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An Ergodic Theorem for Interacting Systems 
with Attractive Interactions 

Richard Holley 

1. Introduction 

Systems of infinitely many interacting Markov processes have recently 
received a lot of attention (see [1, 4, 7, 9]). With the exception of Dobrugin [1], 
no really satisfactory ergodic theorems have been proved for these systems, and 
even in [-1] there is a strong restriction on the strength of the interaction. In this 
paper we replace the restriction on the strength of the interaction with the require- 
ment that the interaction be in some sense attractive. 

In order to define what is meant by an attractive interaction we need the 
following setup. Let I be a countable set and for each ieI let S i be a finite set of 
real numbers. Each of the Si will be the state space of one of our interacting Markov 
processes. E = l-I s~ will be the space of configurations. Thus if q eE, the inter- 

ieI  

pretation is that t/(i) is the state of the Markov process on the state space S~. For 
each qeE, i~I, and aeS~ let e(i, q, a)>O be the rate at which the particle on state 
space Si goes from ~/(i) to a when the entire configuration is ~/. To make this precise 
we let S i have the discrete topology and give E the resulting product topology. Let 
C~(E) be the Banach space of continuous functions on E with the uniform norm. 
Let ~ c ~(E) be the set of functions that only depend on finitely many coordinates. 
For f e  @ let 

(1.1) Of(q) = ~ ~ c (i, q, a ) [ f (~q)- f (q) ] ,  
i~I a~Si 

where 
~q(j)={qa(j) if j . i  

if j=i.  

Under suitable conditions on c ( . , . ,  .) (see Liggett [-7]), the closure of the operator s~ 
is the infinitesimal generator of a standard Markov process qt. Intuitively (1.1) 
says that if at time zero the configuration is q, then for small times t the probability 
that at time t the process at site i is in state a(+q(i)) is e(i, q, a)t+o(t). 

Note that the value of c(i, q, q(i)) has no effect on (1.1). Thus we can change 
the value of e(i, tt, q(i)) without changing either the infinitesimal generator or 
its semigroup. We say that the interaction c ( . , . ,  .) is attractive if e(i, q, q(i)) can 
be chosen in such a way that if q, cp ~ E are such that q (i) > q~ (i) for all i ~ I, then 
for a l l j e I  and all aeSj 

c (j, q~, c0 > ~. e (], q, e), and 

(1.2) ~sj  ~s~ 
Y. c(j, K(j), 

asSj 
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where K(j) is a function which is independent of q0. If c(., ", .) is attractive, we 
will assume that c(i, tl, tl(i)) has been chosen so that (1.2) is satisfied. 

Since the actual choice of c(i, tl, r/(i)) is irrelevant, it seems that it should be 
possible to define attractive only in terms of the c(i, tl, a) for a+-tl(i ). This is in 
fact the case. It is easily seen that the following definition is equivalent to our 
original one. c( ' ,  ", .) is attractive if conditions (i) and (ii) below hold. 

(i) For all.j~I, sup ~ c(j, rl, e)<oe. 
~ E  ~ ,  ~(j) 

~xeSj 
(ii) If t/, q ~ E  are such that tl(i)>=q~(i ) for all i~I, then for a l l jEI  and all a, bsSj  

with a < q~ (j) and b > t/(j) 

c(j,  c (.j, 7, 
~ < a  o~<a 
:t~Sj ~t~Sj 

and 
F~ c(j,~,fl)=> F~ c(j, q~,/~). 

/~>__b /~_->b 
fl~Sj ~eSj 

The reason for the term attractive will become more obvious after reading the 
example in Section 4. 

We are now in a position to state one of our main results. 

(1.3) Theorem. I f  the interaction c(', ", ") is attractive and the Markov process r h 
has only one stationary distribution, #, then for all f ECg(E) and all fleE, 

lira T~ f(~)-- S f(~)#(dff). 
t~oO E 

Here T t is the semigroup whose infinitesimal generator is determined by (1.1). 

Section 2 is devoted to a proof of this theorem. Section 3 is concerned with the 
question of uniqueness of the stationary distribution. This is a difficult problem 
and an important one in statistical mechanics. We give necessary and sufficient 
conditions for the stationary distribution to be unique in the case when the inter- 
action is attractive. These conditions are hard to check, but they can be verified 
in some instances. Section 4 contains an example of one of these instances. This 
example also shows the difficulties that can arise when the stationary distribution 
is not unique. 

