A Result in Doeblin's Theory of Markov Chains Implied by Suslin's Conjecture

Benton Jamison *

0. Let $P(x, B)$ be a transition probability function on the measurable space (X, \mathscr{B}). We begin with a resumé of the terminology originated by Doeblin in [3] (see also [2] and [8]). The set $B \in \mathscr{B}$ is called stochastically closed, or closed, if it is non-void and if $P(x, B)=1$ for all $x \in B$. The set $B \in \mathscr{B}$ is called indecomposable if it does not contain a disjoint pair of closed subsets. For each probability measure μ on \mathscr{B} there is a probability space $\left(\Lambda, \mathscr{F}, P_{\mu}\right)$ and a sequence X_{0}, $X_{1}, \ldots, X_{n}, \ldots$ of $(\mathscr{F}-\mathscr{B})$ measurable functions on Λ into X for which
(a) $P_{\mu}\left(X_{0} \in B\right)=\mu(B)$
(b) $P_{\mu}\left(X_{n+1} \in B \mid X_{0}, \ldots, X_{n}\right)=P\left(X_{n}, B\right) \quad P_{\mu}$-a.s.
for each $B \in \mathscr{B}$ and $n=0,1, \ldots$. If μ is the unit mass concentrated at x we write P_{x} for P_{μ}. For each $x \in X$ and $B \in \mathscr{B}$ we write $L(x, B)$ for $P_{x}\left(\bigcup_{n=1}^{\infty}\left\{X_{n} \in B\right\}\right)$ and $Q(x, B)$ for $P_{x}\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty}\left\{X_{m} \in B\right\}\right)$. A set $B \in \mathscr{B}$ is called inessential if $Q(x, B)=0$ for all $x \in X$, essential otherwise. If B is essential, it is called improperly essential if it is the countable union of inessential sets, absolutely essential otherwise. The reader is referred to $[2,3,4$, and 8$]$ for the theory whose basic vocabulary we have just introduced. (In [4] it is shown that if $B \in \mathscr{B}$ is not absolutely essential then there are sets B_{1}, B_{2}, \ldots such that $\sum_{n=1}^{\infty} P^{n}\left(x, B_{k}\right)<\infty$ for each $k=1,2, \ldots$ and $x \in X$ with $B=\bigcup_{k=1}^{\infty} B_{k}$.)

Consider the following condition:
($\mathscr{D})$ There is a countable disjoint family $\left\{C_{n}: n=1,2, \ldots\right\}$ of closed, indecomposable, and absolutely essential sets such that $I=X-\sum_{n=1}^{\infty} C_{n}$ is either
inessential or improperly essential.

Of course, if X itself is improperly essential, the condition is vacuous. The partition of X into I and the C_{n} 's is called a Doeblin decomposition. The significance of the decomposition (when X is absolutely essential) is a consequence of the surprisingly extensive knowledge of the ergodic properties of $P(x, B)$ in the special case where X is indecomposable and absolutely essential. For instance, if X is indecomposable and absolutely essential, there is a σ-finite invariant measure on (X, \mathscr{B}) which is unique (up to constant multiples). If X is absolutely essential, if $I+\sum C_{k}$ is a Doeblin decomposition of X, and if for each $x \in X$ there

[^0]is an n and a k for which $P^{n}\left(x, C_{k}\right)>0$, then there is at least one σ-finite invariant measure, and every such measure is of the form $\sum a_{k} \mu_{k}$, where $a_{k} \geqq 0$ and μ_{k} is the essentially unique σ-finite invariant measure on C_{k}. In [3] (p. 74-76) Doeblin proves that (\mathscr{D}) holds under the following condition:
($\mathscr{A})$ There is a finite measure φ on (X, \mathscr{B}) which assigns positive measure to every stochastically closed set.

Condition (\mathscr{A}) clearly implies the following condition.
($C)$ There exists no uncountable disjoint class of stochastically closed subsets of X.

It is natural to conjecture that (\mathscr{C}) implies (\mathscr{D}). The first section is devoted to a proof that, under the assumption that Suslin's conjecture holds, (\mathscr{C}) does indeed imply (\mathscr{D}). In the second section, results which can be considered partial converses to the main result of [5] are established.

