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Transition Probabilities and Contractions of L,

S. Horowitz

1. Definitions and Notations

A Markov process is defined to be a quadruple (X, 2, m, P) where (X, X, m)
is a measure space with positive measure m, m(X)=1, and where P is an operator
on L, (m) satisfying:

(i) P is a contraction: |P||=1,

(ii) P is positive: if 0< feL,(m), then fP=0.

The operator adjoint to P is defined on L (m). It will also be denoted by P
but will be written to the left of the variable. Thus {fP,g>=<{f,Pg) for
feLy(m), ge L, (m).

The usual probabilistic definition of a Markov process is by a function P(x, 4)
on X x X such that for each xeX, P(x, -) is a probability measure and for each
AeZ, P(-, A) is a measurable function. Assume that if m(4)=0, then P(x, 4)=0
a.e. m; then P(x, A) induces an operator on L (m) and L,{m) as follows:

Pf(x)=[P(x,dy) f(), feLy(m), (L1)
pP(A)=[P(x, ) pdx), p<m. (1.2)

A general Markov process need not be induced by a transition probability P(x, A).
The process is said to be conservative if

o0

> P"f={j)o for every 0= feL, (m). (1.3)

n=0
The process is said to be ergodic if
Pf< f= f=const. (1.4)

Let P"=Q,+ R, where Q, is an integral operator with the kernel f,(x, y), and
if K is any integral operator such that 0 < K <R, then K=0. (See [6], Chapter V.)
(X, Z,m, P) is said to be a Harris process if Q,>0 for some integer n, and the
process is ergodic and conservative.

If the process is conservative and ergodic and the operator P is induced by
a transition probability, then the process is not a Harris process if and only if
the measures P"(x, -) are orthogonal to m for almost every x. If P is no longer
induced by a transition probability, then the characterization of a Harris process
is more complicated.

We shall also define the operator I, for A2 by:
Lif(x)=1,4(x)-f(x), pl(B)=p(AnB), (1.5)
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and the operator:
P=1,) (PL.)SPI,. (1.6)

n=0

It is well known that (4, %,,ml,, B,) is a Markov process ([6], Chapter VI).

2. On Spaces Isometric to L (X, 2, m)

Given the space L, (X, 2, m) let B={veL* |v=0, [v| =1, v(1)=1}. The set B
is convex and compact in the W*-topology, hence by the Krein-Milman Theorem
it is the closed convex hull of its extremal points. The following statements are
equivalent:

(i) XeB is an extremal point of B.
(i) V[, geZ, X(f )=X(f)- %(g).
(i) VAeZ, %(1,)=00r 1.
Let: 3
X={XeB|x(1,)=00r1,VAecZ}. 2.1

X is a compact Hausdorff space in the W*-topology. Let us define the mapping:
1 Lo (X, X, m)— C(X) by o
@ fFR)=X(f). 22)

7 is an isometric isomorphism and it maps positive functions into positive func-
tions and t(fg)=(tf)-(rg) ([4], Chapter V.8). It is clear that t1,=1; where
AcX. The set 4 is closed and open.

Lemma 2.1. The adjoint mapping of t: t*: C*(X)—L* (X, X, m) is an iso-
metric isomorphism. Let us denote i =1*~1 m, then for every measure peL¥ (X, X, m)
the measure t* =1y is absolutely continuous to m, and for every pure charge (a
functional on L, such that the only measure dominated by it is the zero measure)
vel* (X,2,m) the measure t* v is orthogonal to . In particular, for each
%eX, t* 1% is the Dirac measure 5.

Lemma 2.2. If AcZ, then there exist {E,}, {F,}cZX such that (i) E,\ and F /-
(i) T 15, < 13, 715, < 13, (i) m(E) N\ (A) and m(F) ./ i (A4).
In particular, if m(A)=0, then A is nowhere dense.

Sketch of the Proof of Lemmas 2.1 and 2.2

Let $'={dcX|t1,=1;,AeZ}. ¥ is a field, and the o-field, £, generated
by % is the Baire o-field of subsets of X. If ueL* (X, X, m) is a measure and
{Ay<3 and A,/ A, where 13 =71, ,then i(4,)/ fi(d), where 1 ;=1 1, t* ji=p,
and by the Carathéodory extension theorem, we get Lemma 2.2 and the first
part of Lemma 2.1.

