Approximations of Positive Contractions on $L^{\infty}[0, 1]^*$

Choo-Whan Kim

1. Introduction and Results

This note is a continuation of [5]. We follow the notation and terminology of [5]. Let (X, \mathscr{F}, μ) denote the measure space consisting of the closed unit interval with Lebesgue measure. We shall abbreviate (X, \mathscr{F}, μ) by (X, μ) or X. Let $[L^{\infty}, L^{p}]$, p=1 or ∞ , be the vector space of bounded linear operators from $L^{\infty}(X)$ into $L^{p}(X)$. We write $[L^{p}]$ for $[L^{p}, L^{p}]$. Let \mathscr{C} be the set of positive operators $P \in [L^{\infty}]$ such that P = 1. Let \mathscr{M} be the set of Markov operators on $L^{\infty}(X)$. Then $\mathscr{M} \subset \mathscr{C} \subset [L^{\infty}] \subset [L^{\infty}, L^{1}]$. Let \mathscr{V} be the set of Markov operators T_{ϕ} that are induced by nonsingular measurable point maps ϕ on X as $T_{\phi}f(x) = f(\phi(x))$. Let Ψ_{i} be the set of operators $T_{\phi} \in \Psi$ that are induced by injective maps ϕ . In the present note, since Theorems 1 and 2 of [5] are also valid for positive contractions P in \mathscr{C} , we prove the following sharper forms of approximation theorems.

Theorem 1. \mathscr{C} is a compact convex set and it is the closure of Ψ_i in the weak* operator topology of $[L^{\infty}]$.

Theorem 2. \mathscr{C} is the closed convex hull of Ψ_i in the strong operator topology of $[L^{\infty}, L^1]$.

Theorem 3. \mathscr{C} is the closed convex hull of Ψ in the strong operator topology of $[L^{\infty}]$.

Theorem 4. \mathcal{M} is the sequential closure of Ψ_i in the weak* operator topology of $[L^{\infty}]$, and it is the sequential closure of the convex hull of Ψ_i in the strong operator topology of $[L^{\infty}, L^1]$.

Note that if $P \in \mathscr{C}$ has a kernel in $L^1(X \times X)$, then it is necessarily a Markov operator. Thus, Theorems 3 and 4 of [5] do not extend to operators in \mathscr{C} .

2. Proofs

Proof of Theorem 1. An elementary argument shows that $\mathscr{G}_{+} = \{P \in [L^{\infty}]: P \ge 0 \text{ and } P 1 \le 1\}$ is compact in the weak* operator topology. It is also easy to see that \mathscr{C} is closed in \mathscr{G}_{+} in this topology. Since Lemma 1 and Theorem 1 of [5] hold also for each $P \in \mathscr{C}$, we have $\mathscr{C} \subset w^*$ -cl $\mathscr{\Psi}_i$, the closure of $\mathscr{\Psi}_i$ in the weak* operator topology. By the compactness of \mathscr{C} , it follows $\mathscr{C} = w^*$ -cl $\mathscr{\Psi}_i$.

Proof of Theorem 2. On the set \mathscr{C} , the induced weak operator topology of $[L^{\infty}, L^1]$ is a Hausdorff topology and it is weaker than the induced weak* operator topology of $[L^{\infty}]$. Since \mathscr{C} with the induced weak* operator topology is a compact

^{*} This work was supported in part by a summer research fellowship of the Canadian Mathematical Congress and in part by NRC Grant A-4844.

Hausdorff space, the weak* operator topology of $[L^{\infty}]$ and the weak operator topology of $[L^{\infty}, L^1]$ coincide on \mathscr{C} . On the other hand, since a convex set in $[L^{\infty}, L^1]$ has the same closure in the weak operator topology and the strong operator topology [2, Corollary, p. 477], we see easily that \mathscr{C} is the closed convex hull of Ψ_i in the strong operator topology of $[L^{\infty}, L^1]$.

Proof of Theorem 3. Note that Lemma 2 and Theorem 2 of [5] hold also for operators P in \mathscr{C} . Thus, $\mathscr{C} \subset \operatorname{s-cch} \Psi$, the closed convex hull of Ψ in the strong operator topology of $[L^{\infty}]$. Since \mathscr{C} is also closed in the strong operator topology of $[L^{\infty}]$, we have at once $\mathscr{C} = \operatorname{s-cch} \Psi$.