This paper resulted from an attempt to understand Dobrugin's work [1], and 
the reader familiar with that work will recognize many of the techniques used here. 
For the sake of the exposition we have restricted ourselves to state spaces S i which 
are finite subsets of the real numbers. It will be obvious that our results could be 
generalized to compact subsets of real numbers with only slight technical complica- 
tions in the proofs. 

2. The Ergodic Theorem 

The essential idea is to compare the infinite system with a finite one. In order 
to do this we must first recall the construction used to prove the existence of the 
Markov process qt (see [7]). Let {I.} he a sequence of finite subsets of I with 
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I ,~I .+ 1 and U I ,=I.  For each n define an operator (2, on Cg(E) by the formula 
n 

(2.1) f2,f(q)= ~ ~ c(i, q, a)[/(~t/)-f(t/)]. 
ieL, a~Si 

Let Tt(") be the semigroup exp {t~,}. Then under suitable conditions on c( . , . ,  .) 
(see [7]) it can be proven that there exists a semigroup T t such that for all fE~q(E) 
and all t > 0 

(2.2) lira sup II T~(")f - T~ft] =0 .  
n~oo 0~s_<t  

T t is the semigroup of the Markov process t/r That is, its infinitesimal generator 
when restricted to @ is given by (1.1). 

(2.3) Remark. We will have several occasions to claim the existence of a positive 
contraction semigroup having a generator determined by expressions like (1.1) 
and obeying relations such as (2.1) and (2.2). Clearly some conditions on the o's 
are necessary for this to be true. Very general conditions for (1.1), (2.1) and (2.2) 
to hold have been determined by Liggett [7]. Rather than check Liggett's con- 
ditions every time we need results such as (1.1), (2.1) or (2.2), we will simply assume 
them to be true. Thus an unstated but implicit hypothesis for all of our theorems 
is that whenever expressions such as (1.1), (2.1) and (2.2) are needed, they are true. 
In specific examples this is usually easy to check using the results in [7]. 

We can always construct at least one stationary distribution for the Markov 
process ~/t by using (2.2). This construction will be important for us so we give it 
in some detail. 

For each n let 
E,=I - [ s  i and E , =  [ I  Si. 

ieI~ i~I'..In 

Note that E, has only finitely many elements. For each n we can write E = E, x E,, 
and if OEE, and ~o EE,, we will write [~, q~] for that element of E which is equal to 

on I, and equal to ~0 on I',,I,. For each ~o e/~, we define an operator (2,~ on the 
Banach space, Cg(E,), of functions on E, by the formula 

f2.e f (0)  = ~. f ( [0 ,  ~o]), 

where fEc~(E.) and f is the element of Cg(E) defined by f ( [0 ,  qo])=f(0), g2.~ o is 
the infinitesimal generator of a Markov process on E., and since E. is a finite set, 
there is at least one stationary distribution, fi.~, for the Markov process. 

E. is isomorphic to E. x {~0} c E ,  and by means of the isomorphism we may 
identify fi,~ with a measure #.,p on E. Now for each n we pick an element ~o, EE. 
and form the measure #,~,, on E. E is a compact metric space, and therefore there 
is a probability measure p and a subsequence n' such that #,,~., converges weakly 
to #. It is not difficult to show using (2.2) (see [5]) that # is a stationary measure 
for the Markov process, th, whose generator is determined by (1.1). This con- 
struction of a stationary measure for ~/t will be called the standard construction, 
and the sequence {#,~o,} will be called a standard sequence. 
23a Z. Wahrscheinlichkeit stheorie verw. Geb., Bd. 24 
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There are two choices of the configurations q). which play an impor tant  role. 
They  are given by:  

q)..(i)=max{a~Si}, i ~ I \ I . ,  and 
(2.4) 

(p.d(i)= min {aESi} , i~ I'.. I.. 

