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Approximations of Positive Contractions on L ~176 [0, 1]* 

Choo-Whan Kim 

1. Introduction and Results 

This note is a continuation of [51. We follow the notation and terminology 
of [5]. Let (X, ~,  #) denote the measure space consisting of the closed unit interval 
with Lebesgue measure. We shall abbreviate (X, ~,  #) by (X, #) or X. Let [L ~, LP], 
p =  1 or o% be the vector space of bounded linear operators from L ~176 (X) into 
LP(X). We write [L p] for [L p, LP]. Let cg be the set of positive operators P ~ [ L  ~176 
such that P 1--1. Let ~ be the set of Markov operators on L~176 Then 
~ / c ( ~ c  [L ~] c [ L  ~176 L1]. Let ~g be the set of Markov operators T o that are induced 
by nonsingular measurable point maps ~b on X as Tq, f(x)=f(qb(x)). Let ~ be 
the set of operators T o e ~  that are induced by injective maps ~b. In the present 
note, since Theorems t and 2 of [5] are also valid for positive contractions P in (C 
we prove the following sharper forms of approximation theorems. 

Theorem 1. r162 is a compact convex set and it is the closure of ~ in the weak* 
operator topology of [L~~ 

Theorem 2. ~ is the closed convex hull of ~ in the strong operator topology of 
[L ~ L~]. 

Theorem 3. cg is the closed convex hull of 71 in the strong operator topology of 
[L~]. 

Theorem 4. d//is the sequential closure of ~ in the weak* operator topology of 
[L~176 and it is the sequential closure of the convex hull of ~ in the strong operator 
topology of [L ~, L1]. 

Note that if PE l f  has a kernel in L~(X x X), then it is necessarily a Markov 
operator. Thus, Theorems 3 and 4 of [5] do not extend to operators in ~. 

2. Proofs 

Proof of Theorem1. An elementary argument shows that ~ + = { P ~ [ L ~ ] :  
P>_-0 and P 1__< 1} is compact in the weak* operator topology. It is also easy to 
see that ~ is closed in 50+ in this topology. Since Lemma 1 and Theorem 1 of [51 
hold also for each psc~, we have C~cw*-cl ~/, the closure of ~ in the weak* 
operator topology. By the compactness of c~, it follows c~ = w*-cl ~ .  

Proof of Theorem 2. On the set c~, the induced weak operator topology of 
EL ~, L 1] is a Hausdorff topology and it is weaker than the induced weak* operator 
topology of [L~ Since c~ with the induced weak* operator topology is a compact 
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Hausdorff space, the weak* operator topology of [L ~] and the weak operator 
topology of [L ~176 coincide on ~r On the other hand, since a convex set in [-L | L 1] 
has the same closure in the weak operator topology and the strong operator topol- 
ogy [2, Corollary, p. 4771, we see easily that cg is the closed convex hull of ~ in 
the strong operator topology of [U ~ L1]. 

Proof of Theorem 3. Note that Lemma 2 and Theorem 2 of [51 hold also for 
operators P in ~. Thus, cg c s-cch 7 j, the closed convex hull of 7 ~ in the strong 
operator topology of [L~ Since cg is also closed in the strong operator topology 
of [U~ we have at once ff = s-cch ~. 

Since Jg + (g, it follows easily from Theorems 1 and 2 of [5] and Theorems 1 
through 3 of the present paper that Jg is neither closed in the weak* operator 
topology of [L~ nor in the strong operator topology of [L ~ or [L ~ L1], re- 
spectively. 

Suppose cg is endowed with a topology 'c. Let A ccg. Following Granirer [3] 
we denote the "c-sequential closure of A in cg by "c-seq. cl. A. Observe that 
bs'c-seq, cl. A if and only if b = 'c-lim a, for some sequence a,,~A, w*-seq, cl. A and 
s'-seq, cl. A denote the sequential closures of A in the induced weak* operator 
topology of [L ~] and in the induced strong operator topology of [L ~ L1]. 

Proof of Theorem 4. It is easy to show that 

w*-seq, cl. ~ c w*-seq, cl. ~ -- Jg  

and 

s'-seq, cl. (ch ~) ~ s'-seq, cl. Jg = ~/g. 

To complete the proof we use an argument given in the Introduction of [5]. 
Given P in Jg, let Te [L a] be such that T* -- P. Such an operator T exists uniquely. 
Let Y--{x: T 1 (x)> 0} and let d#'= T 1 d#. The measure space (Y, if, #') will be 
denoted by (Y,#'). Define the operator T': LI(X,#)--* LI(y,# ') by the formula 
T ' f=T f /T1  on Y. The adjoint P' of T' which maps L~176 ') into L~176 
satisfies the equality P' g '=  P g provided that g' eL  ~~ (I1, p'), g ~L ~ (X, #), and g ' = g  
on I1. Then there exists an invertibte measure preserving point map ~ from (X, #) 
onto (Y, #'). Let T, be the operator induced by the map q = 3 -1 . If we put P = P '  T~, 
then P: L~ #)--* U~ #) is a doubly stochastic operator. By the weak ap- 
proximation theorem of J. R. Brown [1, p. 19], [4, p. 521-1, there exists a sequence 
{0,} of invertible measure preserving maps from (X, #) onto itself such that To, 
converges to P in the weak* operator topology for [L~ 1. Note that both # and #' 
are equivalent on the set Y and thus the map ~_ is a nonsingular injection from 
(X, #) into itself, that is, T ~ .  Thus, if we put ~b=~o 0,, then T ~ :  A simple 
calculation yields 

I(f(T4,-P)g)[--*O, feLl(X,#), gsL~176 (X, #), 

as n --+ oo. This proves dg c w*-seq, cl. ~ .  Similarly, we prove dd c s'-seq, cl. (ch ~) 
by using the strong approximation theorem of Brown [1, p. 211, [4, p. 522]. 
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