Since $\mathcal{M} \neq \mathcal{C}$, it follows easily from Theorems 1 and 2 of [5] and Theorems 1 through 3 of the present paper that \mathcal{M} is neither closed in the weak* operator topology of $[L^{\infty}]$ nor in the strong operator topology of $[L^{\infty}]$ or $[L^{\infty}, L^{1}]$, respectively.

Suppose \mathscr{C} is endowed with a topology τ . Let $A \subset \mathscr{C}$. Following Granirer [3] we denote the τ -sequential closure of A in \mathscr{C} by τ -seq. cl. A. Observe that $b \in \tau$ -seq. cl. A if and only if $b = \tau$ -lim a_n for some sequence $a_n \in A$. w*-seq. cl. A and s'-seq. cl. A denote the sequential closures of A in the induced weak* operator topology of $[L^{\infty}]$ and in the induced strong operator topology of $[L^{\infty}, L^1]$.

Proof of Theorem 4. It is easy to show that

w*-seq. cl.
$$\Psi_i \subset$$
 w*-seq. cl. $\mathcal{M} = \mathcal{M}$

and

s'-seq. cl. (ch
$$\Psi_i$$
) \subset s'-seq. cl. $\mathcal{M} = \mathcal{M}$.

To complete the proof we use an argument given in the Introduction of [5]. Given P in \mathcal{M} , let $T \in [L^1]$ be such that $T^* = P$. Such an operator T exists uniquely. Let $Y = \{x: T1(x) > 0\}$ and let $d\mu' = T1 d\mu$. The measure space (Y, \mathcal{F}, μ') will be denoted by (Y, μ') . Define the operator $T': L^1(X, \mu) \to L^1(Y, \mu')$ by the formula T'f = Tf/T1 on Y. The adjoint P' of T' which maps $L^{\infty}(Y, \mu')$ into $L^{\infty}(X, \mu)$ satisfies the equality P'g' = Pg provided that $g' \in L^{\infty}(Y, \mu')$, $g \in L^{\infty}(X, \mu)$, and g' = g on Y. Then there exists an invertible measure preserving point map ξ from (X, μ) onto (Y, μ') . Let T_n be the operator induced by the map $\eta = \xi^{-1}$. If we put $\hat{P} = P' T_\eta$, then $\hat{P}: L^{\infty}(X, \mu) \to L^{\infty}(X, \mu)$ is a doubly stochastic operator. By the weak approximation theorem of J.R. Brown [1, p. 19], [4, p. 521], there exists a sequence $\{\theta_n\}$ of invertible measure preserving maps from (X, μ) onto itself such that T_{θ_n} converges to \hat{P} in the weak* operator topology for $[L^{\infty}]$. Note that both μ and μ' are equivalent on the set Y and thus the map ξ is a nonsingular injection from (X, μ) into itself, that is, $T_{\xi} \in \Psi_i$. Thus, if we put $\phi_n = \xi \circ \theta_n$, then $T_{\phi_n} \in \Psi_i$. A simple calculation yields

$$|\langle f, (T_{\phi_n} - P) g \rangle| \to 0, \quad f \in L^1(X, \mu), \quad g \in L^\infty(X, \mu),$$

as $n \to \infty$. This proves $\mathcal{M} \subset w^*$ -seq. cl. $\mathcal{\Psi}_i$. Similarly, we prove $\mathcal{M} \subset s'$ -seq. cl. (ch $\mathcal{\Psi}_i$) by using the strong approximation theorem of Brown [1, p. 21], [4, p. 522].

Acknowledgement. The author wishes to express his gratitude to Professor E. Granirer and Professor S. Kakutani for helpful conversations.

References

- 1. Brown, J. R.: Approximation theorems for Markov operators. Pacific J. Math. 16, 13-23 (1966).
- 2. Dunford, N., Schwartz, J.T.: Linear operators, part I. New York: Interscience 1967.
- 3. Granirer, E.: Exposed points of convex sets. Mem. Amer. Math. Soc. 123 (1972).
- 4. Kim, C.W.: Uniform approximation of doubly stochastic operators. Pacific J. Math. 26, 515-527 (1968).
- 5. Kim, C.W.: Approximation theorems for Markov operators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 21, 207-214 (1972).

Choo-Whan Kim Department of Mathematics Simon Fraser University Burnaby, B.C., Canada

(Received November 25, 1971 / in revised form August 5, 1972)