For  each n let ~b.. and O.a be the elements in E .  defined by 

and let 

(2.5) 

O,,(i)=max{aeSi},  ieI ,  

O,d(i)=min{aeSi}, ie l , ,  

fi. .({~}) = lira exp {tg2.~o.~} X{0}(qJ..), and 

fi.a({~k}) = lira exp {t f2.~o.d} Z{,~}(~.d). 

Here  X{0} is the indicator function of {qJ} = E.. The existence of the limits in (2.5) 
is guaranteed by the ergodic theorem for Markov  processes with a finite state 
space. 

Let  # .  (/~a) be a s tat ionary measure constructed by the s tandard method  from 
the sequence {#..} ({#.a}). (It will soon be obvious that  {#..} converges weakly to 
#u and that  it is not  necessary to pass to a subsequence; however,  we will not  need 
this fact.) 

(2.6) Remark. In order  to prove statements such as 

(2.7) l im Ttf(t l)=Sf(~)#(d~) for all f~Cg(E) 

it suffices to prove (2.7) only for f ' s  of the form 

(t/) = 51 if ~/(ij)< aj, j = l  . . . .  ,n  

to otherwise. 

This is because convergence of the finite dimensional  distributions is enough to 
imply weak convergence of measures on E. 

(2.8) Theorem. I f  the interaction c ( ' , ' , ' )  is attractive (and see Remark (2.3)), then 
for all tl~E and all F h ..... i ......... 

F/, ..... i.,.~ ..... a.(~) #.(d~) < lira inf T t F h ..... ~ ........... (t/) 
E t ~  c~ 

(2.9) < lim sup T t F i ...... i ........... (r/) 

=< ~ Fi ...... i.,a, ....... (4) #a(d~). 
E 

Proof Let F~ ...... i ........... = F be fixed and let e > 0 be given. We prove that  

(2.10) ~ F(~) #.  (d~) - e < lira inf T t F (q). 

The  p roof  for the corresponding inequality involving the limit superior is similar. 
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Since #u is the weak limit of a subsequence of the sequence {#.u}, there is an N 
such that 

(2.11) ~ F(O #,(d O - e  <-_ ~ F(O #Nu(dO. 

Thus to prove (2.10) it will suffice to prove the first inequality in (2.9) with #u 
replaced by/~Nu. This is done by comparing the Markov process with state space 
E u and infinitesimal generator QN~,  with the Markov process having state space 
E and infinitesimal generator ~. We do this by coupling the two processes together. 
Toward this end we define 

~S i x S i if i~I N, 
Si=~{max{a~Si}}-- - x S  i if i ~ I \ I N ,  

and 

iEI 

/~ will be the state space of the coupled processes. We write the elements of/~ 
as ordered pairs, (ql, q2), where ~h=[~,  q~u~ with ~EEN, and ~/2~E. Since the 
first coordinate of an element of/~ is uniquely determined by an element of E N, it 
will be convenient to think of */1 as both an element of E N and an element of E 
which is equal to q~u, outside of I N. The subscript 1 or 2 in qa or ~/2 always refers 
to the first or second coordinate of an ordered pair and never refers to the con- 
figuration of the Markov process qt at time 1 or 2. 

In order to define the infinitesimal generator of the coupled processes we let 
d(i; (tll, t/2); (a, b)) be defined for ieI, (tll, q2)E/~ and (a, b)~S i by the formula 

c(i, tl2, b) if ir  N 

max [0, {min( Z c(i, tll, cO, • c(i, tl2, fi)) 
[ ~_<a fl-<b 

(2.12) d(i;(th, tl2);(a,b))= I ~s+ ~s~ 

!~ -max(~<.  c(i'th'e)' fl<bE c(i'r]2'fl))}] if ie I  N. 
~ESi ~eS~ 

For each n we define an operator d ,  on rg(/~) given by the equation 

~',f(q1,~/z) = ~ ~ d(i;(~l~,q2);(a,b))[f(?qa,bqE)-f(~ll,rl2)]. 
i~In (a,b)6Si 

The following facts about ~', are easy but tedious to verify. 

(2.13) If f~cg(/~) depends only on ql (i.e. there is a g~Cg(EN) such that f(~h, q2)= 
g(~h)), then for all n>__N 

~ .  f ( th ,  q2) = QN~N. g (~h), 

and zr faga in  depends only on ~h. 

