Transition Probabilities and Contractions of L_{∞}

S. Horowitz

1. Definitions and Notations

A Markov process is defined to be a quadruple (X, Σ, m, P) where (X, Σ, m) is a measure space with positive measure $m, m(X)=1$, and where P is an operator on $L_{1}(m)$ satisfying:
(i) P is a contraction: $\|P\| \leqq 1$,
(ii) P is positive: if $0 \leqq f \in L_{1}(m)$, then $f P \geqq 0$.

The operator adjoint to P is defined on $L_{\infty}(m)$. It will also be denoted by P but will be written to the left of the variable. Thus $\langle f P, g\rangle=\langle f, P g\rangle$ for $f \in L_{1}(m), g \in L_{\infty}(m)$.

The usual probabilistic definition of a Markov process is by a function $P(x, A)$ on $X \times \Sigma$ such that for each $x \in X, P(x, \cdot)$ is a probability measure and for each $A \in \Sigma, P(\cdot, A)$ is a measurable function. Assume that if $m(A)=0$, then $P(x, A)=0$ a.e. m; then $P(x, A)$ induces an operator on $L_{\infty}(m)$ and $L_{1}(m)$ as follows:

$$
\begin{align*}
P f(x) & =\int P(x, d y) f(y), & & f \in L_{\infty}(m), \tag{1.1}\\
\mu P(A) & =\int P(x, A) \mu(d x), & & \mu<m . \tag{1.2}
\end{align*}
$$

A general Markov process need not be induced by a transition probability $P(x, A)$. The process is said to be conservative if

$$
\sum_{n=0}^{\infty} P^{n} f=\left\{\begin{array}{l}
\infty \tag{1.3}\\
0
\end{array} \quad \text { for every } 0 \leqq f \in L_{\infty}(m)\right.
$$

The process is said to be ergodic if

$$
\begin{equation*}
P_{f} \leqq f \Rightarrow f=\text { const. } \tag{1.4}
\end{equation*}
$$

Let $P^{n}=Q_{n}+R_{n}$ where Q_{n} is an integral operator with the kernel $f_{n}(x, y)$, and if K is any integral operator such that $0 \leqq K \leqq R_{n}$ then $K=0$. (See [6], Chapter V.) (X, Σ, m, P) is said to be a Harris process if $Q_{n}>0$ for some integer n, and the process is ergodic and conservative.

If the process is conservative and ergodic and the operator P is induced by a transition probability, then the process is not a Harris process if and only if the measures $P^{n}(x, \cdot)$ are orthogonal to m for almost every x. If P is no longer induced by a transition probability, then the characterization of a Harris process is more complicated.

We shall also define the operator I_{A} for $A \in \Sigma$ by:

$$
\begin{equation*}
I_{A} f(x)=1_{A}(x) \cdot f(x), \quad \mu I_{A}(B)=\mu(A \cap B) \tag{1.5}
\end{equation*}
$$

and the operator:

$$
\begin{equation*}
P_{A}=I_{A} \sum_{n=0}^{\infty}\left(P I_{A c}\right)^{n} P I_{A} . \tag{1.6}
\end{equation*}
$$

It is well known that $\left(A, \Sigma_{A}, m I_{A}, P_{A}\right)$ is a Markov process ([6], Chapter VI).

2. On Spaces Isometric to $L_{\infty}(X, \Sigma, m)$

Given the space $L_{\infty}(X, \Sigma, m)$ let $B=\left\{v \in L_{\infty}^{*} \mid v \geqq 0,\|v\|=1, v(1)=1\right\}$. The set B is convex and compact in the W^{*}-topology, hence by the Krein-Milman Theorem it is the closed convex hull of its extremal points. The following statements are equivalent:
(i) $\tilde{x} \in B$ is an extremal point of B.
(ii) $\forall f, g \in \Sigma, \tilde{x}(f \cdot g)=\tilde{x}(f) \cdot \tilde{x}(g)$.
(iii) $\forall A \in \Sigma, \tilde{x}\left(1_{A}\right)=0$ or 1 .

Let:

$$
\begin{equation*}
\tilde{X}=\left\{\tilde{x} \in B \mid \tilde{x}\left(1_{A}\right)=0 \text { or } 1, \forall A \in \Sigma\right\} . \tag{2.1}
\end{equation*}
$$

\tilde{X} is a compact Hausdorff space in the W^{*}-topology. Let us define the mapping: $\tau: L_{\infty}(X, \Sigma, m) \rightarrow C(\tilde{X})$ by

$$
\begin{equation*}
(\tau f)(\tilde{x})=\tilde{x}(f) . \tag{2.2}
\end{equation*}
$$

τ is an isometric isomorphism and it maps positive functions into positive functions and $\tau(f g)=(\tau f) \cdot(\tau g)$ ([4], Chapter V.8). It is clear that $\tau 1_{A}=1_{\tilde{A}}$ where $\tilde{A} \subset \tilde{X}$. The set \tilde{A} is closed and open.

Lemma 2.1. The adjoint mapping of $\tau: \tau^{*}: C^{*}(\tilde{X}) \rightarrow L_{\infty}^{*}(X, \Sigma, m)$ is an isometric isomorphism. Let us denote $\tilde{m}=\tau^{*-1} m$, then for every measure $\mu \in L_{\infty}^{*}(X, \Sigma, m)$ the measure $\tau^{*-1} \mu$ is absolutely continuous to \tilde{m}, and for every pure charge (a functional on L_{∞} such that the only measure dominated by it is the zero measure) $v \in I_{\infty}^{*}(X, \Sigma, m)$ the measure $\tau^{*-1} v$ is orthogonal to \tilde{m}. In particular, for each $\tilde{x} \in \tilde{X}, \tau^{*-1} \tilde{x}$ is the Dirac measure $\delta_{\tilde{x}}$.

Lemma 2.2. If $\tilde{A} \in \tilde{\Sigma}$, then there exist $\left\{E_{k}\right\},\left\{F_{k}\right\} \subset \Sigma$ such that (i) $E_{k} \searrow$ and $F_{k} \nearrow$, (ii) $\tau 1_{E_{k}} \leqq 1_{\tilde{A}}, \tau 1_{\vec{F}_{k}} \leqq 1_{\tilde{A}}$, (iii) $m\left(E_{k}\right) \searrow \tilde{m}(\tilde{A})$ and $m\left(F_{k}\right) \nearrow \tilde{m}(\tilde{A})$.

