Approximations of Positive Contractions on $L^{\infty}[0,1]^{\star}$

Choo-Whan Kim

1. Introduction and Results

This note is a continuation of [5]. We follow the notation and terminology of [5]. Let (X, \mathscr{F}, μ) denote the measure space consisting of the closed unit interval with Lebesgue measure. We shall abbreviate (X, \mathscr{F}, μ) by (X, μ) or X. Let $\left[L^{\infty}, L^{p}\right]$, $p=1$ or ∞, be the vector space of bounded linear operators from $L^{\infty}(X)$ into $L^{p}(X)$. We write $\left[L^{p}\right]$ for $\left[L^{p}, L^{p}\right]$. Let \mathscr{C} be the set of positive operators $P \in\left[L^{\infty}\right]$ such that $P 1=1$. Let \mathscr{M} be the set of Markov operators on $L^{\infty}(X)$. Then $\mathscr{A} \subset \mathscr{C} \subset\left[L^{\infty}\right] \subset\left[L^{\infty}, L^{1}\right]$. Let Ψ be the set of Markov operators T_{ϕ} that are induced by nonsingular measurable point maps ϕ on X as $T_{\phi} f(x)=f(\phi(x))$. Let Ψ_{i} be the set of operators $T_{\phi} \in \Psi$ that are induced by injective maps ϕ. In the present note, since Theorems 1 and 2 of [5] are also valid for positive contractions P in \mathscr{C}, we prove the following sharper forms of approximation theorems.

Theorem 1. \mathscr{C} is a compact convex set and it is the closure of Ψ_{i} in the weak* operator topology of $\left[L^{\infty}\right]$.

Theorem 2. \mathscr{C} is the closed convex hull of Ψ_{i} in the strong operator topology of [$\left.L^{\infty}, L^{1}\right]$.

Theorem 3. \mathscr{C} is the closed convex hull of Ψ in the strong operator topology of [$\left.L^{\infty}\right]$.

Theorem 4. \mathscr{A} is the sequential closure of Ψ_{i} in the weak* operator topology of [$\left.L^{\infty}\right]$, and it is the sequential closure of the convex hull of Ψ_{i} in the strong operator topology of $\left[L^{\infty}, L^{1}\right]$.

Note that if $P \in \mathscr{C}$ has a kernel in $L^{1}(X \times X)$, then it is necessarily a Markov operator. Thus, Theorems 3 and 4 of [5] do not extend to operators in \mathscr{C}.

2. Proofs

Proof of Theorem 1. An elementary argument shows that $\mathscr{S}_{+}=\left\{P \in\left[L^{\infty}\right]\right.$: $P \geqq 0$ and $P 1 \leqq 1\}$ is compact in the weak* operator topology. It is also easy to see that \mathscr{C} is closed in \mathscr{S}_{+}in this topology. Since Lemma 1 and Theorem 1 of [5] hold also for each $P \in \mathscr{C}$, we have $\mathscr{C} \subset \mathrm{w}^{*}$-cl Ψ_{i}, the closure of Ψ_{i} in the weak* operator topology. By the compactness of \mathscr{C}, it follows $\mathscr{C}=\mathrm{w}^{*}-\mathrm{cl} \Psi_{i}$.

Proof of Theorem 2. On the set \mathscr{C}, the induced weak operator topology of [L^{∞}, L^{1}] is a Hausdorff topology and it is weaker than the induced weak* operator topology of $\left[L^{\infty}\right]$. Since \mathscr{C} with the induced weak* operator topology is a compact

[^0]Hausdorff space, the weak* operator topology of $\left[L^{\infty}\right]$ and the weak operator topology of $\left[L^{\infty}, L^{1}\right]$ coincide on \mathscr{C}. On the other hand, since a convex set in $\left[L^{\infty}, L^{1}\right]$ has the same closure in the weak operator topology and the strong operator topology [2, Corollary, p.477], we see easily that \mathscr{C} is the closed convex hull of Ψ_{i} in the strong operator topology of $\left[L^{\infty}, L^{1}\right]$.

Proof of Theorem 3. Note that Lemma 2 and Theorem 2 of [5] hold also for operators P in \mathscr{C}. Thus, $\mathscr{C} \subset$ s-cch Ψ, the closed convex hull of Ψ in the strong operator topology of $\left[L^{\infty}\right]$. Since \mathscr{C} is also closed in the strong operator topology of $\left[L^{\infty}\right]$, we have at once $\mathscr{C}=\operatorname{secch} \Psi$.

Since $\mathscr{M} \neq \mathscr{C}$, it follows easily from Theorems 1 and 2 of [5] and Theorems 1 through 3 of the present paper that \mathscr{M} is neither closed in the weak* operator topology of $\left[L^{\infty}\right]$ nor in the strong operator topology of $\left[L^{\infty}\right]$ or $\left[L^{\infty}, L^{1}\right]$, respectively.

