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Transition Probabilities and Contractions of Loo 

S. Horowitz 

1. Definitions and Notations 

A Markov process is defined to be a quadruple (X, Z, m, P) where (X, Z, m) 
is a measure space with positive measure m, m (X)= 1, and where P is an operator 
on L1 (m) satisfying: 

(i) P is a contraction: [IPI1 < 1, 

(ii) P is positive:if 0 < f s L  1 (m), then f P  > O. 

The operator adjoint to P is defined on Loo (m). It will also be denoted by P 
but will be written to the left of the variable. Thus ( f P ,  g ) = ( f ,  Pg) for 
f e L 1 fin), g ~ Lo~ (m). 

The usual probabilistic definition of a Markov process is by a function P(x, A) 
on X x ~ such that for each x s X ,  P(x, ") is a probability measure and for each 
A eZ, P(.,  A) is a measurable function. Assume that if re(A)=0, then P(x, A)= 0 
a.e. m; then P(x, A) induces an operator on L~ (m) and Ll(m) as follows: 

Pf(x) = ~ P(x, dy)f(y), f6Lo~ (m), (1.1) 

#P(A) =j P(x, A) #(dx), #~,m. (1.2) 

A general Markov process need not be induced by a transition probability P(x, A). 
The process is said to be conservative if 

,__~oP"f= for every O<feL~(m).  (1.3) 
0 

The process is said to be ergodic if 

P f < f  ~ f =  const. (1.4) 

Let P" =- Q. + R, where Q, is an integral operator with the kernel fn (x, y), and 
if K is any integral operator such that 0-< K_< R, then K = 0. (See [61, Chapter V.) 
(X, Z, m, P) is said to be a Harris process if Q , > 0  for Some integer n, and the 
process is ergodic and conservative. 

If the process is conservative and ergodic and the operator P is induced by 
a transition probability, then the process is not a Harris process if and only if 
the measures P"(x, ") are orthogonal to m for almost every x. If P is no longer 
induced by a transition probability, then the characterization of a Harris process 
is more complicated. 

We shall also define the operator I A for A 6Z by: 

I4f(x)=l,4(x). f(x),  #IA(B)=#(Ac~B), (1.5) 
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and the operator: 

PA = IA ~ (PIA~)" PIA. (1.6) 
n = O  

It is well known that (A, ZA, mIA, PA) is a Markov process ([6], Chapter VI). 

2. On Spaces Isometric to Lo~ (X, 22, m) 

Given the space Loo(X, Z, m) let B =  {veL*]v>0,  Ilvl/= 1, v(1)= 1}. The set B 
is convex and compact in the W*-topology, hence by the Krein-Milman Theorem 
it is the closed convex hull of its extremal points. The following statements are 
equivalent: 

(i) 2 e B  is an extremal point of B. 

(ii) V f, geS,, 2 ( f .  g)=2( f ) -2 (g ) .  
(iii) VAeS,  2 ( l a ) = 0  or 1. 

Let: 
2 =  {2eBl2(1a)=0 or 1, VAeZ}.  (2.1) 

2 is a compact Hausdorffspace in the W*-topology. Let us define the mapping: 
z: L~ (X, X, m) ~ C (2) by 

(z f)(2)=2(f) .  (2.2) 

z is an isometric isomorphism and it maps positive functions into positive func- 
tions and z ( fg)=(z f ) . ( rg)  ([4], Chapter V.8). It is clear that z 1A=la  where 

c 2 .  The set A is closed and open. 

Lemma2.1. The adjoint mapping of z: z*: C*(2)-- ,L*(X,~,m) is an iso- 
metric isomorphism. Let us denote ~n = z* - 1 m, then for every measure # eL* (X, S, m) 
the measure z*-l  # is absolutely continuous to ffz, and for every pure charge (a 
functional on L~o such that the only measure dominated by it is the zero measure) 
veL*(X ,S ,m)  the measure ~*- lv  is orthogonal to Fn. In particular, for each 
2 e 2 ,  z*- 12 is the Dirac measure 6~. 

Lemma 2.2. If ~e2, then there exist {Ek}, {Fk} c S  such that (i) Ek'~ and FkZ.- 
(ii) z 1E~ < la, z 1~ < 1~, (iii) m (Ek)"~ ~ (A) and m (Fk)7 ~ (4). 