Let veL* (X, X, m) be a positive pure charge with v(X)=1. Then by [8] there
exists A,\® such that v(4,)=1. Let 11, =13, A=()4,. Then M(A)=0 and
*~1y(A)=1, so the second part of Lemma 2.1 is proved.

Lemma 2.3. There exists an isometric isomorphism A between L (X, X, m) and

L. (X, 2, m) which maps positive functions into positive functions and A(fg)=
(Af)(Ag). Moreover, if f,~ [ a.e. m, then Af,— Af a.e. fin.
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Proof. 1t is sufficient to show that every coset in L_ (X, X, #) can be repre-
sented by a function of C(X). Let feL (X, Z, i), denote W={g|tg< [ a.e. ).
By Proposition [1.4.1 of [12] there exist {g,} = such that g,/ h and h=zg for
each ge?. By Egorov’s theorem there exist 4,7 X such that

H]‘Akgn— 1Akh”00ﬁ0

Hence t(1 4, g,)/ (14 h). Let 13, =11,,, A= U Ay, then m(4A)=1and tg,—1h
on A, hence fh<fa €. 1.

Let E={f—th>e}; assume that m(E)>0. By Lemma 2.2 there exists a set
FcFE such that t7'1z=1,. Hence h=<h+¢1,e¥ which contradicts the maxi-
mality of h. So, f=1h a.e. i and the coset of L, (X, 2, m) which is represented
by f can be represented by the C(X).

If f,—f a.e m, then by Egorov’s theorem there exist A4, /‘X such that

114, (fi—= N, —0, hence t(l,, fy—>1(ly, f). Let 1z,=11,, A= UA Then
tf,—1f on A and m{A)=1. So, Lemma 2.4 is proved. =

Remark. Many results of this section were already noted in [3]. We give them
here for completeness in a slightly different approach.

3. The Induced Transition Probability

Let P be a Markov operator on L (X, £, ). Then tPt~!=P is a Markov
operator on L (X, £, ). P is a positive contraction on C(X).

The adjoint operator of P acts on the regular measures on X. It will also be
denoted by P, but will be written to the right of the variable.

Lemma 3.1. The operator P is induced by a transition probability P(%, A).
Proof. Let us define the transition probability

B(x, A)=5, P(A) (3.1)
where §; is the Dirac measure at ¥ X and Ae¥.

It is clear that B(%, +) is a measure for all .

On the other hand, if f is a continuous function, then 6P, f>=Pf(x) is
also continuous, and the collection A={f] feB(X 5); <65 P, f>eB(X, %)) is
equal to B(X, ), the space of the bounded and >- measurable functions, because A
contains all the continuous function and is closed under monotonic limits. Hence,
if f is measurable, then P/ (x)={0 P f > is also measurable.

In particular, for every Ae£, P(+, A) is a measurable function. Hence, P(x, A)
defined in (3.1) is indeed a Markov transition probability.

Let us define the functions:

fe o)

igx)=Y (L. Py'1,(x), (3.2)

n=0
()= lim P*i,(x). (3.3)

19*
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We have ([6], Chapter I1I) Pi,<i, and i,=1,. In the case that the process is
induced by a transition probability, Pi,(x) is the probability that x enters 4 at
least once, j,(x) is the probability that x enters A infinitely many times.

The probabilistic definition of a Harris process is: There exists a set N with
m(N)=0 such that for each x¢N and for every set 4 with m{4)>0 we have
Jja(x)=1 (see [7] and [10]).

Theorem 3.2. If the Markov process (X, 2, m, P) is a Harris process as it is
defined in section 1, then the process induced by the transition probability P(X, A)
given by Lemma 3.1 is a Harris process.in the probabilistic definition.

