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On the Uniqueness of Diffusions* 

W. Zh. Yang 

w 1. Introduction 

Diffusion Operator. A diffusion operator A on a manifold E is a second-order 
differential operator, expressed in local coordinates (x) as 

Af(x)  = ~ a~ (x) a,f(x)+ �89 ~ S~j (x) 0~ ajf(x) (1) 

with all coefficients continuous, and the symmetric matrix (Si~(x)) everywhere 
non-negative. 

In this paper (A, a, S) has this basic meaning as above. We say (a, S) represents 
A in the given coordinates. Properties of(a, S) which are independent of coordinates 
chosen will be referred to as properties of A. Smoothness conditions are examples 
of this. In case the manifold E is Euclidean and (x) any affine coordinate system, we 
say A is bounded when (a, S) is bounded. Finally A (or S) is called nondegenerate if 
det (Sij(x)) is strictly positive everywhere; otherwise A is called degenerate, at the 
points where the inequality- fails. 

A Fellerian semigroup P =  (P~)~0 on E, a semicompact, (i. e. a locally compact 
Hausdorff space with a countable base) is a strongly continuous semigroup of 
positive contractions on qfo(E), the Banach space of all continuous functions 
vanishing at infinity, with Po = the identity. A Fellerian semigroup P is said to be 
a Fellerian A-diffusion on a manifold E if the infinitesimal generator G(P) of P 
coincides with A on a suitable class of functions, which in the following will always 
be taken to be ~ (E), the set of all twice continuously differentiable functions with 
compact support. 

More generally, a standard semigroup P is called an A-diffusion if: 

(1) P is realizable on the space of paths continuous before death; and 
(2) the characteristic operator of P is defined for all c~2-functions, and coincides 

there with A]~2. (Compare [4: w 5.18].) 

Note 1. We are not interested in the axiomatics. However, because of the local 
character of A, the sample paths ofa Fellerian A-diffusion P are surely continuous. 
Also a term -b(x)f(x)  may be added to Af (x )  with b(x)>O interpreted as the 
killing rate, but the modification will not be essential. 

In this paper the state space E will always be Polish, i.e., a topologically com- 
plete, separable, metrizable space, with the Borel tribe as its measurable class. But 
when the Fellerian property or diffusion is referred to E will always be assumed, 
respectively, a semicompact or a manifold. 

* This work was supported in part by Army Research Office (Durham) Contract DA-31-124-ARO- 
D-30 at Princeton University. 
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Note 2. A manifold will always be separable, Hausdorff, in this paper. Bound- 
aries will not be allowed, as diffusions with boundary conditions are much more 
difficult and are not discussed here. 

Note 3. By a standard semigroup we mean the transition semigroup of a 
"standard process." See [12b, Chapter XIV, 8 2]. By a process is meant a stochastic 
process as defined in [3, p. 46], so that a "Markov evolution" is really a collection 
of Markov processes (xP; O; X), one for each x in E. In the following the underlying 
set ~2 and the function X will be omitted when there is no possible confusion. In 
particular, for a good transition-semigroup P on a Polish space E, ~2 will be a good 
subset on E t~176 and X(t; .) the projections. In this case, for each # in MI(E), 
the set of all probability measures on E, the Markov process determined by P and 
# will be identified with the corresponding probability measure on f2 and denoted 
by #P  or simply xP  if # is concentrated at the point x. 

The Problem. A fundamental problem in diffusion theory is, for given (A, E), 
the existence and uniqueness of an A-diffusion. 

This problem has been exhaustively studied, we mention only the references 
[19, 13], and also [9, 6, 15, 7], for their relevance to this paper. 

The general existence of a Fellerian A-diffusion on a Euclidean space has been 
proved by Tanaka ([16]) and also by Krylov ([10]) by explicit contructions, 
assuming the boundedness and continuity of the coefficients, as well as the non- 
degeneracy. 

Under the same conditions assumed by Tanaka and Krylov, the uniqueness is 
finally established by Stroock and Varadhan ([16]). The present paper is devoted 
to the removal of some of the restrictions in the last-mentioned paper. The state 
space may be a manifold and degeneracy will also be allowed under some compen- 
sating restrictions of smoothness. 

w 2. The Statements of the Main Theorems 

Theorem 1. I f A is non-degenerate, then the Fellerian A-diffusion is unique. 

In view of the uniqueness theorem of Stroock-Varadhan in Euclidean space, 
our approach is naturally a localization. This will be carried out in 8 7, after the 
necessary preparations in 88 3-5. The degenerate case is much more complicated, 
as some additional requirements are obviously necessary for the uniqueness. With 
the aid of 88 3-5, and a result (8 6) on the Ito-Doob integral, we will arrive at the 
following theorem. (The pertinent definition of "outward non-degeneracy" will 
be given in 8 3, (6), ad that of quasi-square-root in 8 6, (35).) 