In particular, if m (A)= O, then ~{ is nowhere dense. 

Sketch of the Proof of Lemmas 2.1 and 2.2 
Let 2 ' = { A c 2 l z l A = I ~ , A ~ Z } .  2' is a field, and the a-field, 2, generated 

by 2' is the Baire a-field of subsets of 2 .  I f # e L * ( X , S , m )  is a measure and 
{~,} c 2' and A , / A ,  where 1~. = z 1A~, then/~ (/i,)/z/~ (A), where l a = z 1A, Z*/~ = #, 
and by the Carath6odory extension theorem, we get Lemma 2.2 and the first 
part of Lemma 2.1. 

Let v e L *  (X, S, m) be a positive pure charge with v(X)= 1. Then by [8] there 
exists An",~c]) such that v(A,)=l. Let ZlA = l i , ,  A = ~ / [ , .  Then rh(A)=0 and 
z*- i  v(A)= 1, so the second part of Lemma 2.1 is proved. 

Lemma 2.3. There exists an isometric isomorphism A between L~ (X, X, m) and 
L ~ ( 2 ,  Z, rh) which maps positive functions into positive functions and A ( f  g)= 
(A f )  (A g). Moreover, if f ,  ~ f a.e. m, then A f ,  ~ A f  a. e, ~n. 
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Proof. It is sufficient to show that everj  coset in L~o (X, Z, &) can be repre- 
sented by a function of C(3~). Let feLoo(X,  E, fn), denote 9.1= { g l z g < f  a.e. r~}. 
By Proposition II.4.1 of 1-12] there exist {g,}c~I such that g , / ' h  and h > g  for 
each g ~ l .  By Egorov's theorem there exist Ak..'*X such that 

!]lAkg"-- lAk hll . . . .  ~.0. 
o o  

Hence z(la~g.)/'V(lA~ h). Let la~=z 1A~, ~i= [J Ak, then ~l(A)= 1 and z g . ~  z h 
on A, hence "c h< f a.e. ~. k=l 

Let /~= { f - z h > e } ;  assume that ~h(/~)>0. By Lemma 2.2 there exists a set 
P~ /~  such that z - I  l ~ = l e .  Hence h < h + e  lvc~l  which contradicts the maxi- 
mality of h. So, f =  z h a.e. rh and the coset of Lo~ (X, 2, rh) which is represented 
by f can be represented by z h c C (3~). 

If f , , ~ f  a.e. m, then by Egorov's theorem there exist Ak..,"X such that 

l[1A~(f,--f)H ~ --+ 0, hence Z(1Ak.f,,)--+Z(1A~,f ). Let la~='ClA~ , /i-----~)Ak' Then 
z f ,  --+ z f  on A and rh(/i) = 1. So, Lemma 2.4 is proved, k=l 

Remark. Many results of this section were already noted in [3]. We give them 
here for completeness in a slightly different approach. 

3. The Induced Transition Probability 

Let P be a Markov operator on L~()[ ,  ~, rh). Then z Pz  -1 = P  is a Markov 
operator on L~(3~, 2, rh). P is a positive contraction on C(X). 

The adjoint operator of P acts on the regular measures on X. It will also be 
denoted by P, but will be written to the right of the variable. 

Lemma 3.1. The operator ff is induced by a transition probability P(2, 4). 

Proof. Let us define the transition probability 

P (2,/i) = ~ P (~i) (3.1) 

where a~ is the Dirac measure at 2e  J( a n d / i e 2 .  

It is clear that P(s ") is a measure for all 2. 

On the other hand, if f is a continuous function, then (a,P,f)=Pf(x) is 
also continuous, and the collection 9X--{flf~B(2,2); ( g ~ P , f ) e B ( 2 , 2 ) }  is 
equal to B(X, 2), the space of the bounded and Z-measurable functions, because ~I 
contains all the continuous function and is closed under monotonic limits. Hence, 
if f is measurable, then P Q x ) =  ( a t / 5  f )  is also measurable. 

