupEPA [N(N—l) ,;,( ! )

N kglLO(Xl Xk)) ” H gSP(Xl l

1
=23+climsupEPNk[ﬁ Z[((

i

J*l

1
v 3100 x9)x 18,6, B,
N Ea!

k¥i

]

Since ¢ was arbitrary, we have proved (4.7. Let us show now (4.5) (the proof of
{4.6) is similar). Consider 0 <s<t, and G(w) as in (4.2) with the supplementary
assumption that the functions g, are positive continuous and bounded by one.
Define

L2s.

F(m)={m, (H,—H) x G(w)), (4.9)

(by Proposition 3.6 one has the fact that Ep_[{m,|H|>]<c0), we want to
prove that F(m) is negative P_ as. It is enough to check that for any positive
bounded continuous function K(m) bounded by one

Ep_[F(m) K (m)] <O. (4.10)
Fix ¢>0, and define F.(m)={m, (HS— HE) x G(w)), where
HY =h( X! —X?|-1X;—-X3)

t
— [sign™ (X! —X2)d(4' A C),
&)

—[sign* (X2—X1d(4* A C),— (A A C),, 4.1)

0
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(where h.(x)=x when |x|<C and Cxsign(x) otherwise). We can write
sign* (x) as the decreasing limit
sign* (x)=1im ¢,(x),
dux)=—1, on J—oo, —1/n],

=1, on IR, (linear in between).
The map

weH—»i G (XEwW)—=X2(w) d(A*(w) A C)eR
0

is continuous for every n, as well as Fi(m)={m, G(m) x (H""~HS")>, where
HE" is obtained by replacing sign* by ¢, in (4.11). So we have

F.(m)=lim1 F{(m), (4.12)
(F. is bounded lower semicontinuous).

Moreover, by Proposition 3.6 (as in (4.8)), we can pick C large enough so

that
Vk< oo, Eka[IF(m)—Fc(m)HéE-

So we have
Ep [KFM)]<Ep _[KF,(m)]+e¢ (4.13)

(and because of (and 4.12))
<lim infEPN [KF (m)}+e
Ny LS

<2e+liminf Ep, [KF(m)]

N k
_ 1 . . . :

=2¢+liminf E [K X ( X -X)|-|Xt-XJ

Ni Py ( N)X N(N ) l;j(l t t| l s sl)

4
‘ o1 .
—c j signt (X4 —X7) = Y dI%(X— XY
N %

—cj51gn+(X’ X‘)xﬁ AP (X X")u—LO(Xi—Xj)I)

j*k
Tl x. B, XI Bl I°(X'— Xf)sp)] .
1
We know from the construction of the process (X?, ..., X%), that when i,j, k

are distinct, Py-as. for all 120, (X!, XJ, X¥) is not on the diagonal {(x, x, x,),
xeR} of R3, so that -

t t
[sign® (X! - X)) dL2 (X' — X*),= | sign(X{— X)) d [ (X' — X"¥),,
0 0

(because dI°(X‘—X¥), is supported by the set {s|X’=X*}). Consequently, the
last expression of (4.13) can be rewritten
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- i 1 R
20t limint Epy | K x (=5 X (Xi-X]i—|Xi- Xl

t
. 1 .
—cfsign(Xi-X)) — Y dIY(X'— XY,
s N i+k

! . ) 1 . ) )
—efsign(Xi—Xi)x— ¥ dI®(XI— X¥), ~[°(X’ —Xf),)
s Nj*k
Lo 1
L} 0 _
Xrllg"]’L (N)

with obvious notations. This last expression is equal to

= 1 L ; . . o
2e+lim infEp, [K(XN>><4 ) (I slgn(X;—X;m(B;—Bf,)xﬂgy)],
Nx ke A

N(N,_ 1) 55\
(4.14)
1 ! . ) . .
and the square of the I’-norm of ———— % [sign (X% — X7)d(B.—BJ) is less
than: NIN=1) &5
(t—s)

1
NANZTP x CxN*=0 (N) (C independent of N).

As a consequence, Ep [KF(m)]<2e, since ¢ was arbitrary, we obtain (4.10),
and this proves Proposition 4.3. [

Our purpose now is to show that 4, is in fact I’(X* —X?), for P_ ae. m,
and then to deduce from this fact that for P, a.e. m, the law of X* (or X?) is in
S(u). We have

Proposition 4.4. For P, a.e. m, A, is the symmetric local time in zero of X' — X2,
and the law of X' and X? is in S(u).

