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A Result in Doeblin's Theory of Markov Chains Implied 
by Suslin's Conjecture 

Benton Jamison* 

0. Let P(x, B) be a transition probability function on the measurable space 
(X, N). We begin with a resum6 of the terminology originated by Doeblin in [3] 
(see also [2] and [8]). The set B e N  is called stochastically closed, or closed, if it is 
non-void and if P(x, B)= 1 for all xeB. The set B e ~  is called indecomposable 
if it does not contain a disjoint pair of closed subsets. For  each probability 
measure # on ~ there is a probability space (A, ~-;, Pu) and a sequence Xo, 
X1, ... , Xn, ... of ( ~ - -  ~)  measurable functions on A into X for which 

(a) P~(X o e B ) -  #(B) 

(b) Pu(X,+IeBIXo,...,X,)=P(X,,B) P , -  a.s. 

for each B e N  and n=0 ,  1, . . . .  I f #  is the unit mass concentrated at x we write Px 

) forPu. ForeachxeXandBeNwewriteL(x,B) forP x {X, eB} and Q(x, B) 

for Px . A set B e N is called inessential if Q (x, B) = 0 for all x e X, 

essential otherwise. If B is essential, it is called improperly essential if it is the 
countable union of inessential sets, absolutely essential otherwise. The reader is 
referred to [2, 3, 4, and 8] for the theory whose basic vocabulary we have just 
introduced. (In [4] it is shown that if B e N  is not absolutely essential then there 

are sets B~, B2, ... such that ~ P~ (x, Bk) < oo for each k = 1, 2, ... and x e X with 

B=0Bkt .:1 
k~J.  

Consider the following condition: 

(9)  There is a countable disjoint family {C,: n=  1, 2 . . . .  } of closed, inde- 

composable, and absolutely essential sets such that I = X - ~  C, is either 
inessential or improperly essential, n=~ 

Of course, if X itself is improperly essential, the condition is vacuous. The 
partition of X into I and the C,'s is called a Doeblin decomposition. The significance 
of the decomposition (when X is absolutely essential) is a consequence of the 
surprisingly extensive knowledge of the ergodic properties of P(x,B) in the 
special case where X is indecomposable and absolutely essential. For  instance, 
if X is indecomposable and absolutely essential, there is a o--finite invariant 
measure on (X, N) which is unique (up to constant multiples). If X is absolutely 
essential, if I + ~ C k is a D oeblin decomposition of X, and if for each x e X there 
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is an n and a k for which P"(x, Ck)> 0, then there is at least one o--finite invariant 
measure, and every such measure is of the form ~ a k irk, where a k > 0 and #k 
is the essentially unique ~r-finite invariant measure on C k. In [3] (p. 74-76) Doeblin 
proves that (@) holds under the following condition: 

(JC{) There is a finite measure (p on (X, ~)  which assigns positive measure to 
every stochastically closed set. 

Condition (Jet) clearly implies the following condition. 

(off) There exists no uncountable disjoint class of stochastically closed subsets 
of X. 

It is natural to conjecture that (c~) implies (@). The first section is devoted to a 
proof that, under the assumption that Suslin's conjecture holds, (off) does indeed 
imply (N). In the second section, results which can be considered partial converses 
to the main result of [5] are established. 

1. Let (S, < )  be a partially ordered set ([7], p. 13). Members x and y of S are 
called comparable if either x < y or y < x. A subset Q of S is called a chain if any 
two elements of Q are comparable, and it is called an antichain if no two elements 
of Q are comparable. A partially ordered set is called a tree if the set of all elements 
which precede any given element forms a chain. The following statement is a 
formulation of Suslin's conjecture (see [6] for the original formulation and a 
proof of its equivalence to this one). 

(50 Every tree of cardinality N 1 contains either a chain of cardinality NI or an 
antichain of cardinality N~. 

This is our main theorem. 

Theorem 1. 
5e ~ (~ ~ ~).  

The theorem follows from the following lemma. 

Lemma 1. I f  (5 D) holds, then (cg) implies that X contains a closed set which is 
either indecomposable or improperly essential. 