In particular, if $m(\tilde{A})=0$, then \tilde{A} is nowhere dense.
Sketch of the Proof of Lemmas 2.1 and 2.2
Let $\tilde{\Sigma}^{\prime}=\left\{\tilde{A} \subset \tilde{X} \mid \tau 1_{A}=1_{\tilde{A}}, A \in \Sigma\right\}$. $\tilde{\Sigma}^{\prime}$ is a field, and the σ-field, $\tilde{\Sigma}$, generated by $\tilde{\Sigma}^{\prime}$ is the Baire σ-field of subsets of \tilde{X}. If $\mu \in L_{\infty}^{*}(X, \Sigma, m)$ is a measure and $\left\{\tilde{A}_{n}\right\} \subset \tilde{\Sigma}^{\prime}$ and $A_{n} \nearrow A$, where $1_{\bar{A}_{n}}=\tau 1_{A_{n}}$, then $\tilde{\mu}\left(\tilde{A_{n}}\right) \nearrow \tilde{\mu}(\tilde{A})$, where $1_{\tilde{A}}=\tau 1_{A}, \tau^{*} \tilde{\mu}=\mu$, and by the Carathéodory extension theorem, we get Lemma 2.2 and the first part of Lemma 2.1.

Let $v \in L_{\infty}^{*}(X, \Sigma, m)$ be a positive pure charge with $v(X)=1$. Then by [8] there exists $A_{n} \searrow \Phi$ such that $v\left(A_{n}\right)=1$. Let $\tau 1_{A_{n}}=1_{\tilde{A}_{n}}, \tilde{A}=\bigcap \tilde{A}_{n}$. Then $\tilde{m}(\tilde{A})=0$ and $\tau^{*-1} v(\tilde{A})=1$, so the second part of Lemma 2.1 is proved.

Lemma 2.3. There exists an isometric isomorphism Λ between $L_{\infty}(X, \Sigma, m)$ and $L_{\infty}(\tilde{X}, \tilde{\Sigma}, \tilde{m})$ which maps positive functions into positive functions and $\Lambda(f g)=$ $(\Lambda f)(\Lambda g)$. Moreover, if $f_{n} \rightarrow f$ a.e. m, then $\Lambda f_{n} \rightarrow \Lambda f$ a.e. \tilde{m}.

Proof. It is sufficient to show that every coset in $L_{\infty}(\tilde{X}, \tilde{\Sigma}, \tilde{m})$ can be represented by a function of $C(\tilde{X})$. Let $\tilde{f} \in L_{\infty}(\tilde{X}, \tilde{\Sigma}, \tilde{m})$, denote $\mathfrak{U}=\{g \mid \tau g \leqq \tilde{f}$ a.e. $\tilde{m}\}$. By Proposition II.4.1 of [12] there exist $\left\{g_{n}\right\} \subset \mathfrak{H}$ such that $g_{n} \nearrow h$ and $h \geqq g$ for each $g \in \mathfrak{A}$. By Egorov's theorem there exist $A_{k} \nearrow X$ such that

$$
\left\|1_{A_{k}} g_{n}-1_{A_{k}} h\right\|_{\infty} \xrightarrow[n \rightarrow \infty]{ } 0
$$

Hence $\tau\left(1_{A_{k}} g_{n}\right) \nearrow \tau\left(1_{A_{k}} h\right)$. Let $1_{\tilde{A}_{k}}=\tau 1_{A_{k}}, \tilde{A}=\bigcup_{k=1}^{\infty} \tilde{A}_{k}$, then $\tilde{m}(\tilde{A})=1$ and $\tau g_{n} \rightarrow \tau h$
on \tilde{A}, hence $\tau \tilde{f} \leqq \tilde{f}$ a.e. \tilde{m}.
Let $\tilde{E}=\{\tilde{f}-\tau h \geqq \varepsilon\}$; assume that $\tilde{m}(\tilde{E})>0$. By Lemma 2.2 there exists a set $\tilde{F} \subset \tilde{E}$ such that $\tau^{-1} 1_{\tilde{F}}=1_{F}$. Hence $h \leqq h+\varepsilon 1_{F} \in \mathfrak{A}$ which contradicts the maximality of h. So, $\tilde{f}=\tau h$ a.e. \tilde{m} and the coset of $L_{\infty}(\tilde{X}, \tilde{\Sigma}, \tilde{m})$ which is represented by \tilde{f} can be represented by $\tau h \in C(\tilde{X})$.

If $f_{n} \rightarrow f$ a.e. m, then by Egorov's theorem there exist $A_{k} \nearrow X$ such that $\left\|1_{A_{k}}\left(f_{n}-f\right)\right\|_{\infty} \rightarrow 0$, hence $\tau\left(1_{A_{k}} f_{n}\right) \rightarrow \tau\left(1_{A_{k}} f\right)$. Let $1_{\bar{A}_{k}}=\tau 1_{A_{k}}, \tilde{A}=\bigcup_{k=1}^{\infty} \tilde{A}_{k}$. Then
$\tau f_{n} \rightarrow \tau f$ on \tilde{A} and $\tilde{m}(\tilde{A})=1$. So, Lemma 2.4 is proved.

Remark. Many results of this section were already noted in [3]. We give them here for completeness in a slightly different approach.

3. The Induced Transition Probability

Let P be a Markov operator on $L_{\infty}(\tilde{X}, \tilde{\Sigma}, \tilde{m})$. Then $\tau P \tau^{-1}=\tilde{P}$ is a Markov operator on $L_{\infty}(\tilde{X}, \tilde{\Sigma}, \tilde{m}) . \tilde{P}$ is a positive contraction on $C(\tilde{X})$.

The adjoint operator of \tilde{P} acts on the regular measures on \tilde{X}. It will also be denoted by \tilde{P}, but will be written to the right of the variable.

Lemma 3.1. The operator \tilde{P} is induced by a transition probability $\tilde{P}(\tilde{x}, \tilde{A})$.
Proof. Let us define the transition probability

$$
\begin{equation*}
\tilde{P}(\tilde{x}, \tilde{A})=\delta_{\tilde{x}} \tilde{P}(\tilde{A}) \tag{3.1}
\end{equation*}
$$

where $\delta_{\tilde{x}}$ is the Dirac measure at $\tilde{x} \in \tilde{X}$ and $\tilde{A} \in \tilde{\Sigma}$.
It is clear that $\tilde{P}(\tilde{x}, \cdot)$ is a measure for all \tilde{x}.
On the other hand, if \tilde{f} is a continuous function, then $\left\langle\delta_{\tilde{x}} \tilde{P}, \tilde{f}\right\rangle=\tilde{P} \tilde{f}(x)$ is also continuous, and the collection $\mathfrak{A}=\left\{\tilde{f} \mid \tilde{f} \in B(\tilde{X}, \tilde{\Sigma}) ;\left\langle\delta_{\tilde{x}} \tilde{P}, \tilde{f}\right\rangle \in B(\tilde{X}, \tilde{\Sigma})\right\}$ is equal to $B(\tilde{X}, \tilde{\Sigma})$, the space of the bounded and $\tilde{\Sigma}$-measurable functions, because \mathfrak{A} contains all the continuous function and is closed under monotonic limits. Hence, if \tilde{f} is measurable, then $\tilde{P} \tilde{f}(x)=\left\langle\delta_{\tilde{x}} \tilde{P}, \tilde{f}\right\rangle$ is also measurable.