1. Let $(S,<)$ be a partially ordered set ([7], p. 13). Members x and y of S are called comparable if either $x<y$ or $y<x$. A subset Q of S is called a chain if any two elements of Q are comparable, and it is called an antichain if no two elements of Q are comparable. A partially ordered set is called a tree if the set of all elements which precede any given element forms a chain. The following statement is a formulation of Suslin's conjecture (see [6] for the original formulation and a proof of its equivalence to this one).
(\mathscr{S}) Every tree of cardinality \aleph_{1} contains either a chain of cardinality \aleph_{1} or an antichain of cardinality \aleph_{1}.

This is our main theorem.
Theorem 1.

$$
\mathscr{P} \Rightarrow(\mathscr{C} \Rightarrow \mathscr{D})
$$

The theorem follows from the following lemma.
Lemma 1. If (\mathscr{S}) holds, then (\mathscr{C}) implies that X contains a closed set which is either indecomposable or improperly essential.

To see that the lemma implies the theorem, we reason as follows. Call a collection $\mathscr{A} \subset \mathscr{B}$ admissible if it is a non-void, countable, disjoint collection each of whose members is an indecomposable or improperly essential closed set. Assume (\mathscr{P}) and (\mathscr{C}) hold. The lemma states that there is at least one admissible collection. Order the class of all such collections by inclusion. It is easy to see that the union of a chain of admissible collections is itself an admissible collection, so Zorn's lemma applies to yield a maximal admissible collection \mathscr{L}. Let L be the union of all members of \mathscr{L}. Then L is stochastically closed. Also $L^{c}=X-L$ contains no closed sets, for if it did, (\mathscr{C}) and the lemma would combine to yield the existence of a closed $C \subset L^{c}$ with C either indecomposable or absolutely essential. But then $\mathscr{L} \cup\{\mathrm{C}\}$ would be an admissible collection, which would contradict the maximality of \mathscr{L}. Since L^{c} contains no closed sets, it is either inessential or improperly essential by virtue of Proposition 14.1 of [2]. Let C_{1}, C_{2}, \ldots be a possibly void or finite enumeration of the members of \mathscr{L} which
are indecomposable and absolutely essential. Then $L-\sum C_{i}$, hence $L^{c} \cup\left(L-\sum C_{i}\right)$ $=X-\sum C_{i}$ is inessential or improperly essential. Let $I=X-\sum C_{i}$. Then $X=I+\sum C_{i}$ is a Doeblin decomposition of X. Having established that the theorem does indeed follow from the lemma, we proceed with a proof of the lemma.

On p. 70 of [3], Doeblin shows that, if a closed set E is not indecomposable, then there are two disjoint closed subsets A and B of E such that $E-(A \cup B)$ has no closed subset. We say that (A, B) is a maximal pair of closed subsets of E. It follows from Proposition 14.1 of [2] that $E-(A \cup B)$ is either inessential or improperly essential. Now assume that (\mathscr{C}) holds, but that every closed subset of X is decomposable and absolutely essential. We proceed by transfinite induction, in effect pursuing Doeblin's line of reasoning on p .71 of [3]. We denote the first uncountable ordinal by Ω, and ordinals strictly less than Ω by lower case Greek letters. Our set theory is that of [7], in which every ordinal is the set of all ordinals strictly less than it. A function s into $\{0,1\}$ is called a binary sequence if its domain is equal to an ordinal $\alpha<\Omega ; s$ is then said to be of order α. The binary sequences $s \cup\{(\alpha, 0)\}$ and $s \cup\{(\alpha, 1)\}$ are denoted by $s 0$ and $s 1$ respectively; they are of order $\alpha+1$. We now use transfinite induction to define on the class of all binary sequences a function C such that
(i) $C(s)$ is either \emptyset or a closed set,
(ii) if $s \subset t$ then $C(t) \subset C(s)$,
(iii) if neither $s \subset t$ or $t \subset s$ then $C(s) \cap C(t)=\emptyset$ (the latter holding, in particular, if s and t are distinct and of the same order).