Proof. Let (X, 2, m, P) be a Harris process where there is an integer k so that
0,>0. Let g,(x, y) be the integral kernel of Q,. Hence, there are two positive
pumbers ¢, 0, so that if we define

E.={lax(x, y)>el,
then we can find a set A with m(A4)>0 such that m(E,)> ¢ for each xeA.
Let B be a set with m(B)> 1~ 6/2. Then xe A = m(Bn E, }> /2, and therefore:

P10z | alemd)zemBaE)=S 1,00 ac

BnEs

J

Let F be any set with m(F)>0, let B:{x
then m(B)=1—6/2. Hence:

n+k ) n . 85

y P 1@1)’{2 Pi1,=P* 13371A.

j=1 j=1
Lettl,=14,11p=1F. We have

Ple(x)= 1}. If n is sufficiently large,
=1

n+k~. - S
Pix, Fz—-15(%),
j=1

J

hence for each %€ A there exists an integer 1< j<n+k such that

(%, Bz 0
T 2(n+k)
Hence: 5
N N g
Pip(X) =P ip(X)z P 15(X)2 3 +k)

8

By Lemma 2.3 we have Y’ P*(%, A)=co a.e. m and hence (see [6], Chapter III)
k=0

>0. It follows from Proposition 7 of

k= d
o ~ . ) >
jaX)=1 a.e. i and ;relﬁPlF(x)_ 201k

[2] that for all e X, j;(¥)<j7(x). In particular jz(X)=1 = jz(X)=1.

Let GeZ with m(G)>0, by Lemma 2.1 there exists F< G such that 77! 15=1;
and m(F)>0.

Let N={x]j;(X)<1}. We have m(N)=0 and for each x¢N:

Je(X)z jp(X)=1.

So, the process (X, £, 7, P) is a Harris process in the probabilistic definition.
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Theorem 3.3. If the process induced by the transition probability P(%, 4) is a
Harris process, then the process (X, X, m, P) is also a Harris process.

Proof. Let (X, X, i, P) be a Harris process. Then ~13"= 0,+ R, where Qn is
an integral operator on L (X, %, ) and for some n,Q,%0. Let 0,=A710, 4,
R,=A"'R, A. Then P*=Q,+R,; clearly Q,%0.

Let B be the field generated by rectangles in X x X, let us define the charge n
on B by n(AxB)={Q,1,,15). Let {E;} =B where E,=|) AFx Bf is a finite

union of disjoint rectangles. Let 13,=A1,,, 15,=4 15, E, =) A¥x B, #(4 x B)=
{0,1;,15>. Then it is easy to see that 7 can be extended to a measure on £ x %,

and =§,(%, §) where §,(%, ) is the integral kernel of the operator 0,

dimx i
(for details see [6], Chapter V). But
Tc(Ek):Z <Qn IA’fa 1B’f> =Z <Qn 1.71‘{’ 1E7f> :ﬁ(Ek)
Let E,\ &, then ! '
mxm(E)=Y mAHmBY=Y mA) m(BY)=mxm(E)\0

and therefore n(E,) =7 (E,)\.0, because 7~ x .

By the Extension Theorem for measures, 7 can be extended as a measure on
Zx 2 let FeXx X with mxm(F)=0, then for each §>0 there exists a set
E=| ) A;x B;, a countable union of rectangles with ESF and mxm(E)<4. Let

E=\) A;xB,, then mxm(E)<d. But #<mxm and for each ¢>0, if § is small
enough, we have #(E)<e. Hence:

n(F)Sm(E)=} 0,14, 15> =3 <0, 15, 15> = (E)<e,

dn_. it is easy to
dmxm’ Y
see that Q, f(x)=[4q,(x,y) f(y)m(dy), hence Q, is an integral operator and
P*=Q,+R,. Thus (X, X, m, P) is a Harris process.

Theorem 3.4. Let (X, X, m, P} be an ergodic and conservative Markov process,
then the following are equivalent:

but ¢ is arbitrary, hence n(F)=0 and t<mxm. Let q,=

(@) The process is a Harris process.

(b) There exists a set A and an integer n, and ¢>0, a>0 such that for each
set B with m(B)>1—¢ we have P" 1201, a.c.

(c) There exists a set A such that for each set E with m(E)>0 there exists an
integer n and o.>0 (n and o may depend on E) such that i Pfly>al,ae.