In particular, for every $\tilde{A} \in \tilde{\Sigma}, \tilde{P}(\cdot, \tilde{A})$ is a measurable function. Hence, $\tilde{P}(\tilde{x}, \tilde{A})$ defined in (3.1) is indeed a Markov transition probability.

Let us define the functions:

$$
\begin{align*}
& i_{A}(x)=\sum_{n=0}^{\infty}\left(I_{A^{c}} P\right)^{n} 1_{A}(x), \tag{3.2}\\
& j_{A}(x)=\lim _{k \rightarrow \infty} P^{k} i_{A}(x) \tag{3.3}
\end{align*}
$$

We have ([6], Chapter III) $P i_{A} \leqq i_{A}$ and $i_{A} \geqq 1_{A}$. In the case that the process is induced by a transition probability, $P i_{A}(x)$ is the probability that x enters A at least once, $j_{A}(x)$ is the probability that x enters A infinitely many times.

The probabilistic definition of a Harris process is: There exists a set N with $m(N)=0$ such that for each $x \not \equiv N$ and for every set A with $m(A)>0$ we have $j_{A}(x)=1$ (see [7] and [10]).

Theorem 3.2. If the Markov process (X, Σ, m, P) is a Harris process as it is defined in section 1 , then the process induced by the transition probability $\tilde{P}(\tilde{x}, \tilde{A})$ given by Lemma 3.1 is a Harris process in the probabilistic definition.

Proof. Let (X, Σ, m, P) be a Harris process where there is an integer k so that $Q_{k}>0$. Let $q_{k}(x, y)$ be the integral kernel of Q_{k}. Hence, there are two positive numbers ε, δ, so that if we define

$$
E_{x}=\left\{y \mid q_{k}(x, y)>\varepsilon\right\}
$$

then we can find a set A with $m(A)>0$ such that $m\left(E_{x}\right)>\delta$ for each $x \in A$.
Let B be a set with $m(B)>1-\delta / 2$. Then $x \in A \Rightarrow m\left(B \cap E_{x}\right)>\delta / 2$, and therefore:

$$
P^{k} 1_{B}(x) \geqq \int_{B \cap E_{x}} q_{k}(x, y) m(d y) \geqq \varepsilon m\left(B \cap E_{x}\right) \geqq \frac{\varepsilon \delta}{2} 1_{A}(x) \quad \text { a.e. }
$$

Let F be any set with $m(F)>0$, let $B=\left\{x \mid \sum_{j=1}^{n} p^{j} 1_{F}(x) \geqq 1\right\}$. If n is sufficiently large,
then $m(B) \geqq 1-\delta / 2$. Hence:

$$
\sum_{j=1}^{n+k} P^{j} 1_{F} \geqq P^{k} \sum_{j=1}^{n} P^{j} 1_{F} \geqq P^{k} 1_{B} \geqq \frac{\varepsilon \delta}{2} 1_{A}
$$

Let $\tau 1_{A}=1_{\bar{A}}, \tau 1_{F}=1_{\bar{F}}$. We have

$$
\sum_{j=1}^{n+k} \tilde{P}^{j}(\tilde{x}, \tilde{F}) \geqq \frac{\varepsilon \delta}{2} 1_{\tilde{A}}(\tilde{x})
$$

hence for each $\tilde{x} \in \tilde{A}$ there exists an integer $1 \leqq j \leqq n+k$ such that

Hence:

$$
\tilde{P}^{j}(\tilde{x}, \tilde{F}) \geqq \frac{\varepsilon \delta}{2(n+k)}
$$

$$
\tilde{P} i_{\tilde{F}}(\tilde{x}) \geqq \tilde{P}^{j} i_{\tilde{F}}(\tilde{x}) \geqq \tilde{P}^{j} 1_{\tilde{F}}(\tilde{x}) \geqq \frac{\varepsilon \delta}{2(n+k)}
$$

By Lemma 2.3 we have $\sum_{\tilde{m}_{=0}^{\infty}}^{\infty} \tilde{P}^{k}(\tilde{x}, \tilde{A})=\infty$ a.e. \tilde{m} and hence (see [6], Chapter III) $j_{A}(\tilde{x})=1$ a.e. \tilde{m} and $\inf _{\tilde{x} \in A} \tilde{P} \tilde{l}_{\tilde{F}}(x) \geqq \frac{\varepsilon \delta}{2(n+k)}>0$. It follows from Proposition 7 of [2] that for all $\tilde{x} \in \tilde{X}, j_{\tilde{A}}(\tilde{x}) \leqq j_{\tilde{F}}(x)$. In particular $j_{\tilde{A}}(\tilde{x})=1 \Rightarrow j_{\tilde{F}}(\tilde{x})=1$.

Let $\tilde{G} \in \tilde{\Sigma}$ with $\tilde{m}(\tilde{G})>0$, by Lemma 2.1 there exists $\tilde{F} \subset \tilde{G}$ such that $\tau^{-1} 1_{\tilde{F}}=1_{F}$ and $m(F)>0$.

Let $\tilde{N}=\left\{\tilde{x} \mid \tilde{j}_{\tilde{A}}(\tilde{x})<1\right\}$. We have $m(N)=0$ and for each $x \notin N$:

$$
j_{\tilde{G}}(\tilde{x}) \geqq j_{\widetilde{F}}(\tilde{x})=1
$$

So, the process $(\tilde{X}, \tilde{\Sigma}, \tilde{m}, \tilde{P})$ is a Harris process in the probabilistic definition.

Theorem 3．3．If the process induced by the transition probability $\tilde{P}(\tilde{x}, \tilde{A})$ is a Harris process，then the process (X, Σ, m, P) is also a Harris process．

Proof．Let $(\tilde{X}, \tilde{\Sigma}, \tilde{m}, \tilde{P})$ be a Harris process．Then $\tilde{P}^{n}=\tilde{Q}_{n}+\tilde{R}_{n}$ where \tilde{Q}_{n} is an integral operator on $L_{\infty}(\tilde{X}, \tilde{\Sigma}, \tilde{m})$ and for some $n, \tilde{Q}_{n} ⿻ 三 丨=0$ ．Let $Q_{n}=\Lambda^{-1} \tilde{Q}_{n} \Lambda$ ， $R_{n}=A^{-1} \tilde{R}_{n} \Lambda$ ．Then $P^{n}=Q_{n}+R_{n}$ ；clearly $Q_{n} \neq 0$ ．