In particular, for every 3 e 2 , / 5 ( . ,  A) is a measurable function. Hence,/5(2, e{) 
defined in (3.1) is indeed a Markov transition probability. 

Let us define the functions: 

in (x) = ~ (lao p)n 1A (X), (3.2) 
n = O  

Jn (x) = lim Pt i A (x). (3.3) 
k~oo  

19" 
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We have ([6], Chapter III) PiA<i  A and i a > l  a. In the case that the process is 
induced by a transition probability, P i  A(X) is the probability that x enters A at 
least once, JA (X) is the probability that x enters A infinitely many times. 

The probabilistic definition of a Harris process is: There exists a set N with 
re (N)=0 such that for each x r  and for every set A with m(A)>0 we have 
j a (x )=  1 (see [7] and [10]). 

Theorem 3.2. I f  the Markov process (X, Z, m, P) is a Harris process as it is 
defined in section 1, then the process induced by the transition probability P(2, A) 
given by Lemma 3.1 is a Harris process, in the probabilistic definition. 

Proof Let (X, s m, P) be a Harris process where there is an integer k so that 
Qk>0. Let qk(X, y) be the integral kernel of Q~, Hence, there are two positive 
numbers ~, 6, so that if we define 

G= {ylq~(x, y)> ~}, 
then we can find a set A with re(A)>0 such that rn(Ex)>6 for each xeA.  

Let B be a set with m (B) > 1 - 6/2. Then x e A ~ m (B c~ E~) > 6/2, and therefore: 

e5 
Pkl~(x)> j" qk(x,y)m(dy)>em(Bc~E~)>~-lA(x) a.e. 

B t~ Ex 

Let F be any set with m (F)> 0, let B = x pJ 1F (x)> 1 . If n is sufficiently large, 
then re(B) > 1 - 3/2. Hence: 

n + k  n g,(~ 

W 1F>--P k ~ PJ 1F>--P k 1 a. 
j = l  - -  j = l  - -  I B > 2 -  

Let z 1A = 12, Z l r =  i~. We have 

n + k ~ .  ~ ~(~ 

hence for each 2 ~ d  there exists an integer 1 <=j<-_n+k such that 

PJ(2, P ) >  2 (n+k)  " 
Hence: 

/5 ip (2) >= PJ if (2) >/sj  lp (2)-> 2 (n + k)" 

By Lemma 2.3 we have ~, pk (2, A) = Go a.e. ~ and hence (see [6], Chapter III) 
k=O e6 

j a ( 2 ) = l  a.e. rh and inf/~ip(x) > - - > 0 .  It follows from Proposit ion7 of 
~A = 2(n+k)  

[2J that for all 2 s_~, .j~ (2) < j~ (x). In particular .j~ (2) = 1 ~ .j~ (2) = 1. 
Let G e Z  with th(G)>0, by Lemma 2.1 there exists -Pc G such that z - a l f =  1F 

and m (F) > 0. 
Let N =  {21.j~(2)< 1}. We have m(N)=0  and for each xc~N: 

.j~ (2)__>.j~ (~) = 1. 

So, the process (2(, 2, rh, P) is a Harris process in the probabilistic definition. 
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Theorem 3.3. I f  the process induced by the transition probability P(2, A) is a 
Harris process, then the process (X, Z, m, P) is also a Harris process. 

Proof. Let (2,  2, th, t3) be a Harris process. Then 15,= 0 , + / ] ,  where 0 ,  is 
an integral operator on L ~ ( 2 , 2 ,  th) and for some n, 0 , ~ 0 .  Let Q~=A-1Q, A, 
R , = A  -1R,A.  Then P"=Q,+ R,; clearly Q ,~0 .  

Let ~3 be the field generated by rectangles in X x X, let us define the charge 
on ~ by ~(A x B)-- (Q, 1A, 1B). Let {Ek} ~ 3  where Ek= U A~ x B k is a finite 

i 
union of disjoint rectangles. Let 14.=A, 1A~, l ~ i = d  1B,, /]k = U Ai~k • Bi ,~k ~(~ • 

i 

((~. 14, 1~). Then it is easy to see that ~ can be extended to a measure on 2 x 2, 
d~ 

and drhx ~ =g/.(2, y) where ~.(2, y) is the integral kernel of the operator (~. 