Suppose \mathscr{C} is endowed with a topology τ. Let $A \subset \mathscr{C}$. Following Granirer [3] we denote the τ-sequential closure of A in \mathscr{C} by τ-seq. cl. A. Observe that $b \in \tau$-seq. cl. A if and only if $b=\tau$ - $\lim a_{n}$ for some sequence $a_{n} \in A . \mathrm{w}^{*}$-seq. cl. A and s^{\prime}-seq. cl. A denote the sequential closures of A in the induced weak* operator topology of $\left[L^{\infty}\right]$ and in the induced strong operator topology of $\left[L^{\infty}, L^{1}\right]$.

Proof of Theorem 4. It is easy to show that

$$
\mathrm{w}^{*} \text {-seq. cl. } \Psi_{i} \subset \mathrm{w}^{*} \text {-seq. cl. } \mathscr{M}=\mathscr{M}
$$

and

$$
\left.s^{\prime} \text {-seq. cl. (ch } \Psi_{i}\right) \subset s^{\prime} \text {-seq. cl. } \mathscr{M}=\mathscr{M}
$$

To complete the proof we use an argument given in the Introduction of [5]. Given P in \mathscr{M}, let $T \in\left[L^{1}\right]$ be such that $T^{*}=P$. Such an operator T exists uniquely. Let $Y=\{x: T 1(x)>0\}$ and let $d \mu^{\prime}=T 1 d \mu$. The measure space $\left(Y, \mathscr{F}, \mu^{\prime}\right)$ will be denoted by $\left(Y, \mu^{\prime}\right)$. Define the operator $T^{\prime}: L^{1}(X, \mu) \rightarrow L^{1}\left(Y, \mu^{\prime}\right)$ by the formula $T^{\prime} f=T f / T 1$ on Y. The adjoint P^{\prime} of T^{\prime} which maps $L^{\infty}\left(Y, \mu^{\prime}\right)$ into $L^{\infty}(X, \mu)$ satisfies the equality $P^{\prime} g^{\prime}=P g$ provided that $g^{\prime} \in L^{\infty}\left(Y, \mu^{\prime}\right), g \in L^{\infty}(X, \mu)$, and $g^{\prime}=g$ on Y. Then there exists an invertible measure preserving point map ξ from (X, μ) onto $\left(Y, \mu^{\prime}\right)$. Let T_{n} be the operator induced by the map $\eta=\xi^{-1}$. If we put $\hat{P}=P^{\prime} T_{\eta}$, then $\hat{P}: L^{\infty}(X, \mu) \rightarrow L^{\infty}(X, \mu)$ is a doubly stochastic operator. By the weak approximation theorem of J.R. Brown [1, p.19], [4, p. 521], there exists a sequence $\left\{\theta_{n}\right\}$ of invertible measure preserving maps from (X, μ) onto itself such that $T_{\theta_{n}}$ converges to \hat{P} in the weak* operator topology for $\left[L^{\infty}\right]$. Note that both μ and μ^{\prime} are equivalent on the set Y and thus the map ξ is a nonsingular injection from (X, μ) into itself, that is, $T_{\xi} \in \Psi_{i}$. Thus, if we put $\phi_{n}=\xi \circ \theta_{n}$, then $T_{\phi_{n}} \in \Psi_{i}$. A simple calculation yields

$$
\left|\left\langle f,\left(T_{\phi_{n}}-P\right) g\right\rangle\right| \rightarrow 0, \quad f \in L^{1}(X, \mu), \quad g \in L^{\infty}(X, \mu),
$$

as $n \rightarrow \infty$. This proves $\mathscr{M} \subset \mathrm{w}^{*}$-seq. cl. Ψ_{i}. Similarly, we prove $\mathscr{M} \subset s^{\prime}$-seq. cl. (ch Ψ_{i}) by using the strong approximation theorem of Brown [1, p.21], [4, p. 522].

[^1]
References

1. Brown, J. R.: Approximation theorems for Markov operators. Pacific J. Math. 16, 13-23 (1966).
2. Dunford, N., Schwartz, J.T.: Linear operators, part I. New York: Interscience 1967.
3. Granirer, E.: Exposed points of convex sets. Mem. Amer. Math. Soc. 123 (1972).
4. Kim, C.W.: Uniform approximation of doubly stochastic operators. Pacific J. Math. 26, 515-527 (1968).
5. Kim, C.W.: Approximation theorems for Markov operators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 21, 207-214 (1972).

Choo-Whan Kim
Department of Mathematics
Simon Fraser University
Burnaby, B.C., Canada

[^0]: * This work was supported in part by a summer research fellowship of the Canadian Mathematical Congress and in part by NRC Grant A-4844.

[^1]: Acknowledgement. The author wishes to express his gratitude to Professor E. Granirer and Professor S. Kakutani for helpful conversations.