Let \mathfrak{B} be the field generated by rectangles in $X \times X$ ，let us define the charge π on \mathfrak{B} by $\pi(A \times B)=\left\langle Q_{n} 1_{A}, 1_{B}\right\rangle$ ．Let $\left\{E_{k}\right\} \subset \mathfrak{B}$ where $E_{k}=\bigcup A_{i}^{k} \times B_{i}^{k}$ is a finite union of disjoint rectangles．Let $1_{\tilde{A}_{i}}=\Lambda 1_{A_{i}}, 1_{\tilde{B}_{i}}=\Lambda 1_{B_{i}}, \tilde{E}_{k}=\bigcup_{i} \tilde{A}_{i}^{k} \times \tilde{B}_{i}^{k}, \tilde{\pi}(\tilde{A} \times \tilde{B})=$ $\left\langle\tilde{Q}_{n} 1_{\tilde{A}}, 1_{\tilde{B}}\right\rangle$ ．Then it is easy to see that $\tilde{\pi}$ can be extended to a measure on $\tilde{\Sigma} \times \tilde{\Sigma}$ ， and $\frac{d \tilde{\pi}}{d \tilde{m} \times \tilde{m}}=\tilde{q}_{n}(\tilde{x}, \tilde{y})$ where $\tilde{q}_{n}(\tilde{x}, \tilde{y})$ is the integral kernel of the operator \tilde{Q}_{n} （for details see［6］，Chapter V）．But

Let $E_{k} \searrow \Phi$ ，then

$$
\pi\left(E_{k}\right)=\sum_{i}\left\langle Q_{n} 1_{A_{i}^{k}}, 1_{B_{i}}\right\rangle=\sum_{i}\left\langle\tilde{Q}_{n} 1_{\tilde{A}_{k}^{k}}, 1_{\tilde{B}_{i}}\right\rangle=\tilde{\pi}\left(\tilde{E}_{k}\right) .
$$

$$
\tilde{m} \times \tilde{m}\left(\tilde{E}_{k}\right)=\sum_{i} m\left(\tilde{A}_{i}^{k}\right) \tilde{m}\left(\tilde{B}_{i}^{k}\right)=\sum_{i} m\left(A_{i}^{k}\right) m\left(B_{i}^{k}\right)=m \times m\left(E_{k}\right) \searrow 0
$$

and therefore $\pi\left(E_{k}\right)=\tilde{\pi}\left(\tilde{E}_{k}\right) \searrow 0$ ，because $\tilde{\pi}<\tilde{m} \times \tilde{m}$ ．
By the Extension Theorem for measures，π can be extended as a measure on $\Sigma \times \Sigma$ ．Let $F \in \Sigma \times \Sigma$ with $m \times m(F)=0$ ，then for each $\delta>0$ there exists a set $E=\bigcup_{i} A_{i} \times B_{i}$ ，a countable union of rectangles with $E \supset F$ and $m \times m(E)<\delta$ ．Let $\tilde{E}=\bigcup_{i} \tilde{A}_{i} \times \tilde{B}_{i}$ ，then $\tilde{m} \times \tilde{m}(\tilde{E})<\delta$ ．But $\tilde{\pi}<\tilde{m} \times \tilde{m}$ and for each $\varepsilon>0$ ，if δ is small enough，we have $\tilde{\pi}(\tilde{E})<\varepsilon$ ．Hence：

$$
\pi(F) \leqq \pi(E)=\sum_{i}\left\langle Q_{n} 1_{A_{i}}, 1_{B_{i}}\right\rangle=\sum_{i}\left\langle\tilde{Q}_{n} 1_{\bar{A}_{i}}, 1_{\bar{B}_{i}}\right\rangle=\tilde{\pi}(\tilde{E})<\varepsilon,
$$

but ε is arbitrary，hence $\pi(F)=0$ and $\pi<m \times m$ ．Let $q_{n}=\frac{d \pi}{d m \times m}$ ；it is easy to see that $Q_{n} f(x)=\int q_{n}(x, y) f(y) m(d y)$ ，hence Q_{n} is an integral operator and $P^{n}=Q_{n}+R_{n}$ ．Thus (X, Σ, m, P) is a Harris process．

Theorem 3．4．Let (X, Σ, m, P) be an ergodic and conservative Markov process， then the following are equivalent：
（a）The process is a Harris process．
（b）There exists a set A and an integer n ，and $\varepsilon>0, \alpha>0$ such that for each set B with $m(B)>1-\varepsilon$ we have $P^{n} 1_{B} \geqq \alpha 1_{A}$ a．e．
（c）There exists a set A such that for each set E with $m(E)>0$ there exists an integer n and $\alpha>0$（ n and α may depend on E ）such that $\sum_{k=1}^{n} P^{k} 1_{E} \geqq \alpha 1_{A}$ a．e．
（d）The same as（c）but only if each $E \subset A$ with $m(E)>0$ ．
Proof．（a）\Rightarrow（b）and（b）\Rightarrow（c）：See the proof of Theorem 3．2．（c）\Rightarrow（d）trivial． （d）\Rightarrow（a）：for each $E \subset A$ we have $\sum_{k=1}^{n} P^{k} 1_{E} \geqq \alpha 1_{A}$ a．e．for some n and α ，hence
we have

$$
\sum_{k=1}^{n} \tilde{P} 1_{\tilde{E}}(\tilde{x}) \geqq \alpha 1_{\tilde{A}}(\tilde{x})
$$

for all $\tilde{x} \in \tilde{X}$ where $1_{\tilde{\mathcal{E}}}=\tau 1_{E}, 1_{\tilde{A}}=\tau 1_{A}$. If the process induced by the transition probability $\tilde{P}(\tilde{x}, \tilde{A})$ is not a Harris process, then by [6], Chapter V, Theorem A, for almost every \tilde{x} there exists a set $\tilde{A}_{\tilde{x}}$ with $\tilde{m}\left(\tilde{A}_{\tilde{x}}\right)=1$ and $\sum_{n=1}^{\infty} \tilde{P}^{n}\left(\tilde{x}, \tilde{A}_{\tilde{x}}\right)=0$. In particular, we can find a $\tilde{x} \in \tilde{A}$ and a set $\tilde{E} \subset \tilde{A} \cap \tilde{A}_{\tilde{x}}$ with $\tilde{E} \in \tilde{\Sigma}^{1}$ and $\tilde{m}(\tilde{E})>0$ (by Lemma 2.2), hence $\sum_{n=1}^{\infty} \tilde{P}^{n}(\tilde{x}, \tilde{E})=0$, a contradiction. So, $(\tilde{X}, \tilde{\Sigma}, \tilde{m}, \tilde{P})$ is a Harris process and by Theorem $3.3(X, \Sigma, m, P)$ is a Harris process.

Remark. The condition (d) of this theorem is weaker then the condition given in [11]. Hence, the condition given there implies that the process is a Harris process.

4. On Quasi-Compact Operators on L_{∞} (m)

In [1] some conditions are given on the operator ${ }^{A} T$, in the notation of that paper. We are going to prove that these conditions are equivalent to quasicompactness.