Theorem 2. (The uniqueness of the A-diffusion when A is degenerate. ) 
There is only one Fellerian A-diffusion provided a countable open covering 

{W, U1, U2 . . . .  } of E can be found so that: 

(a) A is non-degenerate on W. 

(b) A is Un-outwardly non-degenerate. 
(c) The closure Un of U, is representable as the closed unit ball in some local 

coordinates, relative to which a is Lipschitz, and there exists a Lipschitz quasi- 
square-root R of S. 
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Note 1. The Fellerian property can be weakened to : 

(d) m U P is Fellerian on U, if U = U,  or if U is a region relatively compact in W, 
with smooth boundary. (For the notation Mu, see below.) 

Note 2. The patching-up theorem of Courr6ge-Priouret, to be explained 
presently, can also be applied to the existence (construction) problem. We have 
then the following existence theorem: 

If A satisfies the condition (a), (b), (c) above with respect to an open covering 
{W, U1, U2, ...}, then there exists one (and only one) A-diffusion with property (d). 

Theorems 3-10, which are of some independent interest, are scattered in 
w167 3-6. The rest of this section is devoted to the description of the patching-up 
technique. It played a very basic role in several works, e.g. [13, 6, 16] cited above. 
It is thoroughly studied in 1-2] and will be utilized in this article. 

First, for a given subset U of the state space E, and a given path X (i. e., a measur- 
able function from [0, oe] to E), the (first) exit time of X from U is defined by 

rv(X)=inf  {s>=O: X(s)~U}. (2) 

(The infimum of the empty set is oe by convention.) The stopping on leaving U is the 
operation 

au: X ~-~ Y, (3) 
defined by 

Y (t)= X (minimum of t and zu(X)). (3') 

If a "cemetery" A is singled out, so that E is a "cemetery-equipped space," the 
killing on leaving U is the operation 

mu: X ~-, Z,  (4) 
defined by 

fAX,(t), if t < Zu (X) : Z( t )=  if t >zu(X). (4') t 

Let now ((x P); ~;  (X (t, co))) be a Markov evolution with transition-semigroup P. 
(That is to say a "Markov process" as defined in [4, w or [1, w 1.3].) Under some 
conditions ((xP); Q; (V(t, o)))) and ((xP); ~;  (Z(t, o)))) will also be Markov evolu- 
tions, with transition-semigroup: Q' and Q" respectively. In this case we will 
write Q' = au P and Q" = m U P. 

The Patching-Up Theorem of Courr@e-Priouret 

Suppose ~/is a countable open covering of E, a semicompact, and (Pu: U~  q/) 
is a system of "standard semigroups" on E. Then there is exactly one standard 
semigroup P such that a U P = a U Pu, if and only if, 

a u ~ v P u = a u ~ v P v  for U, V in q/; (5) 

that is, the family (Pu: U~q/)  is compatible. In case all Pu are diffusions, the 
compatibility condition can be replaced by 

munv Pu = mu~v Pv- (5') 
i8" 
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These assertions are the main part of [-2: Theorem 2.3.1 and Theorem 2.4.2, 
respectively]. 

w 3. The Outward Regularity 

Given an A-diffusion P on E, a point 0 on the boundary 0U of an open set U 
is said to be regular, for leaving U, the closure of U, i f0P{~u=0}=0 ,  where ~u 
denotes, for ease of printing, the exit time from U. This section is devoted to a 
criterion of this regularity. 

Suppose U to be smooth at 0, that is to say, coordinates (xl ..... Xd) can be chosen 
on a neighborhood V of 0 so that xi (0) = 0 and U c~ V is the part of V where xl < 0. 
We say that A is U-outwardly non-degenerate at 0, if, corresponding to such 
coordinates, either 

$11 (0) > 0 (second-order case), (6') 
o r  

$11 (0) =0  and al (0) > 0 (first-order case). (6") 

We say A is U-outwardly nondegenerate if it is so at every 0s0U. 

Theorem 3. I f  A is U-outwardly non-degenerate at O, then 0 is regular. 

Proof For the purpose of the proof, we suppose (as we may) the coordinates 
are chosen so that for a neighborhood V of 0, U ~ V becomes the part of V where 

x~ +... +(1 +x0 2< 1, (7) 

and (0U) c~ V is the part where 

x~+ .-. + x2 +(1 -~-X1)2 : 1,  (T) 

and xi(0)=0. Corresponding to such coordinates, the criterion for U-outward 
non-degeneracy is trivially the same as (6). 