(for details see [6], Chapter V). But 

~z (Ek) = 2 <Q. 1A~, 1 a ~ ) = ~  (Q.  14}, 1~)---- ~(/~k)" 
i i 

Let Ek N ~, then 

Fh x rh (/]k) = Z m(A k) rh (/)k)---- Z m(A k) m(Bk)=m x m(Ek)NO 
i i 

and therefore u (Ek) = ~ (/]k) N 0, because ~-< rh x ~h. 

By the Extension Theorem for measures, rc can be extended as a measure on 
X x X .  Let F 6 X x X  with mxm(F)=O, then for each 6 > 0  there exists a set 
E = U Ai x Bi, a countable union of rectangles with E D F and m x re(E) < 6. Let 

i 

E = ~ d i x B i ,  then rhx rh(/~)<& But ~-<rhx rh and for each e>0,  if 6 is small 
i 

enough, we have ~ (/]) < e. Hence: 

u(V)=<u(E)=~ (Q,  1A, , 1B i )=Z  ((~, 14,, 1~,) =~( / ] )<e ,  
i i 

du 
�9 it is easy to hut e is arbitrary, hence u ( F ) = 0  and u-<m• Let q , - d m •  

see that Q,f (x )=~q, (x ,y ) f (y )m(dy) ,  hence Q, is an integral operator and 
P" = Q, + R,. Thus (X, X, m, P) is a Harris process. 

Theorem 3.4. Let (X, Z, m, P) be an ergodic and conservative Markov process, 
then the following are equivalent: 

(a) The process is a Harris process. 

(b) There exists a set A and an integer n, and e > O, c~ > 0 such that for each 
set B with re(B)> 1 - e  we have P" 1B>~ 1~ a.e. 

(c) There exists a set A such that for each set E with m(E)>0 there exists an 

integer n and e > 0  (n and ~ may depend on E) such that ~ pk l~>ct 1A a.e. 
k = l  

(d) The same as (c) but only if each E ~ A  with re(E)>0. 

Proof. (a) ~ (b) and (b) ~ (c): See the proof of Theorem 3.2. (c) ~ (d) trivial. 

(d) ~ (a): for each E ~ A  we have ~ pk 1~>~ 1A a.e. for some n and ~, hence 
k = l  
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w e  have 
/51~(2)-__ e 1~(2) 

k = l  

for all 2 ~ 2  where 1~=~ 1~, 1~=~ la. If the process induced by the transition 
probability/5(2, A) is not a Harris process, then by [6], Chapter V, Theorem A, 

co 

for almost every 2 there exists a set A~ with rh(A~)=l and ~ P"(s In 
n = l  

particular, we can find a 2sA and a set PcAc~.4~ with /~e21 and th(/~)>0 

(by Lemma 2.2), hence ~/5"(2, E)=0, a contradiction. So, (Jr, 2, rh,/5) is a Harris 
n = l  

process and by Theorem 3.3 (X, Z, m, P) is a Harris process. 
Remark. The condition (d) of this theorem is weaker then the condition given 

in [11]. Hence, the condition given there implies that the process is a Harris 
process. 

4. On Quasi-Compact Operators on L~ (m) 

In [1] some conditions are given on the operator AT, in the notation of that 
paper. We are going to prove that these conditions are equivalent to quasi- 
compactness. 

Theorem 4.1. Let (X, Z, m, P) be an ergodic and conservative Markov process. 
Then the following are equivalent: 

(a) There exists no invariant pure charge ~. 

(b) Let R be a contraction on Loo(m) with O<_R<P and R 1 4=1 (for example 
R =  IA P where re(A)>0). Then lle~llco~0. 

(c) Let R be as in (b). Then ~ R" 1 eLco (m). 
n = l  

(d) There exists a unique functional laeL*(m) such that # P = #  and # is a 
measure equivalent to m. 

(e) Let # be an invariant measure and denote 

L ~ (m)= { f e L ~  (m) l l f d a  = 0}. (4.1) 

Then ( I -  P) L co (mi = L ~ (m). 

l ~lPk f -  f dp co (t) For each f~Lco (m) we have ~ ~ ~ , 0 where p is an 
invariant measure, k 

(g) The process is a Harris process and there exists no invariant pure charge. 