Theorem 4.1. Let (X, Σ, m, P) be an ergodic and conservative Markov process. Then the following are equivalent:
(a) There exists no invariant pure charge ${ }^{1}$.
(b) Let R be a contraction on $L_{\infty}(m)$ with $0 \leqq R \leqq P$ and $R 1 \neq 1$ (for example $R=I_{A} P$ where $\left.m(A)>0\right)$. Then $\left\|R^{n}\right\|_{\infty} \searrow 0$.
(c) Let R be as in (b). Then $\sum_{n=1}^{\infty} R^{n} 1 \in L_{\infty}(m)$.
(d) There exists a unique functional $\mu \in L_{\infty}^{*}(m)$ such that $\mu P=\mu$ and μ is a measure equivalent to m.
(e) Let μ be an invariant measure and denote

$$
\begin{equation*}
L_{\infty}^{0}(m)=\left\{f \in L_{\infty}(m) \mid \int f d \mu=0\right\} . \tag{4.1}
\end{equation*}
$$

Then $\overline{(I-P) L_{\infty}(m)}=L_{\infty}^{0}(m)$.
(f) For each $f \in L_{\infty}(m)$ we have $\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k} f-\int f d \mu\right\|_{\infty} \xrightarrow[n \rightarrow \infty]{ } 0$ where μ is an
ariant measure. invariant measure.
(g) The process is a Harris process and there exists no invariant pure charge.
(h) P is a quasi-compact operator on $L_{\infty}(m)$.
(i) There exists invariant measure μ and $(I-P) L_{\infty}(m)=L_{\infty}^{0}(m)$ where $L_{\infty}^{0}(m)$ is defined in (4.1).
(j) $\frac{1}{n} \sum_{k=1}^{n} P^{k}$ converges in the operator norm to a projection of $L_{\infty}(m)$ on the one dimensional space of the constants.

[^0]Proof. (a) \Rightarrow (b): Let $v \in L_{\infty}^{*}(m)$ with $v R=v$, then $v P \geqq v R=v \Rightarrow \nu P=v$. Let $v=v_{1}+v_{2}$ where v_{1} is a measure and v_{2} is a pure charge. Then $v_{1} P \geqq v_{1} \Rightarrow v_{1} P=$ $v_{1} \Rightarrow v_{2} P=v_{2} \Rightarrow v_{2}=0$ and v is a measure, equivalent to m, because of the ergodicity of the process. But $m(\{R 1<1\})>0$, hence $\left\langle v R_{1} 1\right\rangle=\left\langle v_{1} R 1\right\rangle\left\langle\left\langle v_{1} 1\right\rangle\right.$ a contradiction, hence $v R=v \Rightarrow v=0$. Consider the orthogonal complement of the closure of the range of the operator $I-R$, i.e.

$$
\overline{(I-R) L_{\infty}(m)^{\perp}}=\left\{v \in L_{\infty}^{*}(m) \mid v R=v\right\}=\{0\}
$$

By the Hahn-Banach theorem $\overline{(I-R) L_{\infty}(m)}=L_{\infty}(m)$, in particular for each $\varepsilon>0$, there exists a function $g \in L_{\infty}(m)$ such that $\|g-R g-1\|_{\infty} \leqq \varepsilon$. Therefore,

$$
\left\|\frac{1}{n} \sum_{k=1}^{n} R^{k} 1\right\|_{\infty} \leqq\left\|\frac{1}{n} \sum_{k=1}^{n} R^{k}(1-g+R g)\right\|_{\infty}+\left\|\frac{1}{n} \sum_{k=1}^{n} R^{k}(g-R g)\right\|_{\infty} \leqq \varepsilon+\frac{2\|g\|_{\infty}}{n},
$$

but $\frac{2\|g\|_{\infty}}{n}$ tends to zero and ε is arbitrary, hence $\left\|\frac{1}{n} \sum_{k=1}^{n} R^{k} 1\right\|_{\infty} \xrightarrow[n \rightarrow \infty]{ } 0$. But $R^{n} 1$ is a decreasing sequence and R is a positive operator, hence

$$
\left\|R^{n}\right\|_{\infty}=\left\|R^{n} 1\right\|_{\infty} \leqq\left\|\frac{1}{n} \sum_{k=1}^{n} R^{k} 1\right\|_{\infty} \xrightarrow[n \rightarrow \infty]{ } 0
$$

(b) \Rightarrow (c): $\left\|R^{n}\right\|_{\infty} \searrow 0$, hence the operator R has no spectrum points on the unit circle. In particular 1 is not a spectrum point and $(I-R)^{-1}$ is a bounded operator on $L_{\infty}(m)$. Hence, there exists a function $g \in L_{\infty}(m)$ such that $(I-R) g=1$, thus:

$$
\left\|\sum_{n=1}^{N} R^{n} 1\right\|_{\infty}=\left\|\sum_{n=1}^{N} R^{n}(I-R) g\right\|_{\infty}=\left\|R g-R^{N+1} g\right\|_{\infty} \leqq 2\|g\|_{\infty}
$$

(c) \Rightarrow (d): Assume that there exists an invariant pure charge v, so there exists a set A with $m(A)<1$ such that $v I_{A}=I_{A}$.

Let $R=I_{A} P$, hence $v R=v$ and $0 \leqq R \leqq P, R 1 \neq 0$. Thus $v\left(\sum_{n=1}^{N} R^{n} 1\right)=N \cdot v(1)$, but $\sum_{n=1}^{\infty} R^{n} 1$ is bounded, therefore $v=0$. The set $\left\{v \in L_{\infty}^{*}(m) \mid v(1)=1, v>0\right\}$ is convex and compact in the weak* topology and P maps this set into itself. Hence by the Fixed Point Theorem there exists a functional $\mu \in L_{\infty}^{*}(m)$ such that $\mu P=\mu$. Let $\mu=\mu_{1}+\mu_{2}$ where μ_{1} is a measure and μ_{2} is a pure charge, then:

$$
\mu_{1} P \geqq \mu_{1} \Rightarrow \mu_{1} P=\mu_{1} \Rightarrow \mu_{2} P=\mu_{2} \Rightarrow \mu_{2}=0 \Rightarrow \mu=\mu_{1}
$$

By the ergodicity of the process, μ is unique and equivalent to m.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$: By the Hahn-Banach Theorem:

$$
\overline{(I-P) L_{\infty}(m)^{\perp}}=\{v \mid v P=v\}=\{\alpha \mu\} .
$$

But $L_{\infty}^{0}(m)^{\perp}=\{\alpha \mu\}$, hence $\overline{(I-P) L_{\infty}(m)}=L_{\infty}^{0}$.
$(\mathrm{e}) \Rightarrow(f)$: For any $f \in L_{\infty}(m)$ we have $\left(f-\int f d \mu\right) \in L_{\infty}^{0}(m)$, hence for each $\varepsilon>0$ there exists a function g such that $\left\|f-\int f d \mu-g+P g\right\| \leqq \varepsilon$. Therefore:

$$
\begin{aligned}
\| \frac{1}{n} \sum_{k=1}^{n} P^{k}- & \int f d \mu\left\|_{\infty}=\right\| \frac{1}{n} \sum_{k=1}^{n} P^{k}\left(f-\int f d \mu\right) \|_{\infty} \\
\leqq & \| \frac{1}{n} \sum_{k=1}^{n} P^{k}\left(f-\int f d \mu-g+P g\left\|_{\infty}+\right\| \frac{1}{n} \sum_{k=1}^{n} P^{k}(g-P g) \|_{\infty} \leqq \varepsilon+\frac{2\|g\|_{\infty}}{n},\right.
\end{aligned}
$$

but ε is arbitrary and $2\|g\|_{\infty} \cdot n^{-1}$ tends to zero. Hence

$$
\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k} f-\int f d \mu\right\|_{\infty} \xrightarrow[n \rightarrow \infty]{ } 0
$$