The unique binary sequence of order 0 is \emptyset. We define $C(\emptyset)=X$. Suppose $C(s)$ has been defined for all binary sequences of order less than α. Suppose α is not a limit ordinal, that is, $\alpha=\beta+1$ for some β. Any sequence of order α is equal to $s 0$ or $s 1$ where s is a sequence of order β. If $C(s)=\emptyset$, we define $C(s 0)=C(s 1)=\emptyset$. Otherwise $C(s)$ is closed, and, by assumption, decomposable. Let (A, B) be a maximal pair of closed subsets of $C(s)$, and define $C(s 0)=A, C(s 1)=B$. Suppose, on the other hand, that α is a limit ordinal. Let s be of order α. For any $\beta<\alpha$ let s_{β} be the restriction of s to β. We define $C(s)$ to be $\bigcap_{\beta<\alpha} C\left(s_{\beta}\right)$. Since the intersection is countable, $C(s)$ is either closed or empty. The definition of $C(s)$ for all binary sequences is now complete by virtue of the principle of transfinite induction. It is clear that (i), (ii), and (iii) hold.

Let $\mathscr{R}=\{C(s)$: sbinary sequence $\}-\{\emptyset\}$, that is, \mathscr{R} is the range of the function C just defined but with \emptyset thrown out. It follows from (i), (ii) and (iii) that the members of \mathscr{R} are closed and that
(iv) $E \in \mathscr{R}$ and $F \in \mathscr{R} \Rightarrow E \subset F$ or $F \subset E$ or $E \cap F=\emptyset$.

We deal separately with the cases where (a) \mathscr{R} is finite, (b) \mathscr{R} is denumerably infinite, and (c) \mathscr{R} is uncountable.

Case (a). \mathscr{R} finite.
If \mathscr{R} is finite, there has to be a binary sequence s of finite order such that $C(s)$ is closed, but $C(s 0)=C(s 1)=\emptyset$. But if $C(s)$ is closed, so are $C(s 0)$ and $C(s 1)$, for, by definition, they form a maximal pair in $C(s)$.

Case (b). \mathscr{R} denumerably infinite.
I claim that in this case X itself is improperly essential. Let $C\left(s^{(1)}\right), C\left(s^{(2)}\right), \ldots$ be an enumeration of \mathscr{R}. Let $\alpha_{1}, \alpha_{2}, \ldots$ be the orders of $s^{(1)}, s^{(2)}, \ldots$ respectively. Let $\alpha=\sup \alpha_{n}$. Then α is a limit ordinal, and if s is any sequence of order α, then $C(s)=\emptyset$. ${ }^{n}$ For each $\beta<\alpha$ let

$$
C^{*}(\beta)=\{C(s): s \text { is of order } \beta\} .
$$

The members of $C^{*}(\beta)$ are pairwise disjoint by (iii). We are assuming that (\mathscr{C}) holds, so $C^{*}(\beta)$ is countable. Let $K(\beta)$ be the union of all the members of $C^{*}(\beta)$. Then $K(\beta)$ is either empty or closed. To proceed, we require the following

Proposition. For each $\beta<\Omega, X-K(\beta)$ is either inessential or improperly essential.

We prove this by induction on β. For $\beta=0, X-K(0)=X-X=\emptyset$. Suppose $\beta=\gamma+1$, and that $X-K(\gamma)$ is inessential or improperly essential. For each s of order γ for which $C(s) \neq \emptyset, C(s 0)$ and $C(s 1)$ are a maximal pair in $C(s)$, so $C(s)-(C(s 0) \cup C(s 1))$ is either inessential or improperly essential. Suppose, on the other hand, that β is a limit ordinal, and that $X-K(\gamma)$ is inessential or improperly essential for each $\gamma<\beta$. To show that $X-K(\beta)$ is inessential or improperly essential it suffices to show that

$$
\begin{equation*}
K(\beta)=\bigcap_{y<\beta} K(\gamma) . \tag{1}
\end{equation*}
$$

Suppose s is of order β. If $t \subset s$ but $t \neq s$ we write $t<s$. Then $C(s)$, is, by definition, the intersection of all the sets $C(t)$ for which $t<s$. Hence

$$
\begin{equation*}
K(\beta)=\bigcup_{s} \bigcap_{i<s} C(t) \tag{2}
\end{equation*}
$$

It is easy to verify, using (iii), that

$$
\begin{equation*}
\bigcup_{s} \bigcap_{t<s} C(t)=\bigcap_{\gamma<\beta} \bigcup_{t} C(t) \tag{3}
\end{equation*}
$$

where, on the right, t ranges over all binary sequences of order γ. Since the right hand side of (3) is equal to $\bigcap_{\gamma<\beta} K(\gamma)$, (2) and (3) combine to yield (1).