To see that the lemma implies the theorem, we reason as follows. Call a 
collection d c ~  admissible if it is a non-void, countable, disjoint collection 
each of whose members is an indecomposable or improperly essential closed set. 
Assume (5 P) and (cg) hold. The lemma states that there is at least one admissible 
collection. Order the class of all such collections by inclusion. It is easy to see 
that the union of a chain of admissible collections is itself an admissible collection, 
so Zorn's lemma applies to yield a maximal admissible collection 5O. Let L be 
the union of all members of 5O. Then L is stochastically closed. Also L c-- X -  L 
contains no closed sets, for if it did, (cg) and the lemma would combine to yield 
the existence of a closed C~ /5  with C either indecomposable or absolutely 
essential. But then 5 o u  {C} would be an admissible collection, which would 
contradict the maximality of 5O. Since /5 contains no closed sets, it is either 
inessential or improperly essential by virtue of Proposition 14.1 of [2]. Let 
C~, C 2, ... be a possibly void or finite enumeration of the members of 5 ~ which 
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are indecomposable and absolutely essential. Then L -  ~ C~, hence L c u ( L -  ~ C~) 
= X - ~  C i is inessential or improperly essential. Let I = X - ~  C i. Then 
X = I + ~ C~ is a Doeblin decomposition of X. Having established that the theorem 
does indeed follow from the lemma, we proceed with a proof of the lemma. 

On p. 70 of [33, Doeblin shows that, if a closed set E is not indecomposable, 
then there are two disjoint closed subsets A and B of E such that E - ( A w B )  
has no closed subset. We say that (A, B) is a maximal pair of closed subsets of E. 
It follows from Proposition 14.1 of [2] that E - ( A u B )  is either inessential or 
improperly essential. Now assume that (c#) holds, but that every closed subset 
of X is decomposable and absolutely essential. We proceed by transfinite induction, 
in effect pursuing Doeblin's line of reasoning on p. 71 of [3]. We denote the first 
uncountable ordinal by (1, and ordinals strictly less than f2 by lower case Greek 
letters. Our set theory is that of [7], in which every ordinal is the set of all ordinals 
strictly less than it. A function s into {0, 1} is called a binary sequence if its domain 
is equal to an ordinal e<f2;  s is then said to be of order or. The binary sequences 
sw{(c~,0)} and sw{(ct, 1)} are denoted by sO and sl respectively; they are of 
order c~ + 1. We now use transfinite induction to define on the class of all binary 
sequences a function C such that 

(i) C(s) is either ~ or a closed set, 

(ii) if s o  t then C( t )c  C(s), 

(iii) if neither s c t or t c s then C (s) n C (t) = ~ (the latter holding, in particular, 
if s and t are distinct and of the same order). 

The unique binary sequence of order 0 is ~. We define C(~)= X. Suppose C(s) 
has been defined for all binary sequences of order less than c~. Suppose c~ is not a 
limit ordinal, that is, c~=/7+ 1 for some/~. Any sequence of order c~ is equal to sO 
or s l  where s is a sequence of order/3. If C(s)=fl, we define C(s0)= C(sl )=~.  
Otherwise C(s) is closed, and, by assumption, decomposable. Let (A, B) be a 
maximal pair of closed subsets of C(s), and define C(sO)=A, C(sl)=B. Suppose, 
on the other hand, that e is a limit ordinal. Let s be of order e. For any/~ < e let s# 
be the restriction of s to/3. We define C(s) to be n c(%). Since the intersection 

/~<e 
is countable, C(s) is either closed or empty. The definition of C(s) for all binary 
sequences is now complete by virtue of the principle of transfinite induction. 
It is clear that (i), (ii), and (iii) hold. 

Let N = {C(s): s binary sequence} - {g}, that is, N is the range of the function C 
just defined but with ~ thrown out. It follows from (i), (ii) and (iii) that the members 
of N are closed and that 

(iv) E e ~  and F ~  ~ E c F  or F e E  or EnF=fJ.  

We deal separately with the cases where (a) N is finite, (b) N is denumerably 
infinite, and (c) N is uncountable. 

Case (a). ~ finite. 

I f ~  is finite, there has to be a binary sequence s of finite order such that C(s) 
is closed, but C(sO)= C(sl)=~.  But if C(s) is closed, so are C(sO) and C(sl), for, 
by definition, they form a maximal pair in C(s). 
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Case (b). ~ denumerably infinite. 

I claim that in this case X itself is improperly essential. Let C(sm), C(s(Z)), ... 
be an enumeration of ~ .  Let %, % .. . .  be the orders of s (1), s(21, ... respectively. 
Let e = sup c%. Then ~ is a limit ordinal, and if s is any sequence of order e, then 

C (s) = 9. For each fl < ~ let 

C*(fi)= {C(s): s is of order fl}. 

The members of C*(]?) are pairwise disjoint by (iii). We are assuming that (cg) 
holds, so C*(fl) is countable. Let K(B) be the union of all the members of C*(fi). 
Then K(fl) is either empty or closed. To proceed, we require the following 

Proposition. For each ]?<f2, X -K( f i )  is either inessential or improperly 
essential. 