(f) \Rightarrow (g): For every A there exists an integer n such that $\frac{1}{n} \sum_{k=1}^{n} P^{k} 1_{A} \geqq \frac{1}{2} \mu(A)$. In particular $\sum_{k=1}^{n} P^{k} 1_{A}>\alpha>0$ and by Theorem 3.4 the process is a Harris process. Assume that v is an invariant pure charge, then there exists a set A with $v(A)=0$. On the other hand $v\left(\sum_{k=1}^{n} P^{k} 1_{A}\right)>\alpha>0$, a contradiction.
$(\mathrm{g}) \Rightarrow(\mathrm{h})$: Let us first prove the following propositions.
Proposition 1. Let the process be a Harris process, then there exists an integer k such that P^{k} can be written as a sum $P^{k}=Q+R$ where Q is a positive compact operator on $L_{\infty}(m)(0<Q<P)$ and P^{k} is ergodic.

Proof. There exists an integer n such that P^{n} can be written as $P^{n}=Q_{1}+R_{1}$ where Q is an integral operator with the bounded kernel $0 \neq q(x, y)<K$. By Theorem D, Chapter V of [6] there exists a minimal set W and an integer d such that $1_{W}+P 1_{W}+\cdots+P^{d-1} 1_{W}=1$ and $P^{d} 1_{W}=1_{W}$. Hence $P^{j d+1}$ is ergodic for each j. Take $j d \geqq 2 n$ and $k=j d+1$. Then P^{k} is ergodic and

$$
P^{k}=P^{k-2 n} P^{2 n}=P^{k-2 n}\left(Q_{1}+R_{1}\right)^{2}=P^{k-2 n} Q_{1}^{2}+P^{k-2 n}\left(Q_{1} R_{1}+R_{1} Q_{1}+R_{1}^{2}\right)
$$

Denote

$$
Q=P^{k-2 n} Q_{1}^{2}, \quad R=P^{k-2 n}\left(Q_{1} R_{1}+R_{1} Q_{1}+R_{1}^{2}\right)
$$

Q_{1}^{2} and therefore also Q is a compact operator on $L_{\infty}(m)$.
Proposition 2. If P has no invariant pure charge, then P^{k}, for any integer k, has the same property.

Proof. Assume that v is a pure charge and $v=v P^{k}$, then

$$
0=v\left(I-P^{k}\right)=\sum_{n=0}^{k-1} v P^{n}(I-P)
$$

i. e. $\sum_{n=0}^{k-1} v P^{n}$ is a functional invariant under P. This implies that $\sum_{n=0}^{k-1} v P^{n}$ is a measure and therefore there exists $0<n<k$ such that $v P^{n}$ is not a pure charge and hence $v P^{k}=v P^{n} P^{k-n}$ is not a pure charge, a contradiction.

Proof of $(\mathrm{g}) \Rightarrow(\mathrm{h})$. According to the previous propositions, we can find an integer k such that $P^{k}=Q+R$ where P^{k} is ergodic and has no invariant pure charges, Q is compact and $R 1 \neq 1$. Define $Q_{n}=P^{n k}-R^{n}$. It is easy to see that Q_{n} is a compact operator and the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ shows that $\left\|R^{n}\right\|_{\infty} \searrow 0$. So, if n is sufficiently large, then $P^{n k}=Q_{n}+R^{n}$ where Q_{n} is compact and $\left\|R^{n}\right\|<1$. Thus P is a quasi-compact operator on $L_{\infty}(m)$ (see [12], Lemma V.3.1).
$(\mathrm{h}) \Rightarrow(\mathrm{i}): P$ is a quasi-compact operator, hence there exists an integer k such that $P^{k}=Q+R$ where Q is compact and $\|R\|_{\infty}<1$.

Let v be any charge. Then $v Q$ is a measure because if $A_{n} \searrow \emptyset$, then the compactness of Q implies that $\left\|Q 1_{A_{n}}\right\|_{\infty} \rightarrow 0$ and therefore $v Q\left(A_{n}\right) \searrow 0$.

Let v be an invariant pure charge. Then we have $v Q=0$ and $v R=v$, but $\langle v, R 1\rangle<1$, a contradiction. Thus, there is no invariant pure charge and the proof of (c) \Rightarrow (d) gives that there exists an invariant measure μ, and the space $L_{\infty}^{0}(m)$ is invariant under P. It is clear that P is a quasi-compact operator on $L_{\infty}^{0}(m)$ and hence every spectrum points on the unit circle is an eigenvalue, but 1 is not an eigenvalue (because of the ergodicity), hence $(I-P)^{-1}$ is a bounded operator on $L_{\infty}^{0}(m)$. So, $(I-P) L_{\infty}^{0}(m)=L_{\infty}^{0}(m)$.
(i) $\Rightarrow(\mathrm{j}):$ Let $f \in L_{\infty}(m)$. Then $f-\int f d \mu \in L_{\infty}^{0}(m)$, and there exists $g \in L_{\infty}^{0}(m)$ such that $g-P g=f-\int f d \mu$ and $\|g\|_{\infty} \leqq 2\left\|(I-P)^{-1}\right\|_{L_{\infty}}\|f\|_{\infty}$. Hence:

$$
\begin{aligned}
\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k} f-\int f d \mu\right\|_{\infty} & =\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k}\left(f-\int f d \mu\right)\right\|_{\infty} \\
& =\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k}(I-P) g\right\| \leqq \frac{2}{n}\|g\|_{\infty} \leqq \frac{4}{n}\left\|(I-P)^{-1}\right\|_{L_{\infty}^{0}}\|f\|_{\infty}
\end{aligned}
$$

Thus $\frac{1}{n} \sum_{k=1}^{n} P^{k} f$ converges to $\int f d \mu$ uniformly in the unit ball of $L_{\infty}(m)$.
$(\mathrm{j}) \Rightarrow(\mathrm{a}): \frac{1}{n} \sum_{k=1}^{n} P^{k} f$ converges in $L_{\infty}(m)$ and $\frac{1}{n} \sum_{k=1}^{n} P^{k} 1=1$, therefore $\lim \frac{1}{n} \sum_{k=1}^{n} m P^{k}=\mu$ where μ is an invariant measure and $\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k} 1_{A}-\mu(A)\right\|_{\infty} \rightarrow 0$ for every set A. Assume that v is an invariant pure charge. Then there exists a set A such that $\mu(A)>0$ and $v(A)=0$. So, $\frac{1}{n} \sum_{k=1}^{n} v P^{k}(A)=0$. But,

$$
\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k} 1_{A}-\mu(A)\right\|_{\infty} \xrightarrow[n \rightarrow \infty]{ } 0 \Rightarrow \frac{1}{n} \sum_{k=1}^{n} v P^{k}(A) \xrightarrow[n \rightarrow \infty]{ } \mu(A)
$$

a contradiction. Thus, there exist no invariant pure charges.
Remark. Some parts of this theorem can be found in [1] and [5]; we give them here for completeness.

