Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 339-340 (1972) © by Springer-Verlag 1972

Existence of Most Powerful Tests for Undominated Hypotheses

Dieter Landers and Lothar Rogge

It is well known that for a dominated composite hypothesis against a simple alternative there exist most powerful level α -tests (see for instance Hájek [1], Schmetterer [3], Witting [4]). It is the purpose of this paper to show that the assumption of domination can be dispensed with.

Let $Q | \mathscr{A}$ be a probability measure (*p*-measure) and $\mathscr{L}_1(Q)$ be the system of all \mathscr{A} -measurable *Q*-integrable functions, endowed with the vector topology of convergence in the first mean, called *Q*-strong topology. We remark that in the corresponding weak topology-for short: *Q*-weak topology-a net $f_{\alpha}, \alpha \in D$, in $\mathscr{L}_1(Q)$ converges to a function $f \in \mathscr{L}_1(Q)$ if and only if $\lim_{\alpha \in D} Q(f_{\alpha}g) = Q(fg)$ for every bounded \mathscr{A} -measurable function g.

Theorem. Let $\mathfrak{P}|\mathscr{A}$ be an arbitrary family of p-measures and $Q|\mathscr{A}$ be a single p-measure. Then for every $\alpha \in [0, 1]$ there exists a most powerful test of level α for the composite hypothesis $\mathfrak{P}|\mathscr{A}$ against the simple alternative $Q|\mathscr{A}$.

Proof. Let Φ be the family of all \mathscr{A} -measurable functions with values in [0, 1]. Let $\Phi_{\alpha} := \{\varphi \in \Phi : P(\varphi) \leq \alpha \text{ for all } P \in \mathfrak{P}\}$ and $\beta := \sup \{Q(\varphi) : \varphi \in \Phi_{\alpha}\}$. Then for each $n \in \mathbb{N}$ there exists $\varphi_n \in \Phi_{\alpha}$ with $Q(\varphi_n) \geq \beta - \frac{1}{n}$. Since Φ is Q-weakly sequentially compact (see [4], p. 64) there exist a subsequence $\mathbb{N}_0 \subset \mathbb{N}$ and $\varphi_0 \in \Phi$ such that $(\varphi_n)_{n \in \mathbb{N}_0}$ converges Q-weakly to φ_0 . Since closures of convex sets are convex and Φ_{α} is convex, the Q-strong closure of Φ_{α} and the Q-weak closure of Φ_{α} coincide (see [2], p. 154). As φ_0 is in the weak closure of Φ_{α} , φ_0 is in the strong closure of Φ_{α} . Hence there exist $\psi_n \in \Phi_{\alpha}, n \in \mathbb{N}$, converging Q-strongly to φ_0 , whence there exists a subsequence $\psi_n, n \in \mathbb{N}_1$, converging pointwise to φ_0 except on some Q-null set $N \in \mathscr{A}$. Let $\psi_0 = \varphi_0 \ 1_{\overline{N}}$. Since $P(\psi_n \ 1_{\overline{N}}) \leq P(\psi_n) \leq \alpha$ for all $n \in \mathbb{N}_1$, $P \in \mathfrak{P}$, and $\psi_n \ 1_{\overline{N}}, \ n \in \mathbb{N}_1$, converges pointwise to ψ_0 , we obtain $P(\psi_0) \leq \alpha$ for all $P \in \mathfrak{P}$. As $\varphi_0 = \psi_0 \ Q$ -a.e. and $Q(\varphi_0) = \lim_{n \in \mathbb{N}_0} Q(\varphi_n) = \beta$, we obtain $Q(\psi_0) = \beta$. Consequently ψ_0 is a most powerful test of level α for \mathfrak{P}_{α} against $Q \mid \mathscr{A}$.

References

24 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 24

^{1.} Hájek, J.: Nonparametric Statistics. San Francisco-Cambridge-London: Holden-Day 1969.

Kelley, J.L. and Namioka, I.: Linear Topological Spaces. Princeton-New York-London: D. Van Nostrand 1963.

- 340 Landers and Rogge: Existence of Most Powerful Tests for Undominated Hypotheses
- 3. Schmetterer, L.: Einführung in die Mathematische Statistik. Wien-New York: Springer 1966.
- 4. Witting, H.: Mathematische Statistik. Stuttgart: B.G. Teubner 1966.

Dieter Landers Lothar Rogge Mathematisches Institut der Universität D-5000 Köln-Lindenthal 41 Weyertal 86–90 Federal Republic of Germany

(Received September 20, 1972)