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On Sampling from a Finite Set 
of Independent Random Variables 

Bengt von Bahr 

0. Let X 1 ,  X 2 , . . .  , X N be a set of N independent random variables and let 
S, be the sum of n (<N)  of them chosen at random. In this paper we will show 
that S, is for large values of n and under certain mild conditions on the 
distributions of the Xk'S, approximately Gaussian, and we will give an estimate 
of the remainder term. 

This general situation covers for example the case of two-stage sampling. 
Bikelis [1] has proved a result similar to the present one for simple random 
sampling, which, of course, can be regarded as a special case of two stage 
sampling. Bikelis uses an expression for the characteristic function of the sum 
S, given by Erd6s and R6nyi [2], which, as far as I can see, can not be used in 
the present more general situation. 

In the case n =N,  the sum S, simply is the sum of n independent random 
variables, and then the remainder term given here essentially coincides with the 
classical ones given by Ess6en I-3]. 

1. In order to define the sampling procedure exactly, we introduce a random 
indicator vector 1=(11,I2, . . . ,  IN), where Ik=O or 1, 1 <k<_N, such that S, 

N 
contains the term Xk if and only if Ik = 1. We now have S, = ~ Ik Xk. I is assumed 

k = l  

to be independent of the set X1, Xz, .. . ,  XN, and for every ordered sequence 

i=(il , i2, . . . , in)  of n ones and N - n  zeros, we put P ( I = i ) = l / ( N ) .  We have 
n n - 1  n 

Elk = ~ - = f =  the sampling ratio, and Elkl~ = N  N -  1 for k+  I. We introduce the 

moments EXk = #k and EXZk = flk and then get 

N N 

ES,,= Z EIu Xk= f Z Pk 
k = l  k = l  

2 n n n - - 1  
N k N ~,-- 'k*l  

We will now assume that the scale is chosen so that 

N 

k=l  

1 N 
1. (1.2) 
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We then get ES, = 0 and 

Var S,-- n ( 1 -  ~-Z-i- ~2 ) where c~ z k~l 

In the following sections we will prove that S,/]/~ is approximately Gaussian 
with zero mean and variance 1 - f c~ 2, and also give an estimate of the remainder 
term. 

2. In this section we will give an exact expression for the characteristic 
function J~(t) of S,]l/n, which is suitable for estimations of the remainder term. 

Let fk (t) be the characteristic function of Xk, k = 1, k . . . . .  N. Then 

where the products are taken over n different indices j, and the sum is taken 

o v e r a l l ( N )  different combinations of those indices. We now multiply both 

sides with the same function e mE and get 

et2/2fn(t)=(Nt-l~(1-Iet2/2nfj(-~)). 
\hi ~j 

Now, if g(z) is a function of a complex variable z, analytic in a neighbourhood 
of the origin, we will denote by {g(z)}, the coefficient of z" in its MacLaurin 
series. We may thus write 

N - 1  N t 

Introducing the functions 

bk(t)=etZ/2"fk( ~@n )--i , k= 1,2, . . . ,N (2.1) 

and 
( -  1)J+l 

b~(t), j = 1, 2,..., n (2.2) BJ(t)= J k = l  

we then get 

e'2/:f,(o=(N]-l~(l+z)U~I ( l + ~ z  bk(t)) } \n! { k=l \ n 

= (l+z)Sexp y~log l + ~ b k ( t )  
\ k = l  n 

-- ~(l+z) ~ e x p [ 2  ~ ( -  : z j~(t). 
~,. \k=l j = 1  J n 

t I} , (l+z)Nexp 2 ) Bj(t) 
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where the summation over j has been restricted to j <  n, since greater values 
of j  do not contribute to the coefficient for z". By expanding the different expo- 
nential functions in separate power series of their arguments and multiplying 
all series together, we get (Bj--Bj(t)):  

= [ N ~ - '  i, , . . .B~"  . . 
n ~ B~B2"  {zi,+2i~+...+ni.(1 _~_z)N-,,-2,2 . . . . . . . .  In 

il ] i2 ! ... in[ 

n ~ B1 B2 "'" Bn �9 -- n 
it[ i2[ ..i~! \ n - - i l - - 2 i  2 . . . .  ni~ 

where the summations are taken over all combinations of integers ij> 0, 1 < j  < n, 
satisfying i~ + 2 i 2 + . . .  + n i n <= n. n 

We will now examine the binomial coefficients. Putting ~ j i j = p ,  we have 
j=~ 

(1-r (1-,;1 t 
CN, n,p= (1 1 ) . . . ( 1 _ ~  ) (2.4) 

If we define CN,,,p =0 when p> n, we obtain the following final expression 

e'2/2 f , ( t ) =  ~,  ( f  B1 ) i l ( f 2B2) i2"" ( f f  B J "  C (2.5) 
i?_o i1[ i2! ...in[ N,n, ~ ji~" j=l 

l<j<__n 

In the following section we shall expand the functions Bj(t) in power series of t. 
These series will reveal that for large values of n, f JB j ( t )  is small for j ~ 2  
but  f 2 B 2 ( t ) , ~ f a z t 2 / 2 .  These facts, together with the fact that CN, n , p ~ l  when 
n is large, will give that 

e'2/2 J~ (t),,~ ~, (fz B2)i2 ,.~ e r . 
iz! 