5. On Sets \boldsymbol{A} where P_{A} Is Quasi-Compact

A set A is called "bounded" if P_{A} is quasi-compact. Such sets are discussed in [1]; it is proved there that if $\operatorname{supp} f \subset A$ and $\int f d \mu=0$ where $\mu P_{A}=\mu$ then
$\left\|\sum_{n=1}^{N} P^{n} f\right\|_{\infty}$ is bounded. We shall prove that such sets exist if and only if the process is a Harris process.

Lemma 5.1. $A P_{A} \Lambda^{-1}=I_{\tilde{A}} \sum_{n=0}^{\infty} \tilde{P}\left(I_{\tilde{A}} \tilde{P}\right) I_{\tilde{A}}$ where $I_{\bar{A}}=\Lambda 1_{A}$.
Proof. Let $f \geqq 0$ and supp $f \subset A$, then

$$
I_{A} \sum_{n=0}^{N} P\left(I_{A^{c}} P\right)^{n} I_{A} f \nearrow P_{A} f \quad \text { and } \quad A I_{A} \sum_{n=0}^{N} P\left(I_{A^{c}} P\right)^{n} I_{A} \Lambda^{-1}=I_{\tilde{A}} \sum_{n=0}^{N} \tilde{P}\left(I_{\tilde{A}^{c}} \tilde{P}\right)^{n} I_{\tilde{A}}
$$

and Lemma 2.3 gives $\Lambda P_{A} \Lambda^{-1} \tilde{f}=I_{\tilde{A}} \sum_{n=0}^{\infty} \tilde{P}\left(I_{\tilde{A} c} \tilde{P}\right)^{n} I_{\tilde{A}} \tilde{f}$ where $\tilde{f}=\Lambda f$.
Denote $\tilde{P}_{\tilde{A}}=I_{\tilde{A}} \sum_{n=0}^{N} \tilde{P}\left(I_{\tilde{A}^{c}} \tilde{P}\right)^{n} I_{\tilde{A}}$. This is an operator on $L_{\infty}\left(\tilde{A}, \tilde{\Sigma}_{A}, \tilde{m} I_{\tilde{A}}\right)$. It is easy to see that P_{A} is quasi-compact if and only if $\tilde{P}_{\bar{A}}$ is quasi-compact.

Theorem 5.2. A process has "bounded" sets if and only if it is a Harris process.
Proof. P_{A} is quasi-compact and so is \tilde{P}_{A}. By Theorem $4.1 \tilde{P}_{A}$ is a Harris operator. Assume that \tilde{P} is not a Harris operator, then for almost every $\tilde{x} \in X$ there exists a set $\tilde{E}_{\tilde{x}}$ with $\tilde{m}\left(\tilde{E}_{\tilde{x}}\right)=1$ and $\sum_{n=1}^{\infty} \tilde{P}^{n}\left(\tilde{x}, \tilde{E}_{\tilde{x}}\right)=0$. It is easy to see that for almost every $\tilde{x} \in A$ we have $\sum_{n=1}^{\infty} \tilde{P}_{\tilde{A}}^{n}\left(\tilde{x}_{1} \tilde{E}_{x} \cap \tilde{A}\right)=0$ where $\tilde{P}_{\tilde{A}}(x, E)$ is the transition probability which induces the operator $\tilde{P}_{\tilde{A}}$. Hence, $\tilde{P}_{\tilde{A}}$ is not a Harris operator, a contradiction. Thus \tilde{P} is a Harris operator, and by Theorem $3.3 P$ is also a Harris operator.

Conversely, if P is a Harris operator, then by the proof of Theorem 3.2 there exists a set A such that for every set E with $m(E)>0$ there is an integer n and $\alpha>0$ such that $\sum_{k=1}^{n} P^{k} 1_{E} \geqq \alpha 1_{A}$ a.e. By Lemma 3 of [5] we have that for each $E \subset A$ with $m(E)>0$,

$$
\sum_{k=1}^{n} P_{A}^{k} 1_{E} \geqq I_{A} \sum_{k=1}^{n} P^{k} 1_{E} \geqq \alpha 1_{A} .
$$

Let v be a pure charge invariant under P_{A}, then there exists a set $E \subset A$ with $m(E)>0$ but $v(A)=0$. Hence, $\alpha v(A) \leqq \sum_{k=1}^{n} v P_{A}^{k}(E)=n v(E)=0$, a contradiction. Thus, P_{A} has no invariant pure charges and by Theorem 4.1 P_{A} is quasi-compact and A is a "bounded" set.

In [1] is proved that if the function f is supported on a "bounded" set and $\int f d \mu=0$ where μ is the invariant measure then

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} P^{k} f\right\|_{\|_{\infty}} \leqq K\|f\|_{\infty} \tag{5.1}
\end{equation*}
$$

where K is a constant independent on n. Theorem 5.2 shows that this is proved only for Harris process. The next theorem will show that (5.1) can be satisfied only in the case of a Harris process.

Theorem 5.3. Let μ be a σ-finite invariant measure. Let A be a set with $\mu(A)=1$ and for each $E \subset A$ we have

$$
\left\|\sum_{k=1}^{n} P^{k}\left(1_{A}-\frac{1}{\mu(E)} 1_{E}\right)\right\|_{\infty} \leqq K,
$$

where K is a constant independent on n. Then the process is a Harris process.
Proof. By Egorov's Theorem there exists a set $B \subset A$ such that $\sum_{k=1}^{n} P^{k} 1_{A} \xrightarrow[n \rightarrow \infty]{ } \infty$ uniformly on B. Hence, there exists an integer n such that $\sum_{k=1}^{n} P^{k} 1_{A} \geqq 2 K 1_{B}$. Therefore $2 K 1_{B} \leqq \sum_{k=1}^{n} P^{k} 1_{A} \leqq K+\frac{1}{\mu(E)} \sum_{k=1}^{n} P^{k} 1_{E}$ or $\sum_{k=1}^{n} P^{k} 1_{E} \geqq \mu(E) K 1_{B}$ and by Theorem 3.4 the process is a Harris process.

Remark. In [13] the Property (5.1) is proved for random walks assuming that the measure of the random walk is not orthogonal to the Lebesgue Measure. Theorem 5.3 shows that this assumption is necessary.

6. On the Existence of Finite Invariant Measures

In this section we shall prove Theorem E of [6], Chapter IV by methods developed in this paper.