(d) The same as (c) but only if each E < A with m(E)>k(=).1

Proof. (a) = (b) and (b) = (c): See the proof of Theorem 3.2. (c) = (d) trivial.

(d) = (a): for each EcA we have Y P*1;>al, a.e. for some n and « hence
k=1
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we have .
Plg(®)zol5(%)

.
P

for all xeX where 1p=11g, 13=11,. If the process induced by the transition
probability P(X, 4) is not a Harris process, then by [6], Chapter V, Theorem A,

for almost every % there exists a set A, with m(d;)=1 and ) P"(%, 45)=0. In
Lo r=1, .

particular, we can find a %eA4 and a set EcAdn A; with Ec&® and m(E)>0

(by Lemma 2.2), hence Y P"(%, E)=0, a contradiction. So, (X, £, /1, P) is a Harris

n=1
process and by Theorem 3.3 (X, X, m, P) is a Harris process.

Remark. The condition {(d) of this theorem is weaker then the condition given
in [11]. Hence, the condition given there implies that the process is a Harris
process.

4. On Quasi-Compact Operators on L (m)

In [1] some conditions are given on the operator 4T, in the notation of that
paper. We are going to prove that these conditions are equivalent to quasi-
compactness.

Theorem 4.1. Let (X, £, m, P) be an ergodic and conservative Markov process.
Then the following are equivalent

(a) There exists no invariant pure charge’.

(b) Let R be a contraction on L (m) with 0SRZP and R1+1 (for example
R=1, P where m(4)>0). Then |R"| ,\/O0.

(c) Let R be as in (b). Then Y R"*1eL,,(m).
n=1
(d) There exists a unique functional pel* (m) such that pP=y and p is a
measure equivalent to m.

(e) Let u be an invariant measure and denote
Ly(my={feL,m)f fdu=0}. (4.1)

Then (I— P) L, (m)=L’, (m).

() For each feL,(m) we have
invariant measure.

() The process is a Harris process and there exists no invariant pure charge.

(h) P is a quasi-compact operator on L, (m).

(i) There exists invariant measure y and (I— P) L, (my=L’, (m) where L, (m)
is defined in (4.1).

LY P

k=1

——— 0 where p is an
n—
feo)

I , —
(G) — . P* converges in the operator norm to a projection of Ly (m) on the
=]
one dimensional space of the constants.

11t is sufficient to consider only positive charges, because if v is any invariant charge, observe the
positive and negative parts of it, v=v* —vy~. But v P=v, v* P2zv* and v~ P2v~ and P 1=1 implies
vt P=v* and v~ P=v", hence if there exists any invariant charge (or pure charge) there exists also
a positive invariant charge.
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Proof. (a) = (b): Let vel* (m) with vR=v, then vPZvR=v = vP=v. Let
v=v; +v, where v; is a measure and v, is a pure charge. Then v, P=v, = v, P=
vy =>v,P=v, = v,=0 and v is a measure, equivalent to m, because of the
ergodicity of the process. But m({R1<1})>0, hence (vR,; 1>=<{y; R1><{v; 1>
a contradiction, hence vR=v = v=0. Consider the orthogonal complement of
the closure of the range of the operator I—R, i.e.

(I-R) L (my*={vel* (m)|vR=v}=1{0}.

By the Hahn-Banach theorem (I — R) L (m)= L, (m), in particular for each £>0,
there exists a function ge L, (m) such that |g— Rg—1|, Ze. Therefore,

1 g 1 g 13 2] gl
— Y R*1| Zj—> R* +l—Y R¥(g~ Se+—=2%,
, h k§1 ® ” n k§1 n 1211 n
1 1
but 2lelo tends to zero and & is arbitrary, hence ;ZR"I ———0. But
n k=1 @

R"1 is a decreasing sequence and R is a positive operator, hence

1 & s
YR

k=1

—= 0.
o

HR"HOO=1IR"1H00§‘

(b) = (c): ||IR"| 0, hence the operator R has no spectrum points on the
unit circle. In particular 1 is not a spectrum point and (I—R)™* is a bounded
operator on L (m). Hence, there exists a function ge L, (m) such that [ —R) g=1,
thus:

=|Rg—R"""g],<2llgl,

0

N
ZIR"(I— R)g

(c) = (d): Assume that there exists an invariant pure charge v, so there exists
a set A with m(4)<1 such that vl,=1,.