This completes the proof of the proposition. In particular, $X-K(\alpha)$ is either inessential or improperly essential. But $K(\alpha)=\emptyset$, so X is indeed inessential or improperly essential in case (b).

Case (c). R uncountable.
Order \mathscr{R} by inclusion: that is; $A<B$ iff $A \supset B$. Properties (i), (ii) and (iii) of the function C imply that \mathscr{R} is a tree. Since we are assuming the well-ordering principle, we may, without assuming the continuum hypothesis, select from \mathscr{R} a subcollection \mathscr{R}^{*} of cardinality \aleph_{1}. Of course, \mathscr{R}^{*} is also a tree relative to $<$. Since we are assuming that (\mathscr{Y}) holds, \mathscr{R}^{*} contains either a chain or an antichain of cardinality \aleph_{1}. The existence of such an antichain is a direct contradiction to (\mathscr{C}), however, so \mathscr{R}^{*}, hence \mathscr{R}, contains a chain $\left\{C\left(s^{(\gamma)}\right): \gamma \in \Gamma\right\}$, where the index set Γ has cardinality
\aleph_{1}, and where $s^{(\gamma)}$ and $s^{\left(\gamma^{\prime}\right)}$ are distinct binary sequences if γ and γ^{\prime} are distinct members of Γ. By (ii) and (iii), the set $\left\{s^{(\gamma)}: \gamma \in \Gamma\right\}$ is a chain of binary sequences relative to the inclusion relation \subset. Letting $\sigma=\bigcup\left\{s^{(\gamma)}: \gamma \in \Gamma\right\}$, we see that σ is a function from Ω into $\{0,1\}$ such that, for each $\gamma \in \Gamma$, the restriction of σ to the ordinal which is the order of $s^{(\gamma)}$ is $s^{(\gamma)}$. For each $\alpha<\Omega$ let σ_{α} be the restriction of σ to α. Then each set $C\left(\sigma_{\alpha}\right)$ is closed and $C\left(\sigma_{\alpha+1}\right)$ is one member of a maximal pair of closed subsets of $C\left(\sigma_{\alpha}\right)$. Denote the other member of this maximal pair by $D(\alpha+1)$. If $\beta>\alpha, C\left(\sigma_{\beta}\right) \subset C\left(\sigma_{\alpha+1}\right)$, hence $C\left(\delta_{\beta}\right) \cap D(\alpha+1)=\emptyset$. Thus $\{D(\alpha+1): \alpha<\Omega\}$ is a collection of pairwise disjoint closed sets, which contradicts (c). This finishes case (c), so the lemma is proved.

Recent work of Jech, Solovay and Tennenbaum (see [6] for proofs and references) has established the independence of Suslin's conjecture from the other axioms of set theory. This being so, we do not expect anybody to turn up with a transition probability function $P(x, B)$ for which (\mathscr{C}) but not (\mathscr{D}) holds. Nevertheless, it would be desirable either to give a proof that $(\mathscr{C}) \Rightarrow(\mathscr{D})$ in which (\mathscr{Y}) is not used, or else to show that if $(\mathscr{C}) \Rightarrow(\mathscr{D})$, then (\mathscr{P}) holds.

We shall require in the next section the following result, the simple proof of which we omit.

Lemma 2. If any disjoint collection of closed sets is finite, then (\mathscr{D}) holds (in this case, $\left\{C_{n}\right\}$ is finite).
2. Let $\left\{X_{n}, n \geqq 0\right\}$ be a Markov process having $P(x, B)$ as its transition probability function. Each X_{n} is an X-valued \mathscr{B}-measurable function on a probability space (A, \mathscr{F}, P). We denote by X^{∞} the product space $\prod_{i=0}^{\infty} X^{(i)}$, where $X^{(i)}=X$ for each $i=0, \ldots, \ldots$, and by \mathscr{B}^{∞} the corresponding product σ-field $\prod_{i=0}^{\infty} \mathscr{B}^{i(i)}$, where $\mathscr{B}^{(i)}=\mathscr{B}$ for each $i=0,1, \ldots$. For each n let \mathscr{C}_{n} be the P-completion of the smallest σ-field over which X_{m} is measurable for each $m \geqq n$. Then $\mathscr{T}=\bigcap_{n=1}^{\infty} \mathscr{C}_{n}$ is called the tail σ-field of the process $\left\{X_{n}, n \geqq 1\right\}$. It is easy to see that $A \in \mathscr{T}$ if and only if there is a sequence f_{0}, f_{1}, \ldots of bounded \mathscr{B}^{∞}-measurable functions on X^{∞} such that