Choose now a function fscg~ which is given, near 0, by f=x~+2bx l .  The 
positive constant b is chosen so that 

A f ( 0 ) = S l l  +2b  a 1 >0 .  (8) 

Consider a sequence of domains still to be selected, and shrinking to 0. Accord- 
ing to the Zero-One Law, and noting that 0 is neither a trap nor an exponentially- 
holding point, the proof will be completed when we prove that for every C of this 
sequence 

0P {exit from C =  entrance to (OC)\U} >�88 (9) 

We will achieve this by the use of Dynkin's formula. Indeed from A f (0)>0  we 
see that S fd  n > 0, if C is small enough and if n is the exit distribution, on leaving C, 
for the process 0 P. An appropriate choice of C, fulfilling (9), is the following: 

C is a cylinder, having xl-axis as axis, 0 as center, height 2v and as basis a disk 
of radius [-1- ( 1 -  v)2] ~ where v is a small positive number. 

On OC, the boundary, f has the maximum v(2b + v), on the top, and the 
minimum -v(2b-v) ,  on the bottom B =  {xl = - v ;  x 2 +--- +x~ +(1-1)) 2 ~ 1}. 
Because of~ fd~= ~ f d ~ -  ~ ( - f ) d r c > 0 ,  we have 

f > 0  f<O 

rc((OC)\B)v(2b+v)> ~ fdrc> ~ (-f)drc>rc(B)v(2b-v), 
f > 0  f < 0  
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and therefore, with (0C)c~U=B and r~(C)= 1, 

((6 C) \ U) = 7r ((6 C) ", B) > (2 b - 0/(4 b) > �88 

provided v is very small and less than b. Q.E.D. 
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w 4. Speed-Change without Degeneracy 

The theorems in these two sections, w and 5, are generalizations of a result 
implicit in [8], and discussed in some detail in [11]. Though we have a different 
motivation from that of the last cited paper, our approach is the same, namely, 
the use of the Skorohod machinery. Some details of the " e - 6 " ,  trivial though 
tedious, will be omitted. The generality of the treatment is dictated by its 
naturality, rather than by its main applications in w where only continuous 
paths are involved. 

The Skorohod Space. Let (E, p) be a Polish space. For a compact interval 
[q ,  c2] =I, the Skorohod space J ( I ;  E) is the set of all functions from I to E, 
which are right-continuous, have left-limits, and satisfy X(c2)=X(c2-  ). The 
topology on j ( I ;  E) will be always the Polish topology J1 of [14a, Definition 2.2] 
which can be defined by 

dist (X; Y) = inf {dist (X; 0; Y): 0 ~ Aut I}, 
with (10) 

dist(X; 0; Y)=sup {p(X(0; Y(Ot))+lt-Otl: teI} 

with 0 ranging through all the order-automorphisms of I. We will write j or j I  
for J ( I ;  E) when there is no possible confusion. We also write Jn  for it when 
I=[0; K]. 

There is a closely related space j which is the set of all functions X from ! 
to E, right-continuous and with left-limits everywhere, but not necessarily 
continuous at c2. Obviously ~r is a subset of j and in fact it is a closed subset 
in the topology of J to be described presently. 

The space j is factored as a product j = j x E  by X~--~(X',X") where 

X,.. (X(t) for cl<=t<c 2 (11) 
{t) = i X ( c 2 -  ) for t--Ca 

X"=X(c2) 

We equip j with the product topology, which can be defined by a metric 
having the same form (10) as above. 

Remark i. X ~-~ X' is a retraction of J on J .  It will be called the natural 
retraction. 

Remark 2. J plays only a minor role, but its appearance is inevitable if we 
consider, for example, restricting X ~ J ( l ;  E) to a subinterval 11 

Lemma 1. I fX,-- ,  X o in j ( I ;  IR), then SX,(t)dt-+~Xo(t)dt. 
l l 
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Lemma 2. Let h,--~ h o in the topology of uniform convergence on compacts, 
in the space Cg(E, F) of continuous functions from E to F, both Polish. Then X, --~ Xo 
in j ( I ;  E) implies h, o X, --~ h, o X 0 in J ( I ;  F). 

These lemmas are as trivial as the following observations. 

Remark 3. Let c3, c'a~(Cl, c2), X, Y E J  and let 01" [q ,  c3]-+ [-c1, c~], and 
0: [ca, c2] ~ [c; ,  c2] be two order-isomorphisms. We can define dist(X, Oi, Y) 
just as in (3) above. If 0 is the common extension of 01 and 02, then we have 

dist(X; Y)<dist(X; 0; Y)<dist(X; 01; Y)+dist(X; 02; Y). (12) 

Remark 4 The above remark is used in the following situation. We have 
X, Y, c3, c~ and 01 as above, and moreover, 

sup {p(X(t); Y(s)): ts[c3, c2], s~[c'a, C2]}~_~; Ic3-c; l<a.  (13) 

In this case, for any order-isomorphism 02: [ca, c2] ~ [c~, c2], the last term 
of (4) is dominated by (e + 6). Therefore 

dist (X, Y) < dist (X; 01; Y) + (e + 6). (14) 

Speed-Change. The general notion of change of time associated with an 
increasing process is defined in [12a, Chapter VIII, D 13]. We are interested in 
the following special case. 