(2.14) Iffzcg(/~) depends only on r/2 (i.e. there is an he~g(E) such that f(~h, ~/2)= 
h(r/2)), then 

sO'. f (q l ,  r/2)= f2 h(t/2), 

and sr f again depends only on t/2. 
23 b Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 24 
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(2.15) If(r/a,/72)E/~ is such that/71(0>/72(0 for all ielN, then d(i;(/71,/Tz); (a, b))=0 
unless a > b. 

In checking (2.13) and (2.14) one needs the second part of (1.2), and in checking 
(2.15) the first part of (1.2) is used. This is the only place that we need the hypo- 
thesis that c(' ,  ", ') is attractive. 

Now let ~ be the functions in cg(/~) which only depend on finitely many 
coordinates, and for fE ~ let 

b a b df(/71,/72) = ~ 2 d(i; (/71,/72); ( a , ) )  [f(,/71, ,/72)-f(/71,/72)3. 
i ~ I  (a ,b)eS i  

Then (see Remark (2.3)) the closure of d is the infinitesimal generator of a semi- 
group, ~,  ~4 n is the infinitesimal generator ofa  semigroup, ~<"), and for all fe~(/~)  
and all t > 0 

(2.16) lim sup I I T y f - ~ f l l = 0 .  
n ~ o o  O<s<- t  

Let U t be the semigroup of operators on Cd(EN) with infinitesimal generator 
f2N~Nu, and let Tt~") be as in (2.1). Then if f~ ~cd(/~) is defined by 

f~ (/7. /7~)= F(/7~ ) 

(recall that F was fixed at the beginning of the proof) it follows from (2.13) that 
for all n>=N and all r/2 

oo tk ~ t k 
/7,)-- ~ L(/7./7~). (2.17) UtF(/70=k=O~'-' ok~,.F(/70 = Z T i - d k f l ( n l ,  ~r 

= ' k = 0  ' ~ "  

Similarly if f2(/71, q2)=F(/72), then from (2.14) it follows that for all/7~ 

tk ~ t k 

(2.18) Ttr )--k ~:o ~ ~kF(/72)= k=0 ~ ~ "  dk f2  (/71,/72) = ~")f2 (/71,/72)" 

Combining (2.2), (2.16), (2.17), and (2.18) we see that 

(2.19) ~f1(/71,/72) = U~F(/71) for all t>__0 and all /72~E; and 

(2.20) ~f2(/71,/Tz) = T~F(/72) for all t>__0 and all /71~E. 

In order to take advantage of (2.15) we let 

A =  {(rh,/72)~/~:/71(i)>/72(i) for all i~I} 
and 

.~= {f~cg(/~): f(/71,/72)=0 for all (/71,/72)sA} �9 

By using (2.15) and induction on k it is easily seen that if f e ~ ,  then ~ k f ~ )  for 
all n and all k. Thus it follows from (2.16) that i f f ~  then ~ f E ~  for all t__>0. 

We now define fa E~  by the formula 

A(/71,/72)=Jl if /71(i)<t/2(i ) forsome i = i l , . . . , i  ~ 
0 otherwise. 
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Then 

(2.21) f l  ( t / l ,  /72)<~f2 (t / l ,  / 12 )q -A  (t]l ,  t/2)" 

Since f3 eM, the inequality (2.21) implies that for all (rh, t/2)EA and all t > 0  

(2.22) 

Finally we notice that if t/is an arbitrary element of E then ([~/N,, q~N,], q)eA. 
Thus 

(2.23) 
lim inf Ut F(~u,  ) = lim inf ~ f~ ([~N,, ~ouu], q) 

< lim inf Tt f2 ([ON,, cPN,], t/)= lim inf Tt F(t/). 
t~oO t ~ 3  

From (2.5) we know that 

(2.24) F(O #N,(d()= lim UtF(0N= ). 

Combining (2.23) and (2.24) we get the first inequality in (2.9) with #, replaced 
by #N., and the proof is complete. 

The next corollary is Theorem (1.3) in the introduction. 