Proof. From (4.6), we know that for P_ a.e. m:
D,=| X! —X2|—|X}— X3~ [ sign* (X! — X?) .4}
0
—i sign‘(Xf—Xj)dAf—A,—iQi 1(X1=X2)dA!; (4.15)
is a submartingale. By Tanaka’s formula,
thi sign* (X! — X2)d(B* ~B?),+ I °(x* —Xz)t‘—At—i—Z} 1(X!=X%)dAL,
0 0

(X °(X*—X?), is the left limit of the local time of X'—X? in 0). So we find
that

t
A+ K =L°(X'—X?),+2 [ 1(X:=X?)dAL, (4.16)
4]
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where (K,) is a continuous increasing, integrable (for fixed finite time) process.
Let us denote by m the law of (X*, B*) on H (see (3.42)), and let us consider
E, [LX°(X*—X?%,/(X", BY)], since (X', B') and (X2, B?) are m-independent with
law m, by Remark 2.4, we find: :

E, LY (X" ~ X)X, BY] = | 2u(s, X)ds

where u(s, x)eI*([0, T]x R) for every T>0, is the density of the law of X,
under 7 for a.e. se[0, T]. Taking conditional expectations in (4.16) with respect
to the o-field ¢(X?!, B), we find using (4.4):

1 t t
— A+ Cl={2u(s, X)) ds+2 [ p(s, X;)dA;, (4.17)
¢ 0 0

where p(s, x)= [ 1(X,=x)dm, and C; is an m as. increasing continuous process
adapted to o(X sl,le, sZ1), (it is continuous as the sum of continuous pro-
cesses). _

Now we can write

dA‘——l(p(s XH< )dAl-H(p(s X! )> )dA,l,
as a consequence of (4.17), we have the fact that
1 1 1 1 1
(—72p(s, XS)> x1 (p(s, Xs)<4—> dA! <ds,
c ¢

so that 1@(5 X<1/4c)dAl <ds. Let us now study the measure
(p(s X! )> ) d A}, its support is contained in the set

1
F= {th, IxelR, p(t, x)g—}.
4c
F is a closed set (consider ¢, converging towards ¢, u, (dx) are tight probabili-
ties on IR, so there exists a compact set K such that for n<co, u, (K)<1/8¢,
. 1 .
so we can choose a sequence aq,€K, satisfying p(t, a,,);4—, extracting a sub-
c

sequence we can suppose that a, converges towards a, and then ut({a});r,
which implies teF). ¢

So F is a closed set of zero Lebesgue measure. We are now going to show
that F can at most be the set {0}. If F is not included in {0}, then we can find
an open interval I=Ta, b[, with I<F*, and beF, (b< ). Since I=F*, on I we

1
have dA'=1{p(t, X)) <—)dA}, so 1,xdA}! is absolutely continuous with
t t 4¢ 1 t

respect to Lebesgue measure.
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Exploiting the fact that H, is a supermartingale, and
Hy= (X!~ X2~ X}~ X3 -] sign” (X}~ X2) 4
0 .
~ { sign- (XSZ——Xsl)dASZ—At—Zj) 1(X! = X7)d A
0
:i sign* (X! - X2)d(B: -B)+ (X! —Xz)t—At—Zi 1(Xl=Xx2)dAz,
0

we find
dA,Zdl (X —X?),-2x1(X2=X1)dA2

restricting our attention to I, since dAZ<ds on I, we obtain with (4.16) that
dA,=dL°(X'—X?),, on I (because L(XZ2=X1dAZ=0=1(X?=X])dA)).
Pick a' in 1, for t=a*, on H define X,, 0St<b—a' to be X,, i, adapted to
the filtration translated to time a'. Moreover we have I °(X* —X?),=I-°(X'
— X%, a— X" —X?),, (now on the space H x H),

X =X,+B,+c[LY°X-X(w)dmw), t=0
H

(B,=B,, ,,—B,., on H). We have obtained this for any measure m in the P_ set
of measure 1, defined by Proposition 4.2, (4.4), (4.5), (4.6).