Let v be a bounded and continuous function on the cemetery-equipped state 
space E, valued in (0, oo], and X a path in E. We define now 

t 

~0(t, x)= j" ds/v(X(s)), 
0 (15) 

0(s, X)=inf  {t: q)(t, X)>s}, 

and also a new path u  by 

VX(s)=V(0(s,  X)) with X(oo)=A. (16) 

The operation V is called the speed-change associated with v. 
If ((xN); f2; X) is a Markov evolution with transition-semigroup P, and 

((xN); (2; VX) is a Markov evolution with transition-semigroup Q, then we 
will write Q = VP. 

The definitions q), 0, and V above are still meaningful when we are considering 
finite-interval paths. In particular when X ~ j ( [ 0 ,  k ] ; E ) = j k  and k'<cp(k,X), 
we can consider VX as an element of J ( [0 ,  k'] ; E). 

Lemma 3. Convergence X"--,X ~ in J t  implies the uniform convergence of 
(p(; X")-* (p(; X ~ on [0, 11, and also that of ~(; X")--~ ~ (; X ~ on [0, M], provided 
1/M > sup v. 

Proof The pointwise convergence of ~0(; X")~+(p(; X ~ is a consequence of 
Lemma 1 and 2 above. Observing that the closure of {X" (t): 0_< t < 1, n = 0, 1 . . . .  } 
is compact, v may be assumed bounded below by a strictly positive number, 
say 1/m. Therefore the one-sided derivatives 1Iv (X" ((t_+))) of ~0(; X") are bounded 
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by m, and the Ascoli-Arzela theorem implies the uniform convergence of 
qo(; X")--, q)(; X~ The second assertion is as easy to prove; in fact the one-sided 
derivatives of ~b(; X) are always bounded by M, for every X e J i ,  while q0(; X) 
and t)(; X) are inverse to each other. 

Lemma 4. I f  b is a continuity time of X ~ and if X " ~ X  ~ in J l  then for any 
~>0, there exist 61>0 and n l e N  such that p(X"(t); X~ whenever n>n 1 
and It-b]<61. 

This is an elementary fact in the Skorohod theory and the proof is omitted. 

Theorem 4. (Continuity of speed change on sample paths.) 

Let v be continuous and strictly positive on the Polish space E, bounded above 
by 1/M. I f  X ~  1],E) is continuous at ~(M; X ~ then X ~ is a continuity 
point of the speed-change V considered as a mapping fi'om J t  to JM. 

Remark 5. It is easy to see that the continuity of X ~ at O(M; X ~ is necessary. 
This is a peculiar feature of the Skorohod theory because here the time interval 
is, so to speak, not rigid enough. 

Proof Assuming X"-+ X ~ in J l ,  a sequence (0,)c Aut [0, 1] can be so chosen 
that 

lira dist (X~ 0,; X") =0.  (17) 
Let 

0', =~o(; X")o 0, o ~ (; X~ 
so that 

sup p (VX ~ (s); VX" (0; s)) = sup p (X ~ (q) (s, X~ X"(0, q) (s, X~ ~ 0 (18) 
0_<s_<M O_<s_<M 

and that, by Lemmas 2 and 3, 

lira sup ]O',s-sl=O. (19) 
n 0 <s<iVl 

We have yet to tailor (0',) into automorphisms of [0, M]. 
Given e>0,  we choose (nl,60 as in Lemma4,  with b=O(M;X~ Also, 

applying Lemma 4 again to the uniform convergence: ~ (; X " ) ~  ~O (; X~ we can 
find (n 2, 62) such that 

[~(s,X")-bl<61, whenever n>n2 and Ls -MI<262 .  (20) 

Here n z e N  and 0<~51<e. By (19) we now choose n~ so that 

M - 2 6 2 < 0 ' , ( M - 6 2 ) < M  for n>n 3. (21) 

Let us apply Remark 4 to this case, with 01 there the restriction of 0', to 
[0, M-32-1 ; thus (18), (20), (21), together with (14), yield 

limdist(VX~ VX")_-<0+(2e+62)<3e. Q.E.D. 
n 

Remark6. The "natural"  lifetime qo(1,X") of VX" depends on n, so that 
VX"--, VX ~ is nonsense unless we restrict the consideration to a fixed interval 
(note that ~o(1, X ) > M ;  therefore q0 (M; X)< 1). However, by a normalization of 
time scale, we can interpret the convergence in the following way. 
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Let k = (p (1; X")/cp (1; X~ (Note that k, ~ 1.) We have then VX"(k, . ) ~  VX~ 
m the space j ( [ 0 ,  cp(1; X~ E). 