(h) P is a quasi-compact operator on L~ (m). 

(i) There exists invariant measure # and ( I -P)L~o  (m)= L ~ (m) where L ~ (m) 
is defined in (4.1). 

1 ~ 
(j) __ ~ pk converges in the operator norm to a pro]ection of Lco (m) on the 

nk=l 
one dimensional space of the constants. 

It is sufficient to  c o n s i d e r  on ly  pos i t ive  cha rges ,  b e c a u s e  if  v is a n y  i n v a r i a n t  cha rge ,  obse rve  the  
pos i t ive  a n d  nega t ive  p a r t s  o f  it, v = v + - v - .  Bu t  v F = v, v + P => v + a n d  v -  P > v -  a n d  P 1 = 1 impl ies  
v + P = v + a n d  v -  P =  v - ,  hence  i f  the re  exists a n y  i n v a r i a n t  c h a r g e  (or  pu re  cha rge )  the re  exists a l so  

a pos i t ive  i n v a r i a n t  cha rge .  
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Proof ( a ) ~  (b): Let veL*(m)  with v R = v ,  then v P > v R = v  ~ vP=v.  Let 
v = v~ + v2 where vt is a measure and v2 is a pure charge. Then v~ P > va ~ v, P = 
vt ~ v2P=vz  ~ v2=O and v is a measure, equivalent to m, because of the 
ergodicity of the process. But m ({ R 1 < 1 }) > 0, hence (v R~ 1) = (va R 1) < (vl 1) 
a contradiction, hence v R = v  ~ v=0.  Consider the orthogonal complement of 
the closure of the range of the operator I -  R, i.e. 

( I -  R) L ~  (m) a = {v e L *  (m)] v R = v} = {0}.  

By the Hahn-Banach theorem ( I - R ) L ~  (m)=Lo~ (m), in particular for each e > 0, 
there exists a function g e Loo (m) such that IIg-e g-1 II ~-_< e. Therefore, 

1 " k l <__ I ~ R k ( 1  +Rg)  oo 1 k=~l Rg) oo< 21lgl] '~k~=l R n k=l --g "ff n Rk(g-- e - t - ~  tl 

1 n k 0o but 2 PlgllOOn tends to zero and e is arbitrary, hence -~k~=tR 1 ,-.~ ,0. But 

R" 1 is a decreasing sequence and R is a positive operator, hence 

1 " l o  ~ IIR"I[ ~--  IIR" 1H ~176 < - - ~ R k n  k=l .4oo---* 0. 

(b) ~ (c): IIR"I[~"~0, hence the operator R has no spectrum points on the 
unit circle. In particular 1 is not a spectrum point and ( I - R )  -~ is a bounded 
operator on L~ (m). Hence, there exists a function g e L~o (m) such that ( I - R )  g = 1, 
thus: 

~, - R ) g  o~ 

N 

R"I  = ~ R " ( I  =llRg-RN+~gll~oN2llgtl ~ 
n ~  l oo n = l  

(c) ~ (d): Assume that there exists an invariant pure charge v, so there exists 
a set A with m (A) < 1 such that v Ia = IA. 

Let R = I a P ,  hence v R = v  and 0_<R_<P, R1 =I=0. Thus v R"I  =N-v(1) ,  
\ n = l  / 

but ~ R " I  is bounded, therefore v=0.  The set {v~L*(m) lv (1)=l ,v>O} is 
n = l  

convex and compact in the weak* topology and P maps this set into itself. Hence 
by the Fixed Point Theorem there exists a functional/~ e L*  (m) such that p P = #. 
Let/~ = ga +/~z where/~a is a measure and/[12 is a pure charge, then: 

#t P ->- #1 =>#1 P = #t ~/~2 P = #2 ::::>/~2 = 0:: : :>/ . /=/~1" 

By the ergodicity of the process, # is unique and equivalent to m. 

(d) ~ (e): By the Hahn-Banach Theorem: 

( I -  P) L~ (m) • = {vlv P = v} = {o~ p} .  