We prove this by induction on ft. For fl=0, X - K ( O ) = X - X = g .  Suppose 
f i = 7 +  1, and that X - K ( 7 )  is inessential or improperly essential. For each s 
of order 7 for which C(s)#fJ, C(sO) and C(sl) are a maximal pair in C(s), so 
C(s)-(C(sO)w C(sl)) is either inessential or improperly essential. Suppose, on 
the other hand, that fi is a limit ordinal, and that X - K ( 7 )  is inessential or 
improperly essential for each y<[I. To show that X-K(]?)  is inessential or 
improperly essential it suffices to show that 

K(fi)= ~ K(7). (1) 
~<~ 

Suppose s is of order/3. If t c s  but t4:s we write t<s. Then C(s), is, by definition, 
the intersection of all the sets C(t) for which t<s. Hence 

K (fl) = L} ~ C (t). (2) 
s t<$ 

It is easy to verify, using (iii), that 

L) c(t)= [3 c(t), (3) 
s t < s  V<f l  t 

where, on the right, t ranges over all binary sequences of order 7. Since the right 
hand side of(3) is equal to ~ K(7), (2) and (3) combine to yield (1). 

~<fi 
This completes the proof of the proposition. In particular, X - K  (~) is either 

inessential or improperly essential. But K(r so X is indeed inessential or 
improperly essential in case (b). 

Case (c). ~ uncountable. 

Order ~ by inclusion: that is; A < B iff A 2 B. Properties (i), (ii) and (iii) of the 
function C imply that ~ is a tree. Since we are assuming the well-ordering principle, 
we may, without assuming the continuum hypothesis, select from ~ a subeollec- 
tion N* of cardinality N 1. Of course, 9f* is also a tree relative to <.  Since we are 
assuming that (SQ holds, N* contains either a chain or an antichain of cardinality 
N 1. The existence of such an antichain is a direct contradiction to (c~), however, 
so ~*,  hence ~ ,  contains a chain { C (s(~)): 7 ~F}, where the index set F has cardinality 
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N1, and where s r and s ~'') are distinct binary sequences if 7 and 7' are distinct 
members of F. By (ii) and (iii), the set {s(~): y~F} is a chain of binary sequences 
relative to the inclusion relation c .  Letting a =  0 { s(~): yeF}, we see that o- is a 
function from ~2 into {0, 1 } such that, for each y c F, the restriction of a to the 
ordinal which is the order of s (~) is s (~). For each ~<(~ let a~ be the restriction 
of a to e. Then each set C(a~) is closed and C(a~+~) is one member of a maximal 
pair of closed subsets of C (a~). Denote the other member of this maximal pair 
by D(c~ + 1). If/3>~, C(a~)c C(a~+l) , hence C(6p)c~D(c~+ 1)= ~. Thus {D(e+ 1): c~< f2} 
is a collection of pairwise disjoint closed sets, which contradicts (c), This finishes 
case (c), so the iemma is proved. 

Recent work of Jech, Solovay and Tennenbaum (see [6] for proofs and 
references) has established the independence of Suslin's conjecture from the other 
axioms of set theory. This being so, we do not expect anybody to turn up with a 
transition probability function P(x, B) for which (cg) but not (~) holds. Nevertheless, 
it would be desirable either to give a proof that (cg)~ (~) in which (50 is not 
used, or else to show that if (~g) ~ (~), then (50 holds. 

We shall require in the next section the following result, the simple proof of 
which we omit. 

Lemma 2. I f  any disjoint collection of closed sets is finite, then (~) holds (in 
this case, { C ,} is finite). 

2. Let {X,, n>0} be a Markov process having P(x, B) as its transition prob- 
ability function. Each X, is an X-valued ~-measurable function on a probability 

space (A, ~ ,  P). We denote by X ~~ the product space I~I X (~), where X(~ X for 
i=0 f l  

each i = 0 , .  . . . .  , and by N~ the corresponding product a-field N(i), where 
~=o 

~(0= N for each i = 0, 1 . . . . .  For each n let cg, be the P-completion of the smallest 

a-field over which X,, is measurable for each m > n. Then J = (~ off, is called the 
n=l 

tail a-field of the process {X,, n >  1}. It is easy to see that AsY-- if and only if 
there is a sequence fo, f~, ... of bounded ~ -measu rab l e  functions on X ~~ such that 

IA=f , (X , ,  X,,+I, ...) P -  a.s. (4) 

for each n=0,  1,. . . ,  where I A is the indicator of A. If there is a bounded ~ 
measurable function in X ~ with 

I a = f ( X , +  1 . . . .  ) P--a.s.  (5) 

we say that A is invariant, and such A's constitute a sub a-field J of J-. I f J  (or 3-) 
consists of a single P-atom, that is, if P (A)= 0 or 1 for each A in J (or J ) ,  we 
say that J (or J )  is trivial. 

We say that X is recurrent in the sense of Harris if there is a a-finite measure (p 
on ~ such that Q(x, B)= 1 for all x ~ X  whenever q0(B)>0 (see [5] and [8]). 