Let R=1I,P, hence vR=v and 0SR=ZP, R1+0. Thusv(ZR” ) N-v(1),

n=1

but Z R"1 is bounded, therefore v=0. The set {vel® (m)lv(l)=1,v>0} is
n=1
convex and compact in the weak* topology and P maps this set into itself. Hence

by the Fixed Point Theorem there exists a functional pe ¥ (m) such that pP=p.
Let p=u; +p, where g, is a measure and p, is a pure charge, then:
i PZpy=p P=p=p; P=py=p, =0=>p=p,.

By the ergodicity of the process, y# is unique and equivalent to m.
{(d)=>(e): By the Hahn-Banach Theorem:

(I=P)Ly(m}={yP=v}={au}.
But I2, (m)* = {a pu}, hence I~ P) L (m)=1°, .
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(e)=(f): For any feL,(m) we have (f— [fdu)eL’, (m), hence for each ¢>0
there exists a function g such that || f— [ fdu—g+ P g|| <e. Therefore:

1 n
ZP" jfdu =— Y P*
ne np
1 n
é“- > P~ Jfdu—g+Pg| +| =Y Plg—Pg)| set 8=
Ly =] 00 ny1 @ n
but ¢ is arbitrary and 2|g|, - n~! tends to zero. Hence
l n
‘;ZP"f—ffdu =0
1 . 1
H=(g): For every A there exists an integer n such that — Z Pl A_—~ u(A).

n oz
In particular Z P¥1,>a>0 and by Theorem 3.4 the process is a Harrls process.
k=1
Assume that v is an invariant pure charge, then there exists a set A with v(4)=0.

On the other hand v ( Y Pkl A) >a>0, a contradiction.
k=1

(g)=(h): Let us first prove the following propositions.

Proposition 1. Let the process be a Harris process, then there exists an integer
k such that P* can be written as a sum P*=Q+R where Q is a positive compact
operator on L, (m) (0<Q <P) and P* is ergodic.

Proof. There exists an integer n such that P” can be written as P"=Q; +R;
where Q is an integral operator with the bounded kernel 0%¢(x, y)<K. By
Theorem D, Chapter V of [6] there exists a minimal set W and an integer d
such that 1, +Ply+---+P""'1y=1 and P?1,,=1y. Hence P/**! is ergodic
for each j. Take jd=2n and k=jd+ 1. Then P* is ergodic and

Pk=13k~2n})2n=Pk—Zn(Q1 +R1) Pk 2n Q2+Pk Zn(Ql 1,21 +R1 Q1 +R )
Denote
Q=P*2"Qf, R=P*?™Q;R,+R,0;+R}).
Qf and therefore also Q is a compact operator on L (m).

Proposition 2. If P has no invariant pure charge, then P¥, for any integer k,
has the same property.

Proof. Assume that v is a pure charge and v=vP* then
k—1

O0=v(I-P= ) vP"(I-P),
n=0
k—1 k—1
ie. Y vP"isafunctional invariant under P. This implies that ) vP"is a measure
n=0 n=0

and therefore there exists 0 <n<ck such that vP" is not a pure charge and hence
vP¥=yP"P*~" is not a pure charge, a contradiction.



Transition Probabilities and Contractions of L, 271

Proof of (g)=(h). According to the previous propositions, we can find an
integer k such that P*=Q 4R where P* is ergodic and has no invariant pure
charges, Q is compact and R141. Define Q,=P"™ —R" It is easy to see that
0, is a compact operator and the proof of (a)=-(b) shows that ||R"|| \0. So,
if n is sufficiently large, then P™=Q,+R" where Q, is compact and |R"|<1.
Thus P is a quasi-compact operator on L_ (m) (see [12], Lemma V.3.1).

(h)=>(i): P is a quasi-compact operator, hence there exists an integer k such
that P*=0 + R where Q is compact and |R]| <.