But L ~ (m) 1 = {~ #}, hence ( I -  P) L~ (m) = L ~ . 
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(e)~(f): For  any feLon(m) we have ( f -~ fd /~ )eL~  hence for each e > 0  
there exists a function g such that I [ f -  ~ f d l t - g + P g l l  <e. Therefore: 

1 " - g + P g  oo + 1 " 2llgll~o <= __ ~ pk ( f  _ I f  d# - -  2 P ~ ( g - - P g )  =<e-F - - ,  
n k = l  n k = l  m n 

but ~ is arbitrary and 2 IfgJ[ co" n-1 tends to zero. Hence 

l k ~  Pkf -- ~f  d# o ~ . ~  ,0. 

(f ly(g):  For  every A there exists an integer n such that 1 ~ pk 
1 

n k=l la>2-/~(A)" n 

In particular ~ pk 1A > ~ > 0 and by Theorem 3.4 the process is a Harris process. 
k=l 

Assume that v is an invariant pure charge, then there exists a set A with v (A)= 0. 

On the other hand v pk la > e > 0, a contradiction. 
k 

(g)~(h): Let us first prove the following propositions. 

Proposition 1. Let the process be a Harris process, then there exists an integer 
k such that pk can be written as a sum pk= Q +R where Q is a positive compact 
operator on L| (m) (0 < Q < P) and pk is ergodic. 

Proof There exists an integer n such that P" can be written as pn= Q1 + R1 
where Q is an integral operator with the bounded kernel O~_q(x,y)<K. By 
Theorem D, Chapter V of [6] there exists a minimal set W and an integer d 
such that 1 w + P  1 w + . . .  + P a -  1 lw = 1 and pe lw = lw" Hence W d+ 1 is ergodic 
for each j. Take j d=> 2 n and k = j  d + 1. Then pk is ergodic and 

P k - - p k - 2 n p 2 n - - p k - 2 n ( o  1 -  -- TmRv~2--pk-2ngl2"t-pk-2n(o-- ~ 1  t ~ l  R1 +R1 Q1 +R2) �9 

Denote 
Q=nk-2nQ2, R=pk-2,(Q~R~ +R, Qj +R2). 

Q2 and therefore also Q is a compact operator on L~ (m). 

Proposition 2. I f  P has no invariant pure charge, then pk, for any integer k, 
has the same property. 

Proof Assume that v is a pure charge and v = vP k, then 

k--1 

0 = v ( I -  nk) = ~ v nn ( I -  P), 
n = 0  

k--1 k--1 

i.e. ~ vP ~ is a functional invariant under P. This implies that ~ vW is a measure 
n = 0  n = 0  

and therefore there exists 0 < n < k  such that vP" is not a pure charge and hence 
vpk= vP"P k-" is not a pure charge, a contradiction. 
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Proof of (g)~(h). According to the previous propositions, we can find an 
integer k such that Pk=Q+R where pk is ergodic and has no invariant pure 
charges, Q is compact and R l #  1. Define Q,= P"k-- R". It is easy to see that 
Q, is a compact operator and the proof of (a)~(b)  shows that IlR"l[~o"~0. So, 
if n is sufficiently large, then P"k=Q,+R" where Q, is compact and ][R"l] < 1. 
Thus P is a quasi-compact operator on L ,  (m) (see El2], Lemma V.3.!). 

(h)=~(i): P is a quasi-compact operator, hence there exists an integer k such 
that pk = Q +R where Q is compact and ll R I[ o~ < 1. 

Let v be any charge. Then vQ is a measure because if A,',~O, then the com- 
pactness of Q implies that IIQ1a,[Ioo-*0 and therefore vQ(A,)NO. 

Let v be an invariant pure charge. Then we have v Q=O and v R=v, but 
(v, R 1 ) < l ,  a contradiction. Thus, there is no invariant pure charge and the 
proof of (c)~(d) gives that there exists an invariant measure #, and the space 
L ~ (m) is invariant under P.  It is clear that P is a quasi-compact operator on 
L ~ (m) and hence every spectrum points on the unit circle is an eigenvalue, but 
1 is not an eigenvalue (because of the ergodicity), hence ( I - P ) - t  is a bounded 
operator on L ~ (m). So, ( I -  P) L ~ (m) = L ~ (m). 