Remark 7. Let 0<c<(0 (1 ;  X~ and let ~(c; X ~ be a time of continuity o f X  ~ 
then VXn-+ VX ~ in the space ~ .  This is proved by the same kind of tailoring. 

Preservation of Fellerian Property. A transition-semigroup P on a Polish 
space E will be called a Skorohod semigroup if it satisfies the following conditions" 

(a) P is conservative: P~ 1 = 1 for t => 0. 
(b) P can be canonically realized on the space J ( IR+ ; E) of all paths which 

are right-continuous and have left-limits everywhere on IR+. 
(c) The canonical realization is strongly Markov and quasi-left-continuous 

on tR+. 
(d) For any T>0 ,  x ~ x P M M I ( J T )  is weakly continuous on E; here x P  is 

considered as a probability measure on Jl". 

Remark 8. In particular, P is a Hunt  semigroup. The axiomatics will not be 
studied here. We observe that, because of (c), one also has: 

(c') For any initial distribution #~IMt(E) the process/~P does not have any 
fixed time of continuity. Therefore # P  can be considered as a probability measure 
on iT ,  T > 0 .  

We also observe that, as a trivial consequence of (c) and (d), 

(d') P~cgb(E)~Zb(E ), t>0 .  

Theorem 5. (Preservation of the Skorohod character of semigroup under speed- 
change.) 

Under the same assumption as in Theorem 4, VP is a Skorohod semigroup 
if P is one. 

Proof I fP is canonically realized as the Markov evolution ((x P); J ( IR+ ; E); X), 
then VP is the transition semigroup of ((xP), J ( IR+ ; E); VX). Therefore (a) and 
(b) are trivial as VXEJ(IR+ ; E) whenever X%C(IR+ ; E). By the transformation 
rule of stopping times, (c) is valid. It remains to check (d). For any x~E and T>0 ,  
we know O(TM; X) is almost ( x P - )  surely a continuity time of X, because of 
the quasi-left-continuity. Therefore by Theorem4, V: J [ 0 ,  T ] ~ J [ 0 ,  TM] is 
almost ( x P - )  surely continuous. By (d), we see finally that the mapping 
x ~ E ~-~ x VP ~IM a (~7 [0, TM]) is weakly continuous. Q.E.D. 

Let P be a Fellerian semigroup on E. It is canonically extended to be a 
conservative Fellerian semigroup on E~ (the one-point compactification). In this 
way P is always considered as a Skorohod semigroup on E~. As a corollary of 
the above, we have the following theorem of Hunt-Lamperti. See [11, w 

Theorem 6. (Preservation of Fellerian property under speed-change.) 

I f  v is strictly positive and continuous on E,j, and P is Fellerian on E, then VP 
is also Fellerian on E, and G(VP)=vG(P) .  

The second assertion holds because of the d'efinition of Dynkin's characteristic 
operator and Dynkin's theorem. See [4, Theorem 5.5]. 
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w 5. Speed-Change with Degeneracy 
A degenerate speed-field v is a function on E, nonnegative and null some- 

where. For example, v may be vanishing at infinity or v may be the indicator 
function of a certain proper subset U of E. The associated speed-change in the 
last case will be the stopping on leaving U, as we will define 

(p(t;X)=oe if t>zu,  where U= {x; v(x)>O}, (22) 

while ~ and V are defined as before. See (15) and (16) of w 

Remark 1. Some sort of limitation is necessary in order to guarantee the 
continuity of V. This is seen from the following example. 

Example. Let E=IR, v=the  indicator function of ( - 1 ,  + 1), and, for n~No,  

x"(t) ~.+t,  t<�89 
=(c~,+ l - t ,  t~�89 

where 

~1 ~ 0~2 ~ ' " - - ~  ~0= �89  

The Continuity of the Exit Time and the Detachment Time fi'om a Set 

Lemma 1. I f  F is closed z = zr is upper-semi-continuous on J l .  

Proof In proving the semi-continuity of X ~ we may assume z (X ~ < 1, since 
otherwise the proof is trivial. Given e > 0, there is a to < 1 such that 

"c(X~176 and X ~  

If now X" ~ X ~ i.e., dist (X ~ 0,, X") + 0 for some sequence (0,) = Aut [0, 1], we 
see that, for large n, X"(0, t o ) ~ E \ F .  Therefore 

0, to>r (X ") and l imz(X")<to=r(X~ Q.E.D. 
n 

If X e J ( I ,  E) and b~I, the trace of X up to time b is defined as 

F b(X) = the closure of {X (t): t =< b}. (23) 

The first detachment time of X from U is 

~u (X) = inf {s; F~ (X) \ U 4: ~}. (24) 

Lemma 2. I f  U is open, ~=~j is lower-semi-continuous on Jl .  