Let v be any charge. Then vQ is a measure because if A,\@, then the com-
pactness of Q implies that |Q1, ||, —0 and therefore vQ(4,)\0.

Let v be an invariant pure charge. Then we have vQ=0 and vR=v, but
{v,R1><1, a contradiction. Thus, there is no invariant pure charge and the
proof of (c)=>(d) gives that there exists an invariant measure y, and the space
I°,(m) is invariant under P. It is clear that P is a quasi-compact operator on
I°_ (m) and hence every spectrum points on the unit circle is an eigenvalue, but
1 is not an eigenvalue (because of the ergodicity), hence (I—P)~! is a bounded
operator on I°_ (m). So, (I —P) I°, (m)=L_ (m).

(i)=(j): Let feL,,(m). Then f— {fduel’, (m), and there exists ge I (m) such
that g—Pg=f—[fdp and (gl ., <2[(I~P) [l 1. Hence:

iil’kf—ffdu

L

- £ P Jran

[eo]

" |

z 2 4
2 ZP“(I—P)gllg7 IS~ I =P) 1, 1 o

12 . . .
Thus — Y P*f converges to [ fdp uniformly in the unit ball of L, (m).
L]

1
n

n . 1 n
()= (a): Y P*f converges in L,(m) and - Y PF1=1, therefore
k=1 k=1

-0

" . . . 1 &
lim-— ) m P*=y where p is an invariant measure and ||-— > P*1,—u(A4)
Bz 1=y @

for every set A. Assume that v is an invariant pure charge. Then there exists

n

1
a set A such that u(4)>0 and v(4)=0. So, — Y vP*(4)=0. But,
n

k=1
n

711— ZPklA“ﬂ(A)

k=1

1
2 0= Y VP A o u(4),

o0 Ly

a contradiction. Thus, there exist no invariant pure charges.

Remark. Some parts of this theorem can be found in [1] and [5]; we give
them here for completeness.

5. On Sets A where P, Is Quasi-Compact

A set A is called “bounded” if P, is quasi-compact. Such sets are discussed
in [1]; it is proved there that if supp f=A and {fdu=0 where uP,=py then
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N

2 Pf

n=1

is bounded. We shall prove that such sets exist if and only if the

[ee]

process is a Harris process.

Lemma 5.1. AP, A~  =1;Y P(1;.P)I; where (;=A1,.

n=0
Proof. Let f =0 and supp f <= A4, then
N

N N
LY PUPY I, f P f and ALY P(L.PY I, A7 =I;Y P(I.Pyl;
0 n=0 n=0

n=
)

and Lemma 2.3 gives AP, A~ f=1; Y P(I;.P)"I;f where f=AF.
n=0
N
Denote P;=1I;Y P(I;P)y"I;. This is an operator on L (4, £,,mIy). It is
n=0 -
easy to see that P, is quasi-compact if and only if P; is quasi-compact.

Theorem 5.2. A process has “bounded™ sets if and only if it is a Harris process.

Proof. P, is quasi-compact and so is B;. By Theorem 4.1 P; is a Harris operator.
Assume that P is not 2 Harris operator, then for almost every XeX there exists

a set E; with m(Ez)=1 and ) P"(%, E;)=0. It is easy to see that for almost

n=1

every €A we have Y PP(%,E.nA)=0 where P;(x, E) is the transition prob-
n=1

ability which induces the operator P;. Hence, P; is not a Harris operator, a
contradiction. Thus P is a Harris operator, and by Theorem3.3 P is also a
Harris operator.