$$
\begin{equation*}
I_{A}=f_{n}\left(X_{n}, X_{n+1}, \ldots\right) \quad P-\text { a.s. } \tag{4}
\end{equation*}
$$

for each $n=0,1, \ldots$, where I_{A} is the indicator of A. If there is a bounded \mathscr{B}^{∞} measurable function in X^{∞} with

$$
\begin{equation*}
I_{A}=f\left(X_{n+1}, \ldots\right) \quad P-\text { a.s. } \tag{5}
\end{equation*}
$$

we say that A is invariant, and such A 's constitute a sub σ-field \mathscr{I} of \mathscr{T}. If \mathscr{I} (or \mathscr{T}) consists of a single P-atom, that is, if $P(A)=0$ or 1 for each A in \mathscr{I} (or \mathscr{T}), we say that \mathscr{I} (or $\mathscr{T})$ is trivial.

We say that X is recurrent in the sense of Harris if there is a σ-finite measure φ on \mathscr{B} such that $Q(x, B)=1$ for all $x \in X$ whenever $\varphi(B)>0$ (see [5] and [8]).

Theorem. Suppose $P(x, B)$ is a transition function on (X, \mathscr{B}), and that X is absolutely essential. Then \mathscr{I} is trivial for each process $\left\{X_{n}, n \geqq 0\right\}$ having $P(x, B)$ as transition function if and only if X is recurrent in the sense of Harris. If (X, \mathscr{I})
consists of a finite number of P-atoms for each such process, then $X=I+\sum_{i=1}^{k} H_{i}$, where I is either inessential or improperly essential and where H_{1}, \ldots, H_{k} are closed and recurrent in the sense of Harris.

Proof. It is well known and easy to show if X is recurrent in the sense of Harris then \mathscr{I} is trivial. Suppose, then, that X is absolutely essential, and that \mathscr{I} is trivial for every Markov process with transition function $P(x, B)$. First, X is indecomposable. For suppose E and F are disjoint closed sets. Let $\left\{X_{n}\right\}$ be the process with $P(x, B)$ as transition function for which $P\left(X_{0} \in E\right)=P\left(X_{0} \in F\right)=\frac{1}{2}$. Clearly $\left\{X_{0} \in E\right\} \in \mathscr{I}$, so \mathscr{I} is non-trivial. Second, X has no improperly essential subsets. For suppose E is one. By Definition 4 and Proposition 23 of [2], there is an improperly essential $F \supset E$ and an $y \in F$ with $L\left(y, F^{c}\right)<1$. Also, $Q(y, F)<1$ by Proposition 19 of [2]. Let $\left\{X_{n}\right\}$ be the Markov process with $P(x, B)$ as transition function and initial distribution concentrated at y. On the one hand, $A=\bigcap_{n=0}^{\infty}\left\{X_{n} \in F\right\}$ belongs to \mathscr{I}, on the other, $0<1-L\left(y, F^{c}\right)=P(A) \leqq Q(y, F)<1$. This contradicts the triviality of \mathscr{I}. Thus X is an indecomposable absolutely essential set containing no improperly essential sets. (In the terminology of Doeblin [3], X is a "final set".) Recurrence in the sense of Harris now follows from Theorem 3 of [4].