Proof. Let X " ~ X  ~ If b=~(X~ then for any e>0  the compact set 
Fb_~(X~ therefore, when n is large, Fb_~(X~ And we have ~(X")>b-e ,  
so that lim~(X")>~(X ~ follows. If ~(X~ oo then ~(X")= 0o for lage n. Q.E.D. 

n 

Lemma 3. I f U  is open and "~u(Z)=~u(X) for an X ~ J l ,  then X is a continuity 
point of re. 

Proof. The inequality ~j <zv<~u  is generally valid. Now apply the above 
two lemmas. 
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Remark2. We will be concerned with "Hunt processes" only; thus "~u=Zv 
is (almost surely) valid when U is open. (Actually valid when U is analytic.) 
Also if X (-r v (X)) c E \ U, then ~u (X) = ~u (X). So the only troublesome situation 
is when X(h: (X))~ 0U. In this case the identity ~: (X)= % (X) means, in the context 
of Markov processes, that X(zu(X)) is regular for leaving 1~. This is discussed 
in w 

Continuity of Speed-Change with Degeneracy. In the rest of this section v will 
be positive, bounded above by 1/M and continuous on the set U =  {x: v(x)>0}, 
which we assume to be open. The exit times from U, U, and the detachment time 
from U are denoted by z, ~, and "~, respectively. 

Two numbers b =~(X ~ and c= cp ( b - ; X  ~ will be important in our case- 
by-case study of the continuity of V: j~ ~ J M  at the point X ~ 

Cace(I). b>~(M;  X~ Just as in Theorem4, the continuity of V at X ~ is 
ensured by the continuity of X ~ at ~ (M; X~ 

Case(II). b=O(M; X~ c=M. This is by no means a general situation but 
it is a prototype for a more complicated situation. We assert that the same 
criterion as in Case (I) applies, i.e., the continuity of V at X ~ is ensured by the 
continuity of X ~ at b. 

For a given e>0, we can find (na, 60 as in Lemma 4, w Choose then 32>0 
so that 

62<Mc~1, 62<e. (25) 

~ t ( M - ~ 2 , X  0) lies in ( b-6~2' b) and is a continuity time ofX ~ 

Now by Lemma 3 ofw and (25), ~P(M-62, X")e(b-6a, b] for n large, say n>=n2. 
Noting that 0(; X) has one-sided derivatives always dominated by M, we have 

O(s,X")6(b-gl,b+b1) for n>n2 and M-62<s<M.  (26) 

According to Remark 7 of w VX"~ VX ~ in the sense of J [ 0 ,  M-62] .  On the 
other hand, we have, by the choice of (nl, 60 above and (26), 

p(VX"(s);VX~ for n>~max(nl,n2 ) and s r  (27) 

These two facts together imply, by the Remark 4 of w that 

lim dist (VX", VX~ < 2e + ~2 < 3 e, in ~ .  
n 

Case(III). X~ z(X~ c<M. In this case b is necessarily a 
jumping time of X ~ as X ~ (b)r U. We will show that V is continuous at X ~ provided 
the following condition holds true (the regular-or-trapping condition)" 

Either ~(XO)= ~ o b=z(X ), 
or 

Let 
X~176 for t>=b (X~ is a "trap"). 

X"-*X ~ i.e., limdist(X~ for(O,)cAutI .  
n 

(28R) 

(28 T) 
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First of all we can find a sequence (0',) of functions on [0, c], continuous, vanishing 
at O, strictly increasing, and satisfying 

lim dist (VX ~ O'n; VX n) = 0 
. ( 2 9 )  

O(O'nc; X")=0, b. 

To achieve this, let k' n = 0, b/b, 0 o b = b, and Y"=  Xn(k~ -) restricted to [0, b]. Let 
us take the natural retraction (Remark 1, w yn of yn. For n sufficiently large, 
say n>n o, yn___~ yo in J ( [0 ,  b]; U); therefore the Remark 6 of w is applicable, 
resulting in 

VY"(kn . ) -*VY ~ in ~ ,  (30) 
with 

k, = 4) (b, Yn)/~b (b, yo) = q~ (0n b - ; X")/c k',. (30') 

Because X n (k'n b) --. X ~ (b), we have also 

VYn(kn ' )~VY ~ in ~ ,  or VXn(k,k'n.)-~VX ~ in J c ,  

and (29) is proved if 0'n s = k, k'n s. 