(i)~(j):  Let feLl(m). Then f - ~ f d # e L  ~ (m), and there exists g e L  ~ (m) such 
that g - P g = f -  j'fd# and [Igllo~__<2 II(I-V)-~llL~[If[Io~. Hence: 

Xk~_lVk f -  f fd# : l~=lVk(f--ffd#) o~ 

4 
= nk__~l P ( I - -P )g  __< tlg[l~_-< II(I-P)-~llLol[fltoo. 

n 

Thus converges to f fd# uniformly in the unit baU of Loo(m). 
H k = l  

1 ~ P k f  converges in L~(m)and 1 ~ 'pkl=l ,  therefore 
( j)~(a):  n k=l n k=l 

1 " 1A_#(A ) lim 1 m pk = #  where g is an invariant measure and - -  ~ pk ~ 0 
/'/ k = l  Yt k = l  oo 

for every set A. Assume that v is an invariant pure charge. Then there exists 

a set A such that # (A)>0  and v(A)=0. So, 1 ~ vpk(A)=O" But, 
Hk=l 

- -  Z pk , 0 ~ 1  v p k ( A ) ~ # ( A ) ,  
n ~ o o  H k = l  

a contradiction. Thus, there exist no invariant pure charges. 

Remark. Some parts of this theorem can be found in [1] and [5]; we give 
them here for completeness. 

5. On Sets A where P~ Is Quasi-Compact 

A set A is called "bounded"  if Pa is quasi-compact. Such sets are discussed 
in [13; it is proved there that if s u p p f = A  and ffd#=O where #PA=# then 
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,)-~'P"f--i o~ is bounded. We shall prove that such sets exist if and o n l y  if the 

process is a Harris process. 
or) 

Lemma 5,1. AP A A- 1 = I ~  P(I~P) I~ where l~ = A 1A. 
n=0  

Proof Let f > 0 and supp f c A, then 

N N N 

I A ~, P(IAoP)"IAf/'PAU and aI  a ~ P(IAcP)"IaA-I=I~Z P(IdoP)"I~ 
n = 0  n=0  n =0  

and Lemma 2.3 gives Ap4A-l f=I~ ~ P( l~P)"I~fwhere f=Af .  
n=0  

N 

Denote P~r=I~i ~ P(I~oP)"I~. This is an operator on L~(A, Sa,rh IX). It is 
,=o 

easy to see that PA is quasi-compact if and only if P~ is quasi-compact. 

Theorem 5.2. A process has "bounded" sets if and only if it is a Harris process. 

Proof PA is quasi-compact and so is P~. By Theorem 4.1 Pa is a Harris operator. 
Assume that P is not a Harris operator, then for almost every 2 e X  there exists 

a set /~  with r~(/~)= 1 and ~ P ' (~ , /~ )=0 .  It is easy to see that for almost 
n = l  

every ~sA we have ~P~"(:~l/~xC~A)=0 where ~(x ,  E) is  the transition prob- 
n = l  

ability which induces the operator P~. Hence, ~ is not a Harris operator, a 
contradiction. Thus P is a Harris operator, and by Theorem 3.3 P is also a 
Harris operator. 

Conversely, if P is a Harris operator, then by the proof of Theorem 3.2 there 
exists a set A such that for every set E with re(E)>0 there is an integer n and 

~>0  such that ~pklE>~IA a.e. By Lemma3 of [5] we have that for each 
k = l  

EmA with m(E)>0, 
PkA1E>IA ~ pkle>~lA. 

k = l  k = l  

Let v be a pure charge invariant under Pa, then there exists a set E=A with 

m(E)>0 but v(A)=0. Hence, ~v(A)__< ~vPAk(E)=nv(E)=O, a contradiction, 

Thus, PA has no invariant pure charges and by Theorem 4.1 Pa is quasi-compact 
and A is a "bounded"  set. 

In [1] is proved that if the function f is supported on a "bounded"  set and 
~ f  d# = 0 where # is the invariant measure then 

~ p k f  <K [If[[~o (5,1) 
c o  

where K is a constant independent on n. Theorem 5,2 shows that this is proved 
only for Harris process. The next theorem will show that (5.1) can be satisfied 
only in the case of a Harris process. 
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Theorem 5.3. Let 1~ be a a-finite invariant measure. Let A be a set with ~(A)-- 1 
and for each E ~ A we have 

" ( 1 )  ~ 

where K is a constant independent on n. Then the process is a Harris process. 