(2.25) Corollary. I f  c ( . , . ,  .) is an attractive interaction and the standard con- 
struction applied to any sequence {kt.o.} always yields the same measure, Iz, then 
for all feCg(E) and all t~ ~E 

lira T, f ( q ) =  5 f ( r  
t~oO 

Proof This follows immediately from Remark (2.6) and Theorem (2.8). 

3. Uniqueness of the Stationary Distribution 

In this section we want to find a necessary and sufficient condition for the 
Markov process r/t to have a unique stationary distribution. One necessary 
condition is obvious. That is, for any two standard sequences {#.~.}, {v.,~} and 
any iEI, asS~ we must have 

~i+moo #. ~. {t/" t/(i)< a} -- !imo~ v,~,a {t/: t/(i)< a}. 

It turns out that this condition is also sufficient. 

(3.1) Theorem. Let c ( . , . , . )  be an attractive interaction. Then a necessary and 
sufficient condition for there to be a unique stationary distribution for the Markov 
process t/t is that for all i~I and all a~S i 

(3.2) lim ~t,u {t/: ~/(i)___ a} = lira #,d {11 : t/(i)_--< a}. 
n~oo n ~  

The proof is preceded by two lemmas. As we have already remarked the neces- 
sity is obvious; therefore, we only prove the sufficiency. In order to keep the nota- 
tion to a minimum we do not distinguish between the measure fi~, on the subsets 
of E~ and the measure # , ,  on the Bore1 sets of E. 
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(3.3) Lemma. Let il, . . . ,  imeI . and aj~S~j , j= 1 . . . . .  m. Then 

#, ,  {OEE,: O(i`])<aj, j =  1, ..., m} 

(3.4) <#.~o{0~E~: ~(i`])<aj, j =  1, . . . ,  m} 

<=#,d {OeE,:  O(ij)<=ai, j =  1, .. . ,  m}. 

Proof We prove only the first inequality in (3.4). The proof of the second one 
is similar. Let F(O)=Fi~ ..... i . . . . . . . . . . .  (0). It suffices to show that 

(3.5) ~ F(O) ~..(dO)< ~ F(O) #.,o(dO). 

If U, (V~) is the semigroup of operators on Cg(E.) whose infinitesimal generator 
is f2,~o,=(f2ne ), then it follows from the definitions of #, ,  and #,~ that 

(3.6) ~ F(~/) #.,(d~k)= lim Ut F(~k,, ) 
t ~ o O  

and 

(3.7) j" F(~) # ,~(d0)= ~ VtF(~) #,~o(dO) 

for all t>0.  Thus by (3.5), (3.6), and (3.7) it suffices to show that 

(3.8) U~F(0,,)< V,F(~) for all t > 0  and all f leE, .  

If the N used in the proof of Theorem (2.8) is taken to be the n here and t/2 in (2.18) 
is taken to be [~/, q)], then (3.8) follows from (2.17) and (2.18) just as (2.23) did in 
the proof of Theorem (2.8). The details are left to the reader. 

(3.9) Lemma. Under the conditions of Lemma (3.3), 

(3.1o) 
#,d {0 (i`]) N a`],j = 1 . . . .  , m} --#, ,  {~(i`])< aj , j  = 1, . . . ,  m} 

__< ~ [~.~ { ~,(i)____ a j} - ~. .  {0(i`])_-< a`]}]. 
,j= l 

Proof Let G(O)= ~ Fi ja j (0) -F  h ..... i,,,~ ....... (~). Then (3.10) is equivalent to 
j = l  

(3.11) G(O) #nu(dO)~ ~ G(~t) I.tna(dO). 

(3.11) is similar to (3.5) except we now have G instead of F. A careful look at the 
proof of (3.5) reveals that the essential property of F used there is that if 01,02 e E, 
are such that 01 (i)< 02 (i) for all i t  E,, then F(01)> F(02). One easily checks that G 
has this property too and thus the proof of (3.11) is exactly like the proof of (3.5). 