3. We now assume that all moments of the third order are finite, and put 
E [Xk] a =~,, and max 3~=3~. We will denote by 0 unspecified functions satisfying 

l ~ k < N  

]0l =< 1, and assume that t satisfies 

0<_t_< 1-f~ l/n. (3.1) 
107 

From the general inequalities for moments, we get 

20* 

where 
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and thus 
1 N  1 ~ i N 

k = l  k = l  k = l  

which gives 0(2 ~_ 1 < 1'- 

Thus (3.1) implies 0<  t/I/n<0.1. We now get 

t2/2 n t 2 [ t2 ~2 t 2 
e = 1 % - ; + 0 . 5 1 0 ~ )  = l + ~ q  

and from (2.1) 

0 t 3 

70n]/~ 

0 3) (t) 
bk(t)= l+-~-n-~ 70nl /n  fk --~-- --1 

=f~ t - I + ~ - A  t + 7o.1/~ 

By using the usual Taylor expansion for a characteristic function, 

t 2 0 t3 
f k ( t ) = l + i t p k - - ~ f l k + ~  7k 

we get 
i t #k (1 - fiR) t2 1' t3 

b k ( t ) = ~  -4 2n ~- 0.7 0 n]fn"  

Introducing the inequality (3.1) in the last terms, we also have 

and 

From (3.3) we get 

i t k/k t 2 b,,(t)=-~ + o.57 0-2 ~, 

(3.2) 

(3.3) 

bk(t)= 1.1 0 3'~ t v~. (3.4) 

b~(t)= #~ t2 tal' - - - +  1.2 0 - -  (3.5) 
/I H ] / / n  " 

We will now use these expressions and (2.2) to estimate JJ B~(t). From (3.2) we 
N N 

get, taking into account that ~/~k = ~ (1 --ilk)=0 
k ~ l  k = l  

from (3.5) we get 

and from (3.4) 

f B l ( t ) = 0 . 7 0  7 t3 
l /~ (3.6) 

f2B2(t  )=  f~2 t2 7 t3 2 + 0 . 6 0 f  ] /~ (3.7) 

(3.8) 
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We now arrive at three expressions, which we will use in the next section: (3.6) 
and (3.8) give ?~ t3 

f B , +  ~ faBa(t)=2.20 (3.9) 
(3.7) and (3.1) give a= 3 1/~ 

f2B2(t)=fe2 t2/2+O.O60t2(1-f~z)=O.60tz=o.o60t]/~ (3.10) 

and (3.1) and (3.10) give 

• f a  Ba(t ) =fc~2 t2/2 + 0.280 t 2 (1 - fc~2). 
j= l  

(3.1~) 

We will now estimate ~1- By definition 

i=o i! CN'n'zi=exp(SZ B2)- ~ (f2 B2)i 
i=o i! 

that is 

Now, 1 - x > e x p ( - 2 x )  for 0<x_<�89 so when p<n/2, we have 

( (1 p l)l CN, n,v>exp --2 ~ + . . . +  n =exp(--P(P--1)/n)>I--p(p--1)/n>I--pZ/n" 

But this inequality is always true for p > n/2 if n > 4, which we will always assume, 
and thus for all p: p2 

1 -  <= CN, n,p<=l. (3.12) 
n 

4. We now return to (2.5) and divide the sum ~ of the right side into two 
parts Z = • I + Z 2 ,  where Z1 is the sum of all terms with il=i3=i 4 . . . . .  i , = 0  
and ~2 is the rest. Let C~(t) be functions, obtained in the preceeding section, 
satisfying [fJ Bj (t)[ < Cj (t). We can then majorize [~2[ by replacing every fa Ba (t) 
by Ca(t ) and CN,,,p by 1. We then obtain (Ca= Ca(t)): 

IZ21 < exp (Ca + C2 +"" + C,)-  e c2 = e q (exp (C1 + Ca + ' "  + C , ) -  1) 

By using the elementary inequality 

[e x -  1[--< Ixl e Ixl (4.1) 

we get [~,2 ] =< (C1 + C3 +. . .  + C..) exp (C, + C2 + Ca +.-- + C,). (3.9) and (3.11) now 
give 

2'27 t3 exp ( fe  z t2/2 + 0.28 t 2 (1 -f0~2)) 122[ =< / ;  

l exp ( -  t2/2) Z2 ]<-2"~nnt3 exp (-- 0.22 t 2 (1 - f c d ) ) .  