Now suppose that \mathscr{I} consists of only a finite number of P-atoms. It is then clear that any disjoint collection of closed sets if finite. By Lemma 2,

$$
X=J+\sum_{i=1}^{k} C_{i}
$$

where C_{1}, \ldots, C_{k} is an indecomposable and absolutely essential closed set. Such a set is called normal if it contains a final set, or, what is the same (see [5]), a closed set recurrent in the sense of Harris. I claim that each C_{i} is normal. For suppose C_{i} is not. Then there is an uncountable disjoint collection $\left\{E_{\alpha}: \alpha \in A\right\}$ of pairwise disjoint \mathscr{B}-measurable subsets of C_{i} such that, for each $\alpha \in A$, there is an $x_{\alpha} \in E_{\alpha}$ with $Q\left(x_{\alpha}, E_{\alpha}\right) \geqq \frac{1}{2}$. (See p. 83 of [3].) Pick a sequence $x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots$ of the x_{α} 's, and let $\left\{S_{n}, n \geqq 0\right\}$ be a process with $P(x, B)$ as transition function for which $P\left\{X_{0}=x_{\alpha_{m}}\right\}$ $=p_{m}, m=1,2, \ldots$, where $p_{m}>0$ and $\sum_{m} p_{m}=1$. Let $A_{m}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty}\left\{X_{k} \in E_{\alpha_{m}}\right\}$. Then $A_{m} \in \mathscr{I}$ and $P\left(A_{m}\right)=p_{m} Q\left(x_{\alpha_{m}}, E_{m}\right)>0$ for each $m=1,2, \ldots$ This is, of course, impossible if \mathscr{I} consists of a finite number of P-atoms. Thus each C_{i} is indeed normal, and therefore $K_{i}=H_{i}+I_{i}$, where H_{i} is recurrent in the sense of Harris and I_{i} is either inessential or improperly essential (see [4], Theorem 3). Define $I=J+\sum_{i=1}^{k} I_{i}$. Then I is inessential or improperly essential, and $X=I+\sum_{i=1}^{k} H_{i}$, where each H_{i} is recurrent in the sense of Harris. This completes the proof of the theorem.

If one adds to the hypothesis of the theorem that \mathscr{B} is generated by a countable subclass of \mathscr{B}, the above proof can be shortened by making use of the fact ([4], Theorem 3) that then every closed, indecomposable and absolutely essential set is the disjoint union of a set which is recurrent in the sense of Harris and a set which is either inessential or improperly essential.

If X is recurrent in the sense of Harris, then \mathscr{T} consists of a finite number of atoms each describable in terms of the cyclic structure of X ([6], Theorem 1). Thus Theorem 2 tells us that, unless X is improperly essential, if \mathscr{I} is trivial for each process $\left\{X_{n}\right\}$ then \mathscr{T} consists only of all unions of a finite number of P-atoms for such processes. This result fails spectacularly if X is improperly essential, for Blackwell and Freedman have given (in [1]) an example of Markov chain consisting of a countable number of transient states such that, for every Markov process $\left\{X_{n}\right\}$ with $P(x, E)$ as transition function, \mathscr{I} is trivial but \mathscr{T} is purely non-atomic (in fact \mathscr{T} is the σ-field generated by X_{0}, X_{1}, \ldots).

Theorem 2 seems incomplete, for the following question naturally arises. Suppose that X is absolutely essential, and that, for each Markov process $\left\{X_{n}, n \geqq 0\right\}$ with $P(x, E)$ as transition probability function, \mathscr{I} consists of a countable number of P-atoms. Does (\mathscr{D}) then hold? We have been unable to settle this question.

References

1. Black well, D. and Freedman, D.: The tail σ-field of a Markov chain and a theorem of Orey. Ann. Math. Statistics 35, 1291-1295 (1964).
2. Chung, K.L.: The general theory of Markov processes according to Doeblin. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 2, 230-254 (1964).
3. Doeblin, W.: Elements d'une theorie générale des chaînes simple constantes de Markov. Ann. sci. École norm. sup., III. Sér. 57, 61-111 (1940).
4. Jain, N. and Jamison, B.: Contributions to Doeblin's theory of Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 8, 19-40 (1967).
5. Jamison, B. and Orey, S.: Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeitstheorie verw. Gebiete 8, 41-48 (1967).
6. Jech, T.: Lectures in Set Theory. Lecture Notes in Mathematics 217. Berlin-Heidelberg-New York: Springer 1971.
7. Kelley, J.L.: General topology. New York: Van Nostrand 1955.
8. Orey, S.: Limit Theorems for Markov chain Transition Probabilities. Math Studies 34. London; Van Nostrand Reinhold 1971.

Benton Jamison
State University of New York at Albany
1400 Washington Avenue
Albany, N. Y. 12203
USA

[^0]: * Partially supported by National Science Foundation GU 3171. State University of New York at Albany-1971-No. 252.