We can now prove Theorem (3.1). Corollary (2.25) tells us that it is sufficient to 
show that there is only one stationary distribution constructed by the standard 
method. Let {#,~.} be a standard sequence. We show that for all F h ..... i ........... , 
lim f F~ i , ~ dp,~o, = lim ~ F h i a~ ~,. d#., .  This shows that all stationary 
n~oo J i,...~ m. I~...~ rn n~oo ,...~ m, ,.-., 

distributions constructed by the standard method have the same finite dimensional 
distributions, and hence are the same. 
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From Lemmas  (3.3) and (3.9) we know that for all sufficiently large n 

(3.12) < ~ F~ ...... , . . . . . . . . . . .  d~.a-~ Fh ..... i,.,.1 ....... d#.. 

j=t 

Finally the hypotheses of Theorem (3.1) imply that  the last expression in inequality 
(3.12) converges to zero, and the theorem is proved. 

4. The Stochastic Ising Model 

Let Z be the integers and Z 3 be the three dimensional cubic lattice. We take 
Z 3 for the index set, and for each i ~Z 3 we let S i = { -  1, 1 }. Each t/~ E then represents 
a configuration of spins: tl(i)= 1 ( -  1) means that  the spin at site i is up (down). 

For  ~/~E and i~Z 3 define the energy, U, of the spin at site i in configuration q 
to be 

(4.1) U(i, t/)= - ~ ~/(i) ~/ ( j ) -nr l ( i ) ,  
J 

where the summat ion  is over t hose j  for which J j - i ]  = 1, and H is a real number  
representing the external magnetic field. 

Finally let fl be a positive number and let 

(4.2) c(i,q,a)=~exp{flU(i, rl)} if a = - ~ ( i )  
(o if a = q (i). 

It is easily checked that  c ( ' ,  ", ") is attractive in the sense of (1.2). 

Intuitively it is clear that  each spin is more willing to stay as it is when it is 
lined up with most  of its neighbors than when it is not. This is the reason for the 
term attractive. (For this example the term ferromagnetic might be more appro- 
priate.) 

For  the sequence of subsets {I.} we take 

I.--- {(il, i2, i3)sZa : l iji < n,j = 1, 2, 3}. 

Since the interaction has finite range it is very easy to verify the hypotheses in 
Remark  (2.3) (see [6] or [7]). 

In order to describe the measures fi.~ we first fix (p~/~.. F rom the definitions 
of fi.~0 and (2.~ 0 only a simple calculation is required (see [-9]) to conclude that if 
~ E E . ,  then 

1 
~ . o ( { ~ t } ) = ~ e x p {  - fi[ - 2 t)(i) O(J)- ~ O(k) (p(1)-H ~ 0(i)]}, 

~ ' n o  (i,j) (k,l) isln 

where the summation over ( i , j )  is over all pairs i, j e I .  with l i - j l= 1, the sum- 
mation over (k, l) is over all pairs k, l with keI.,  l e I \ I ,  and I k - / [ =  1, and Z,,e 
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is the normalizing constant which makes :7,: o a probability measure. The measures 
/~no and their weak limits have been studied extensively, and the following facts 
are known (see [2] and [8]). 

(4.3) If H in (4.1) is not zero or if fl in (4.2) is sufficiently small, then {#nu} and 
{#,a} satisfy (3.2). 

(4.4) If H = 0 and fl is large, then (3.2) does not hold. 

Thus if we take ]~ sufficiently large (i. e. strong enough interaction), we have a 
very striking example of the difficulties involved in proving ergodic theorems for 
interacting systems, For if we consider the interactions c o and c~ given by (4.1) and 
(4.2), where in c o we take H = 0 and in c~ we take H = e, then for small e the inter- 
actions c o and c~ seem to be very nearly the same; yet the asymptotic behavior 
of the corresponding Markov processes is entirely different. In particular for the 
process with interaction c o the distribution at time t is strongly dependent on the 
initial configuration of spins even for arbitrarily large t ((4.4) and Theorem (3.1)), 
while for the process with interaction c~ the distribution at time t converges weakly 
to a given limit independent of the initial configuration. For the interaction c o there 
is still the possibility that even though the distribution at time t depends strongly 
on the initial configuration it nevertheless converges weakly to some limit which 
also depends on the initial configuration. However, it can be proven that there 
are initial configurations for which this does not happen, and the distribution 
does not converge to anything. Thus for the interaction c o there is no hope of 
proving any kind of ergodic theorem if the initial configuration is allowed to be 
chosen arbitrarily. For further discussion of this model the reader is referred to [3]. 
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