According to Remark 4, w it is now only left for us to prove the next 
assertion: For any e > 0, we can choose nl > no such that 

p(VXn(s); VX~ for all s>O',c and n~n  1. (31) 

In Case (28T) of trap, this is trivial. Turning to Case (28R), we first choose 
( n 2 , 6 2 )  , nzEN, 8 2 > 0  , such that p(X"(t);X~ whenever O,b<t<O,v+62 
and n > n 2 . This means, putting 31 =32/M, that 

p(VX"(s); VX~ whenever O,e_s<O'nc+61 and n>max(no,n2) (32) 

The hypothesis ~ (X ~ = ~ (X ~ is now invoked for Lemma 3, this section, resulting 
in z(X")-+ �9 (X~ which means that 

O,b<z(X")<Onb+62, for n large, say n > n  3. (33) 

Letting hi=max(no,  n:,  n3) we see that the paths VX n have no chance to violate 
(31), for n>nl. 

Case(IV). z(X~ X~176 and c < M .  We can show that V is 
continuous at X ~ provided the regular-or-trapping condition (28) is satisfied. 
The proof consists of a combination of the arguments in the Cases (II) and (III), 
and will be omitted. 

Preservation of Fellerian Property Under Exit-Stopping. Summarizing the 
above discussions in the context of Markov processes, we have 

Theorem 7. (Preservation of Skorohod character of semigroups under degenerate 
speed-change.) 

Let P be a Skorohod semigroup on E, and v a bounded non-negative function 
on E, continuous on U =  {x: v(x)>0}, which is assumed open. I f  every point of ~U 
is either trapping or regular for leaving U, then VP is also a Skorohod semigroup. 

Proof Whatever the initial distribution # may be, almost (#P) surely the 
conditions (III) or (I) are fulfilled and hence almost all sample paths are 
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continuity points for V: ~ J M .  The proof is now completed just as in 
Theorem 5. Q.E.D. 

Theorem 8. (Preservation of Fellerian property under speed-change.) 

Let P be a Fellerian semigroup on a semicompact E (without cemetery) and 
let v be a bounded strictly positive continuous function on E. Then VP is also 
Fellerian, and 

G (VP) ~ v G (P). 

That is, for every f in the domain of definition of G (P), G (P) f = v G (P) f 

Proof In this case the cemetery A is a trap for the (extended) Skorohod semi- 
group P on E~ and v is extended to be zero on {A} DOE. The second assertion 
is proved by Dynkin's theorem, cf. Theorem 6, w Q.E.D. 

Theorem 9. (Preservation of Fellerian property of a semigroup under stopping 
or killing.) 

Let P be Fellerian on E, and U an open set in E. I f  every point on the boundary 
8U of U is either trapping, or regular for leaving U, then Q'- -auP is Fellerian 
on E and Q " = m u P  is Fellerian on U. I f  moreover, P is an A-diffusion on E, then 
Q" is an AIv-diffusion on U. 

Proof of the Second Assertion. I f f s  ego (U), then Q~'f = Q ' j a n d  vanishes off U, 
so that Q'/Cgo(U)=Cgo(U). On the other hand Q" is obviously stochastically 
continuous on the semicompact U. Now apply [4, Lemma2.11]. The last 
assertion is obvious. Q.E.D. 

w 6. Representation of a Martingale as an Ito-Wiener Integral 

This section is devoted to the generalization of a theorem of Doob in higher 
dimension, This almost trivial generalization is essential in Ito's approach to 
the A-diffusion problem. 

Consider Ito's equation 

dX (t) = a (X (t)) d t + R (X (t)) dW(t) (34) 

where W is a Wiener process. The definition of the stochastic differential or the 
stochastic integral is given in [9]. (See also [3] and [15].) It is known that when 
the "Ito fields" ~V=(a; R) is bounded and (locally) Lipschitzian, the Eq. (34) has 
a unique solution for any given initial position X(0). All the solution processes, 
for varying initial positions, form a conservative Fellerian A-diffusion P where 
A =  E a i 8i+�89 8, 8~ is connected with 7t=(a; R) by 

S(x) = R (x) R(x) ,  (35) 

l] being the matrix-transpose of B. We call S the square of R and R a quasi- 
square-root of S. 

Remark 1, A basic problem in It's approach is to find a Lipschitzian ~ = (a; R) 
from a given A=(a, S). This is an ill-posed "section problem". (For some results 
on this problem see [5].) 

We want an affirmative answer to the following question which is in some sense 
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A Converse Problem to Ito's Construction 

Suppose T=(a ,  R) is a bounded continuous Ito field on IR d and P is a 
Fellerian A-diffusion with A = (a, S) connected with T by (35). For a given initial 
distribution #, can the process X on (Cg(lR+ ; IRe);/~P) be expressed as a solution 
of Ito's equation (34) for a certain Wiener process W ? 

The answer is an easy consequence of Lemma3 in w and the following 
theorem, due to Doob  ([3, p. 449]) in the one-dimensional case. 