This means that X, satisfies (2.1), (2.12), for t<b—a', by Theorem 2.5, we
find

exp —4c F(x)=(exp —4c Fy) * ¢,(x) (4.18)

where F,(t)= | u,, .(dy) (4,(dy) is the law of X, under ).

As a consequence of (4.18), for ¢ near b—a', exp —4c¢ F(x) is uniformly (in
t) continuous in x, bounded above and below (by 1 and exp —4c respectively),
so this precludes the possibility that F, . is non-continuous, and as a con-
sequence b¢F this shows that F is contained in {0}. As a consequence we can
hold the previous reasoning with a=0, and we find that 4,=I>°(X'—X?),
=[2(X'—X?), (since 1(X2=X!)dA2=0=1(X?>=X])dA}) and that

t
X,=Xo+B,+2c[uls,X)ds, mas. onH, (4.19)
0

where u(s, x) 1s given by (2.11) and is the density of the law of X for s>0, and
we have obtained that the law of (X)) under # lies in S(u). This, together with
Theorem 2.5 proves that S(u) is reduced to {P}. Formula (4.19) implies that m
is the image of P by the application.

Cax, — (x_, X, —Xy— j 2cu(s, X ) ds) eH,
[4]

and m is the image of m®m under the application HxHs((X*, BY),
(X, BY)—(X*, B, X2, B?, I%(X' — X?)). This shows that P_ is concentrated on
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this probability independently of the subsequence N,, we started with, and we
have proved Theorem 4.1 as well as Proposition 44. [

Remark 4.5. As a consequence of Theorem 4.1, we have obtained that for the
reordering (Y}, ..., ¥,¥) which satisfies the oblique reflection problem (3.7), (3.8),

and has initial distribution (Y, ..., Y)ouy, one has the fact that iZSYl-
converges to u(t, x) dx. N ‘

In the case where we have proved trajectorial uniqueness, for the nonlinear
process, we will obtain a “trajectorial propagation of chaos result”, namely,

suppose _
u(dx)=u(x)dx, u is bounded (4.20)

and define X! satisfying
t
X'=XL+Bi+ [ +2cu(s, X')ds, (4.21)
0

(using Zvonkin’s result [25]), (the X} are independent and u(dx) distributed).
Then we have

Proposition 4.6. Suppose the (X}) independent, u(x)-distributed, consider the
processes (X'.) defined by (3.2), then for any T >0,

sup | X{— X! converges in probability towards zero. 4.22)

t<T
Proof. The proof is similar to the proof of Theorem 4.1, one now takes the
random measures Yy,

1 _ _
m zg(Xf,Bi, X, X‘.j, BJ, X4, L_O(Xi—Xj))EM(H X C X H X C X Ca—)

whose laws are tight, and one then notices that for any limit point P, P -a.c.
m will be such that m-a.s.

t
X =X{+B!+[2cu(s, X)) ds
0
(and the same for X?), because for ¢>s5>0,

{Xl X!=B}— Bl+§2cu(h X )dh}
is closed in Hx Cx Hx Cx C{, and supports the random measures Yy. As a
consequence of the proof of Theorem 4.1, we see that for P_ a.e. u, X and X*
are solutions (trajectorially) of (2.1), (2.12), so that by Remark 26, X!=X!'m
a.s. (and similarly X?=X? m-as.), as a consequence, the Yy are converging in
law to the Dirac measure concentrated on the law of (X1, B,l, X! X%, B? X?,
I9(X*' —X?)). Formula (4.22) is then the consequence of this convergence in law

result applied to the continuous bounded function: m—<m,sup|X !
- Xsll A 1> O ssT
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