Theorem 6.1. The following are equivalent:
(a) There exists a finite invariant measure μ equivalent to m.
(b) There exists no set A with $m(A)>0$ for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{k=1}^{n} P^{k} 1_{A}\right\|_{\infty}=0 \tag{6.1}
\end{equation*}
$$

Proof. We need only prove that $(\mathrm{b}) \Rightarrow(\mathrm{a})$. It is sufficient to prove that if there exists no finite invariant measure then there exists a set A such that $\nu \in L_{\infty}^{*}(m)$ and $v P=v$ then $v(A)=0$ and this implies (6.1). (See [9], Theorem 1.)

Assume that for each A with $m(A)>0$ there exists $v \in L_{\infty}^{*}(m)$ with $v(A)>0$ and $v P=v^{2}$ If $\tilde{A} \in \tilde{\Sigma}$ and $\tilde{m}(\tilde{A})>0$ then there exist a set $A \in \Sigma$ such that $m\left(A_{1}\right)>0$ and $\tau 1_{A_{1}} \leqq 1_{\hat{A}}$ (by the results of Section 2). Hence, by our assumption there exists $v \in L_{\infty}^{*}(m)$ such that $v\left(A_{1}\right)>0$ and $v P=v$. This implies $\tilde{v}(\tilde{A})>0$ and $\tilde{v} \tilde{P}=\tilde{v}$ where \tilde{v} is the measure $\tau^{*-1} v$. Consider the set

$$
\tilde{E}=\left\{\tilde{x} \left\lvert\, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{P}^{k} 1_{\tilde{A}}(\tilde{x})\right. \text { exists }\right\} .
$$

Assume $\tilde{m}\left(\tilde{E}^{c}\right)>0$, then by our assumption there exists a measure \tilde{v} with $v\left(E^{c}\right)>0$ and $\tilde{v} \tilde{P}=\tilde{v}$. There are two possibilities:
(i) $\tilde{v}(\tilde{A})>0$. Let us observe the Markov process $(\tilde{X}, \tilde{\Sigma}, \tilde{v}, \tilde{P})$. By Birkhoff's Ergodic Theorem (Theorem A of [6], Chapter VII)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{P}^{k} 1_{\tilde{A}}(\tilde{x}) \text { exists a.e. } \tilde{v},
$$

in particular there exists $\tilde{x} \in \tilde{E}^{c}$ such that the limit exists, a contradiction.

[^1](ii) $\tilde{v}(\tilde{A})=0 . \tilde{v} \tilde{P}=\tilde{v}$ implies $\sum_{k=1}^{\infty} \tilde{P}^{k} 1_{\tilde{A}}=0$ a.e. \tilde{v}, in particular there exists $\tilde{x} \in \tilde{E}^{c}$ such that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{P}^{k} 1_{\tilde{A}}(\tilde{x})=0$. A contradiction.

Hence: $\tilde{m}(\tilde{E})=1$. Consider now the set $\tilde{E} \supset \tilde{E}_{1}=\left\{\tilde{x} \left\lvert\, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{P}^{k} 1_{\tilde{A}}(\tilde{x})>0\right.\right\}$.
Assume $\tilde{m}\left(\tilde{E}_{1}^{c} \cap \tilde{A}\right)>0$, then by our assumption there exists a measure \tilde{v} with $\tilde{v}\left(\tilde{E}_{1}^{c} \cap \tilde{A}\right)>0$ and $\tilde{v} \tilde{P}=\tilde{v}$. By Birkhoff's Ergodic Theorem $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{n=1}^{n} \tilde{P}^{k} 1_{\tilde{A}}(\tilde{x})$ exists and is positive a.e. \tilde{v}, in particular there exists $\tilde{x} \in \tilde{E}_{1}^{c} \cap \tilde{A}$ such that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{P}^{k} 1_{\tilde{A}}(\tilde{x})>0$, a contradiction. Hence $m\left(\tilde{E}_{1}\right)>0\left(\right.$ or $\left.\tilde{m}\left(\tilde{E}_{1} \cap \tilde{A}\right)=\tilde{m}(\tilde{A})\right)$. By the Dominated Convergence Theorem the limit $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{m} \tilde{P}^{k}(\tilde{A})$ exists and is
positive, for each $\tilde{A} \in \tilde{\Sigma}$ with $\tilde{m}(\tilde{A})>0$.

Define $\tilde{\mu}(\tilde{A})=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \tilde{m} \tilde{P}^{k}(\tilde{A}) . \tilde{\mu}$ is a finite invariant measure equivalent to \tilde{m}, and hence $\mu=\tau^{*} \tilde{\mu}$ is a finite invariant measure equivalent to m. So Theorem 6.1 is proved.

The author wishes to thank Prof. A. Brunel for valuable conversations.

References

1. Brunel, A.: Chaînes abstraites de Markov vérifiant une condition de Orey; extension à ce cas d'un théorème ergodique de M. Métivier. Z. Wahrscheinlichkeitstheorie verw. Geb. 19, 323-329 (1971).
2. Chung, K. L.: The general theory of Markov processes according to Döblin. Z. Wahrscheinlichkeitstheorie verw. Geb. 2, 230-254 (1964).
3. Doob, J.L.: A ratio operator limit theorem. Z. Wahrscheinlichkeitstheorie verw. Geb. 1, 288-294 (1963).
4. Dunford, N. and J. Schwartz: Linear operators, vol. I. New York: Interscience 1958.
5. Foguel, S. R.: Ratio limit theorems for Markov processes. Israel J. Math. 7, 284-285 (1969).
6. Foguel, S. R.: The ergodic theory of Markov processes. New-York: Van-Nostrand 1969.
7. Harris, T.E.: The existence of stationary measures for certain Markov processes. Third Berkeley Symp. Math. Statist. Prob. 2, 113-124 (1956).
8. Hewitt, E. and K. Yosida: Finitely additive measures. Trans. Amer. math. Soc. 72, 46-66 (1952).
9. Horowitz, S.: L_{∞}-limit theorems for Markov processes. Israel J. Math. 7, 60-62 (1969).
10. Jain, N.C.: A note on invariant measures. Ann. math. Statistics 37, 729-732 (1966).
11. Métivier, M.: Existence of an invariant measure and an Ornstein ergodic theorem. Ann. Math. Statist. 40, 79-96 (1969).
12. Nevell, J.: The calculus of probability. San Francisco: Holden-Day 1965.
13. Ornstein, D.: Random Walk I. Trans. Amer. math. Soc. 138, 1-43 (1969).

S. Horowitz
Department of Mathematical Sciences
Tel-Aviv University
Ramat-Aviv, Tel-Aviv
Israel

[^0]: ${ }^{1}$ It is sufficient to consider only positive charges, because if v is any invariant charge, observe the positive and negative parts of it, $v=v^{+}-v^{-}$. But $v P=v_{,} v^{+} P \geqq v^{+}$and $v^{-} P \geqq v^{-}$and $P 1=1$ implies $v^{+} P=v^{+}$and $v^{-} P=v^{-}$, hence if there exists any invariant charge (or pure charge) there exists also a positive invariant charge.

[^1]: ${ }^{2}$ By the footnote on p. 268 we may assume that v is positive.