Theorem 10. Let (X(t),~,~) be a continuous d-dimensional vector martingale, 
and let (R (t), J~) be a process (d x d') matrix-valued, on the same probability space 
(~, ~). I f  the conditional expectations 

f f  s { ! Si,(u) du}~- ~ {[Xi(t)- Xi(s)] [X,( t ) -  X,(s)]} (36) 

where S = R f l ,  t>s, then there exists a d'-dimensional Brownian motion (Y(t)) 
such that t 

X(t) = X ( 0 ) +  S R(X(u)) dY(u). (37) 
o 

Proof. Without loss of generality we may assume d '=  d, by augmenting R by 
zeroes if necessary. 

Let us consider a polarization R = R ' U ,  with R' non-negative symmetric 
and U orthogonal, and then diagonalize R', i.e., write R ' =  VAV with V orthogonal 
and A diagonal. There may be ambiguity as the polarization and the diago- 
nalization are not unique, but we will choose these measurably. The diagonal 
matrix is again decomposed into a direct sum of two blocks: A = A1 + Ok, where 
A 1 is a strictly-positive diagonal matrix, say of dimension (d-k) ,  and 0k is the 
k-dimensional zero-matrix, 0 _  k _  d. 

Define now in the same decomposition, A '=Ai - l+0k  and A"=Oa_k+l k 
where 1 k is the k-dimensional unit matrix. Take finally a d-dimensional Brownian 
motion (Z (t)), independent of the tribes (~).  (See the discussion in [3]: In general 
it will be necessary to go outside the given probability space to do this.) 

We now construct 
I 

Y(t)= S UVTl'~ZdX+ i U V A " V d Z  (38) 
0 0 

o r  

dY = UVA'  V dX + UVA" V dZ, symbolically. (38') 

It is readily seen that, for t > s, 

4 '  { [Yi (t) - Yi (s)] [Yj (t) - Y~ (s)]) ~ (t - s) ai~, (39) 

ifo~' is generated by ~ and {Z(u): u<s}. 
By [3, Chapter VII, Theorem 1.9], Y(t) is a d-dimensional Brownian motion. 

Also we have RI~VA"V=0,  and VA"~/R=0;  hence, by the composition rule of 
stochastic integrand, [3, p. 448], 

R d Y = V A A ' g d X + O d Z = ( 1 - V A " ~ C ) d X = d X .  Q.E.D. 
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w 7. The Uniqueness Theorems 

Lemma 1. Let A be non-degenerate on a Euclidean E, without any boundedness 
condition. Then Fellerian A-diffusion is unique. 

Proof Let P and P' be two Fellerian A-diffusions. Let 

v = [Z  (SiJ) z + Z  (a/) 2 + 1] -~ 

and apply the speed-change V to P and P', resulting in Q and Q' respectively. 
By Theorem 8 (w 5), Q = VP and Q ' =  VP' are both Fellerian (v A)-diffusions, hence 
identical by the theorem of Stroock-Varadhan. 

But now V: J(IR+, E~)- .  J(IR+, Ea) is almost surely injective, relative to the 
measures x P  and xP'. Therefore x P = x P '  for every x. 

Proof of Theorem 1, w 2. We cover the manifold E by smooth balls (W,). Then 
on any such ball W the murdered evolution mw P of a given Fellerian A-diffusion P 
is a Fellerian (A[w)-diffusion by Theorem 9, w 5, and Theorem 3, w 3, hence uniquely 
determined by Lemma 1 above, as a ball is diffeomorphic to a Euclidean space. 
By the patching-up theorem of Courr6ge-Priouret, P is unique. 

Proof of Theorem 2, w 2. By patching-up and a speed-change just as in the 
proof of Theorem 1, it suffices to prove, on a Euclidean space, the following. 

Lemma 2. Let a be bounded and Lipschitz, and let there be a (,globally) Lipschitz, 
bounded, quasi-square root R of S. Then the Fellerian A-diffusion is unique. 

To prove this lemma we invoke the following result [16, Lemma 11.3]. 

Lemma 3. Let A be continuous and bounded on IR d, then the following two 
processes 3, tl are continuous martingales valued in IR a and IR a • d respectively, with 
respect to any Fellerian A-diffusion process (X(t)) with any initial distribution: 

t 

~i (t) = Xi (t) - X i (0) - S ai (X (u)) du, 
o (40) 

t 

= S s,j(X(u)) du. 
0 

Now still following the idea of [16], we apply Theorem 10, w 6, so that there 
exists a d'-dimensional Brownian motion Y such that 

t 

4(0)+ S R(X(u)) dr(u), 
0 

or, equivalently, 
t t 

X(t) = X(0)+ ~ a(X(u)) du + ~ R (X(u)) dY(u). (41) 
0 0 

The solution of this last equation, given (Y; X(0)), is unique, because (a, R) is 
globally Lipschitz. By the uniqueness (in the sense of identical distributions) of 
Brownian motion Y, the distributions of X(t) are uniquely determined. Q.E.D. 
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