Proof By Egorov's Theorem there exists a set B c A such that ~ P~ 1A ~ c~ 
k=t 

uniformly on B. Hence, there exists an integer n such that ~ p k l A > 2 K 1 B .  
k=l 

n 1 ?1 n 

k 2 P k l E > p ( E ) K I "  and by Therefore 2 K 1B_< pk 1A__< K + - -  ~ P 1E or 
k=l /A(E) k=l  k=l  

Theorem 3.4 the process is a Harris process. 

Remark. In [13] the Property (5.1) is proved for random walks assuming that 
the measure of the random walk is not orthogonal to the Lebesgue Measure. 
Theorem 5.3 shows that this assumption is necessary. 

6. On the Existence of Finite Invariant Measures 

In this section we shall prove Theorem E of [6], Chapter IV by methods 
developed in this paper. 

Theorem 6.1. The following are equivalent: 

(a) There exists a finite invariant measure # equivalent to m. 
(b) There exists no set A with re(A)>0 for which 

l i p k l A  ~ lira =0.  (6.1) 
n ~ o e  n k = l  

Proof We need only prove that (b)~(a). It is sufficient to prove that if there 
exists no finite invariant measure then there exists a set A such that v e L *  (m) 
and v P = v  then v(A)=0 and this implies (6.1). (See [9], Theorem 1.) 

Assume that for each A with re(A)>0 there exists v~L*(m)  with v(A)>0 
and vP=v.  z lfAez~ and rn(/l)>0 then there exist a set A e Z  such that re(A0>0 
and z 1A~< 1~ (by the results of Section 2). Hence, by our assumption there exists 
vEL*(m) such that v(Aa)>0 and vP=v.  This implies ~(A)>0 and ,~/5__~ where 
,~ is the measure z*-i v. Consider the set 

} /~ -- _2 lim - -  ~ pk 12 (2) exists . 

Assume th(/~)>0, then by our assumption there exists a measure ~ with 
v (E c) > 0 and ~/3 = ~. There are two possibilities: 

(i) ~(A)>0. Let us observe the Markov process (X,Z,~,P). By Birkhoffs 
Ergodic Theorem (Theorem A of [6], Chapter VII) 

lira 1 ~/~k 12 (2) exists a.e. ~, 
n ~  n k = l  

in particular there exists 2e/:: ~ such that the limit exists, a contradiction. 

2 By the footnote on p. 268 we may assume that v is positive. 
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(ii) ~ (A)= 0. ~P = ~ implies ~ pk la = 0 a.e. ~, in particular there exists 2 ~/~c 
n k = l  

such that lim i ~, pk 1~ (2) = 0. A contradiction. 
n ~ o o  n k = l  

I n 
H e n c e :  = 1. C o n s i d e r  n o w  the  set = l i m - -  y ,  pk 

{. [ " ~  n k=l J 
Assume rh(/~ r~A)>0, then by our assumption there exists a measure ~ with 

n 

(/~] c~ A) > 0 and ~/~ = ~. By Birkhoff's Ergodic Theorem lira 1 ~ pk 1~ (2) exists 
n ~ o o  1"/ n ~ l  

and is positive a.e. ~, in particular there exists 2~/7~]~A such that 

lira 1 ~ pk 1~ (2) > 0, a contradiction. Hence m (/~)> 0 (or rh (/~1 c~ A)--- rh (A)). By 
n - - , o o  H k = l  

n 

the Dominated Convergence Theorem the limit lim 1~ ~ rhPk(/l) exists and is 
positive, for each AE2 with rh(.d)>0, n ~  H k=l 

Define /~(A)= lim 1-- ~ rhpk(/l). /~ is a finite invariant measure equivalent 
n ~ o o  H k = l  

to rh, and hence #=z*/~ is a finite invariant measure equivalent to m. So 
Theorem 6.1 is proved. 

The author wishes to thank Prof. A. Brunel for valuable conversations. 
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