- -  (1  - C N ,  , ,  2 , ) .  ( 4 . 3 )  

(4.2) 

We also must examine the difference between CN,,, p and 1. From (2.4) it at once 
follows 0 < CN,,,p < 1. It is also immediately clear that 
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From (3.7), (4.1) and (3.10) we immediately get 

t 3 
lexp(f  2 B 2 ) - e x p ( f a  2 t2/2)1 = 0 . 6 f  1' r- e x p ( f e  2 t2/2+0.06 t2 (1 - f e 2 ) )  

n 
that is 

~ t 3 
[exp (-- t2/2 + f 2  B2 )_  exp ((1 - f ~ 2 )  ta/2) l __ < 0.6 f-~n-n e x p ( -  0.44 t 2 (1 - feE) ) .  (4.4) 

By using (3.12) we obtain for the last sum ~3 in (4.3): 

,z.,, z.,IVal--<V C~ ( 2 0 2 _ 4  
C2(I +Cz)  e c2 

~=o i! n n 
and from (3.10) 

[exp( - t2 /2)Z3[<0 .24  t(1 + t ~ 2 )  e x p ( - 0 . 4 4 ( 1 - f e  z) t2). (4.5) 

Combining the expressions (4.2), (4.4) and (4.5), we now obtain 

[ j~( t ) -exp  ( - ( 1  - f e  z) tz/2)[ <= 3.1 y( t+ t 3 ) 1/~ e x p ( - 0 . 2 2 ( 1 - f e 2 ) )  (4.6) 

for 0_<t< (1 _ f ~ a ) ] / ~  
101, 

By using (4.6) in Ess6ens inequality (Feller [4], p. 533) 

dt + ~  sup IG'(x)[ �9 (4.7) [F(x)-G(x)[<=~ o t ~rl' x 

We now easily arrive in the following theorem, which is the main result of this 
paper. 

Theorem. Let X1, X2 , ... , XN be independent random variables and let S, be the 
sum of n of them chosen at random. I f  EXk=~k , EX2 =flk, glXk[3=]'k, where 

2 _ 1 ~ 2  
#k=0 ,  ilk= 1, C~ --~k__221/~k and 1'= max ?'k, then 

k = l  = l<-k<-N 

,( 60, 
l / n 0 - f a  2) < x  < ] / ~ ( l _ f e 2 )  ~ 

where q~(x)=(2~z) -~ ~ e x p ( - y ~ ) d y  is the normalized Gaussian distribution 
- o o  

n 
function and f = ~ - .  

Remark 1. The constant 60 is by no means the smallest one which satisfies 
this inequality. The value is a consequent of the way these calculations have been 
made and especially of the number  10 chosen in (3.1). 

Remark2. If n = N ,  S, is the sum of N independent random variables. If in 
this case the variables have the same distribution, the remainder term in Theorem 
agrees with the one obtained by Ess6en [3] (cf. Feller [4], p. 542). 
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Remark 3. If the set of variables (X1, X2, . . . ,  XN) does not satisfy the nor- 
malizing conditions (1.1) and (1.2), we can easily obtain a new set (X[, X~, ..., X}) 
which does satisfy (1.1) and (1.2), by a linear transformation. Application of the 
result of the theorem to this new set of variables gives, in terms of the original 
variables 

p (  S . - n #  < x ) - ~ ( x )  
/ r l  s l_tO N . -  

max E IXk- N 3 60 l<-k<~U 

1 N 
where ,Uk=EX k,/~=~f ~ ,u k and ak 2 =Var  Xk. 

~' k = l  

5. We will now indicate how this theoretical result may be used when estima- 
ting the mean # of a finite universe by two-stage sampling. 

Let the universe consist of N primary units P~, P2, ..., PN, each of which consists 
of M1, M2 . . . . .  M~r secondary units respectively. Every secondary unit in Pk is 
characterized by a real number akj, I < j < M k ,  l<_k<N. The object of the 
statistical experiment is to estimate the mean 

1 N Mt~ N 

# = ~ k _ ~ l  E % ,  where M = E M k  
= j = l  k = l  

is the total number of secondary units in the universe. 

Let now Z k be the sum of the numbers % obtained by a random selection of 

S k n k secondary units out of Pk, l < k < N .  If mk=~, .  ~ % is the mean and 2 
1 M~ k j=l 

is the variance of Pk then EZk=n  kink and V a r Z k =  M k -  1 ~ (akj - mk)z 
j = l  

nk (Mk-- nk) 2 
S k �9 M~ 

NM~ 
We now put X k - Zk and apply the Theorem to the set (X1, X2, ..., XN). 

M n k 

N2 Mk(Mk--nk) 2 I fSnis the  N 2 -- Var X k = s k. We have/z k = EXk = ~  Mk mk and ak M2 nk 

t7 S, 
sum of n Xk's chosen at random, then E S , = ~ - ~ E X k = n l l  , so #* = ~ -  is an 

unbiased estimate of #, which, according to our theorem, is approximatively 
Gaussian with mean g and variance 

1 [=~ N 2 M k _ n k S ~ + ( l _ f ) k ~ ( N M k m  k #)2] 
M 2 nN k- nk = M 

I am indebted to B. Ros6n for correcting an error in a previous version of this paper. 
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