Conversely, if P is a Harris operator, then by the proof of Theorem 3.2 there
exists a set A such that for every set E with m(E)>0 there is an integer n and

x>0 such that Y P*1z=al, a.e. By Lemma3 of [5] we have that for each

k=1
Ec A with m(E)>0, " n
Y P21, Y P l2al,.
k=1 k=1
Let v be a pure charge invariant under P,, then there exists a set Ec A4 with
n

m(E)>0 but v(4)=0. Hence, av(4)< ) vPi(E)=nv(E)=0, a contradiction.
k=1
Thus, B, has no invariant pure charges and by Theorem 4.1 P, 1s quasi-compact
and 4 is a “bounded ” set.
In [1] is proved that if the function f is supported on a “bounded” set and

{f du=0 where y is the invariant measure then

=K/ (5.1)

2 Pf
k=1 ©
where K is a constant independent on n. Theorem 5.2 shows that this is proved
only for Harris process. The next theorem will show that (5.1) can be satisfied

only in the case of a Harris process.
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Theorem 5.3. Let y be a o-finite invariant measure. Let A be a set with u(A)=1
and for each E < A we have

kglpk (1A _A.H'(IT) 1E>

where K is a constant independent on n. Then the process is a Harris process.

=K,

e8]

Proof. By Egorov’s Theorem there exists a set B— A such that Y P*1,———>o0
k=1

uniformly on B. Hence, there exists an integer n such that ZP" 1,22K1,.
k=1

Therefore 2K 1< Z P, <K+ (E) Z P*1, or Z P1,>u(E)K1; and by
=1
Theorem 3.4 the process is a Harris process

Remark. In [13] the Property (5.1) is proved for random walks assuming that
the measure of the random walk is not orthogonal to the Lebesgue Measure.
Theorem 5.3 shows that this assumption is necessary.

6. On the Existence of Finite Invariant Measures

In this section we shall prove Theorem E of [6], Chapter IV by methods
developed in this paper.

Theorem 6.1. The following are equivalent:

(@) There exists a finite invariant measure y equivalent to m.
(b) There exists no set A with m(A)>0 for which

1
P*1
h kzl 4

Proof. We need only prove that (b)=>(a). It is sufficient to prove that if there
exists no finite invariant measure then there exists a set A such that veI* (m)
and vP=v then v(4)=0 and this implies (6.1). (See [9], Theorem 1.)

Assume that for each 4 with m(4)>0 there exists ve I} (m) with v(4)>0
and vP=v.2 If de% and m(4)>0 then there exist a set AcX such that m(4,)>0
and 71, =15 (by the results of Section 2). Hence, by our assumption there exists
vel* (m) such that v(4,)>0 and vP=v. This implies #(4)>0 and 7P =7 where
¥ is the measure v*~!v. Consider the set

{ hrn— Z P*1;(%) ex1sts}

n-»w N K=
Assume ﬁ:(fﬁ”)>0, then by our assumption there exists a measure 7 with
v(E)>0 and ¥ P =7, There are two possibilities:
(i) #(A)>0. Let us observe the Markov process (X, &, #, P). By Birkhoffs
Ergodic Theorem (Theorem A of [6], Chapter VII)

lim

R— w0

=0. (6.1)

<9}

1
lim — Z P 1;(%) exists a.e. ¥,
n—-w N K=1

in particular there exists ¥eE° such that the limit exists, a contradiction.

2 By the footnote on p. 268 we may assume that v is positive.
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(i) ¥(A)= 7 implies Z P*1;=0 a.e. #, in particular there exists XeE°

0. ¥P=
such that 1 —:l— Z 1;(%)=0. A contradiction.

11m~ Z P* IA(x)>O}

noo fl 2y

Hence: /i (E)=1. Consider now the set Eo E, ={

Assume m(ES n A)>0, then by our assumption there ex1sts a measure ¥ with

¥(E5 ~ A)>0 and ¥P=7. By Birkhoff’s Ergodic Theorem hm - Z P*1;(%) exists

R— 00

and is posmve a.e. ¥, in particular there exists erCmA such that

1
lim — z P*15(%)>0, a contradiction. Hence m(E,)>0 (or i(E; n A)=m(A)). By

n—»oonk 1

1
the Dominated Convergence Theorem the limit lim — Z mP*(A) exists and is
positive, for each AeX w1th m(A)>0. noo Mgy

1

Define ji(4)= hm— Z mP*(A). ii is a finite invariant measure equivalent
© Mg

to , and hence ,uzf*,u is a finite invariant measure equivalent to m. So

Theorem 6.1 is proved.

The author wishes to thank Prof. A. Brunel for valuable conversations.
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