Theorem. Suppose P(x, B) is a transition function on (X ,~) ,  and that X is 
absolutely essential. Then J is trivial for each process {Xn, n->_0} having P(x, B) 
as transition junction if and only if X is recurrent in the sense of Harris. I f  (X, J )  



292 Benton Jamison: 

k 

consists of a finite number of P-atoms for each such process, then X = I + ~ Hi, 
i = 1  

where I is either inessential or improperly essential and where 111,..., H k are closed 
and recurrent in the sense of Harris. 

Proof. It is well known and easy to show if X is recurrent in the sense of Harris 
then J is trivial. Suppose, then, that X is absolutely essential, and that J is trivial 
for every Markov process with transition function P(x, B). First, X is indecompos- 
able. For suppose E and F are disjoint closed sets. Let {3;,} be the process with 
P(x, B) as transition function for which P(XoeE ) = P(XoeF ) =�89 Clearly {X0eE } e 
so J is non-trivial. Second, X has no improperly essential subsets. For suppose E 
is one. By Definition 4 and Proposition 23 of [2], there is an improperly essential 
F ~ E  and an yEF with L ( y , U ) <  1. Also, Q(y, F)<  1 by Proposition 19 of [2]. 
Let {3;,} be the Markov process with P(x, B) as transition function and initial 

distribution concentrated at y. On the one hand, A= ~ {X, eF} belongs to J ,  
n = 0  

on the other, 0<  1 -L(y ,  U)=P(A)<= Q(y, F )<  1. This contradicts the triviality 
of J .  Thus X is an inaecomposable absolutely essential set containing no im- 
properly essential sets. (In the terminology of Doeblin [31, X is a "final set".) 
Recurrence in the sense of Harris now follows from Theorem 3 of [41. 

Now suppose that J consists of only a finite number of P-atoms. It is then 
clear that any disjoint collection of closed sets if finite. By Lemma 2, 

k 
X = J +  ~ C i, 

i = 1  

where C1, ..., C k is an indecomposable and absolutely essential closed set. Such a 
set is called normal if it contains a final set, or, what is the same (see [51), a closed 
set recurrent in the sense of Harris. I claim that each C i is normal. For suppose C i 
is not. Then there is an uncountable disjoint collection {E~: ~ A }  of pairwise 
disjoint ~-measurable subsets of C i such that, for each ~ A ,  there is an x~E~ 
with Q(x~, E~)~�89 (See p. 83 of [3].) Pick a sequence x~, x~,  ... of the x~'s, and 
let {S,, n ~ 0} be a process with P (x, B) as transition function for which P {X o = x~,~} 

=p~, r e= l ,  2, . . . ,  where p , ,>0 and ~ p m = l .  Let A,,= (~ U {XkeE~.~}. Then 
m n = l  k = n  

A , , e J  and P(A,,)=p,, Q(x~,Em)>O for each m= 1,2, . . . .  This is, of course, 
impossible if J consists of a finite number of P-atoms. Thus each C~ is indeed 
normal, and therefore Ki=H i+I i, where H i is recurrent in the sense of Harris 
and I~ is either inessential or improperly essential (see [41, Theorem 3). Define 

k k 

I= J+ ~' I i. Then I is inessential or improperly essential, and X =  I +  ~ H i, 
i = i  i= l  

where each H i is recurrent in the sense of Harris. This completes the proof of 
the theorem. 

If one adds to the hypothesis of the theorem that M is generated by a countable 
subclass of M, the above proof can be shortened by making use of the fact ([41, 
Theorem 3) that then every closed, indecomposable and absolutely essential set 
is the disjoint union of a set which is recurrent in the sense of Harris and a set 
which is either inessential or improperly essential. 
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If X is recurrent in the sense of Harris, then J -  consists of a finite number of 
atoms each describable in terms of the cyclic structure of X ([6], Theorem 1). Thus 
Theorem 2 tells us that, unless X is improperly essential, if J is trivial for each 
process {X,} then J consists only of all unions of a finite number of P-atoms 
for such processes. This result fails spectacularly if X is improperly essential, 
for Blackwell and Freedman have given (in [1]) an example of Markov chain 
consisting of a countable number of transient states such that, for every Markov 
process {X,} with P(x,E) as transition function, J is trivial but ~-- is purely 
non-atomic (in fact J is the af ield generated by Xo, X1, ...). 

Theorem 2 seems incomplete, for the following question naturally arises. 
Suppose that X is absolutely essential, and that, for each Markov process 
{X,, n > 0} with P (x, E) as transition probability function, J consists of a countable 
number of P-atoms. Does (N) then hold? We have been unable to settle this 
question. 
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