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Summary. Let 12 be the unit cube of ] R  2 and Xi be independent I2-valued 
random variables that are distributed according to Lebesgue-measure. If S is 
the set of closed convex subsets of 12 we consider the process {IIn(A)}AES, 

n 

where #,(A)= ( l / n ) ~  1A(Xi). It is proved that this process suitably normalized 

converges in a suitable weak sense to a Gaussian process. 

w Introduction 

Let I2 be the unit cube in 11t 2 and Xi, i~N, be a sequence of independent 12- 
valued random variables that are distributed according to Lebesgue-measure 2. 
Let S be the set of closed convex subsets of 12 . We consider the process 

{#,(A)}a~ s where #,(A)= ~ 1A(Xi). It is the purpose of this paper  to prove that 
i = l  

this process, appropriately normalized, converges in a suitably weak sense to a 
Gaussian process. 

S has two natural metrics: p(A,B)=2(A-B)+2(B-A) and the Hausdorff  

metric 5(A, B) = max(sup infd(x, y), sup inf d(x, y)) (d the Euclidean metric). It is 
x~A  y~B y~B x ~ A  

known that (S, 6) is a compact  metric space and that 6 and p generate the same 
topology on the subset of S which consists of sets with nonvoid interior. There 
exists a constant K > 0 such that 

(0.1) p(A,B)<K6(A,B) for all A,B~S (see e.g. [5] (4.2)). 

The first problem one encounters is that the paths of #, are not continuous on S. 
They are of course bounded and Borel-measurable functions on S, but #, as a 
mapping from the basic probabili ty space to the nonseparable Banach space of 
bounded measurable functions on S (endowed with the sup-norm) cannot be 
Borel-measurable. The tool for solving these problems is provided by the theory 
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of weak convergence developed by Dudley [3]. In order to apply this theory one 
has to show that #~ is measurable as a mapping into the space of bounded 
measurable functions on S equipped with the o--algebra generated by the balls of 
the sup-norm. (This a-algebra is smaller than the Borel o--algebra). These 
measurability considerations are found in w 1. After some preliminary work in w 
weak convergence in the sense of Dudley is proved in w 3. 

There is a paper by A. deHoyos in which such a theorem has been stated in 
incorrect form because it does not take into account the fact that the paths of/4, 
are not continuous ([61, Cor. 3). Beside this the proof contains other defects, the 
most serious one being that deHoyos seems to make use of the following false 
statement: 

If {Z~,(t)}t~r, {Z~(t)}t~r, heN,  e >0  are processes with some index set T and if 
Z~, --, Z ~ in some weak sense for each e > 0 and if Z,~,(t) ---, Z~ and Z~(t) --, Z~ in 
L 2 as e + 0  for each t then Z ~ ~ Z  ~ weakly. ([6], p. 161). 

w 1. Notations and Measurability Considerations 

Let S, 2, ~5, p and d be defined as in w Let further N(S) be the set of Borel- 
subsets of S (with respect to 8), B(S) the set of real-valued bounded N(S)- 
measurable functions on S and C(S) the continuous functions on S. For  feB(S) 
we set Ilfll =sup{lf(A)J: AeS}. (C(S), II II) is a separable and (B(S), I[ []) a 
nonseparable Banach-space. Let cg and @ be the class of Borel-subsets of C(S) 
and B(S). Further let 6 e be the a-algebra on B(S) which is generated by the balls 

{f:  IIf-gll <dg~B(s).~>o- 
Let (f2, d ,  P) be a complete probability space and Xi, ieN,  be a sequence of 

independent I2-valued, 2-distributed random variables. Let 

p,(A, co)=(1/n) ~ 1A(Xi(co)) and Y,(A, co)=]fn(&(A, co)-2(A)). 
i=1 

We interpret the/~, (and Y,) as mappings from f2 to B(S): #,(co)(A)=#,(A, co). The 
aim of this section is to prove 

Proposition 1./~,: (f2, d ) ~ ( B ( S ) .  5 a) is measurable for each n. 

Throughout  this section 5, 5 are always rational and > 0. If n e N  let ~*  be the 
class of universally measurable sets in ((I2) ", N((I2)")), that is the subsets of (I2)" 
which are in the completion of N((I2),) relative to any finite Borel-measure on 
(12)n. 

For AeS let A 1 =A and A~ c (the complement of A) 

Lemma 1. Let Fe~(S) ,  heN,  (i, . . . . .  i,)e{0, 1}". Then 

L) A~* x . . .  x A ~ " ~ ,  *. 
AeF 

Proof. Let A be a point which is separated from (i2).. We define a map 

~ :  S x (12)" ---+ (12)n U {A} 

�9 ~ [(y> ..., y,) if ykeA ~ for each k 
~b(A, )'1, Y2, ..-, Y,J = )A else. 
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We claim that  this m a p  is Borel-measurable .  
m O) 

For  ~( >0 ,  ra t iona l ) le t  x~ . . . . .  x~(6)eI 2 be such that  ~ Uo(x~)=I 2 where U6(x) 
j =  1 

" 6 when no confusion can = { y ~ i Z  d(x,y)<6}. We will d rop  the upper  index ~ in x~ 
arise. 

Let  V~,..., Vn be open in 12 with A ~ V 1 x ... x V,,. If  we show that  

(1.1) ~-~(V~ x ... x V~)e~](S)| ~) 

measurabi l i ty  will follow. 
Fo r  c~ and 1 <Jl, ...,j,<m(c~) let 

A j ...... ~= {AeS: A c~ U6(xj~)4:fi for those k with 

i k = l ,  Ac~ U6(xj~)=f~ for those k with ik=0  } 

CJ~ = {~ Ja (x~) ifif not.Uo(xJ~)~Vk 

It is easy to see that  A j ...... J"~N(S). N o w  

(1.2) ~ - I ( V  1 x . - .  x V,) 

m(~)  

= U U . . . . .  • 
e,> 0 e j l  . . . . .  j n =  1 

In fact: I f  (A, y~ . . . . .  y,) e # -  l (v t  x -.. • V,) then )'k e A i ~  Vk for all k. So there exists 
a > 0  such that  for b < e  and YkeU6(x~), U6(x~)c V~ for all k and  U6(xj~)cA ~ for 
those k with i k = 0. Fur ther  U6(x~) c~ A i~ +O for k with i ~ = 1. So (A, y~, ..., y,,)eright 
side of  (1.2). 

Converse ly  if(A, y~ . . . . .  y,,)eright side of(1.2) then there is an e such that  for 3 < 
there exists j~ . . . .  , j ,  with y ~ U ~ ( x ~ ) ~ V  k for all k, Ac~U~(x~)+~ if i k = l  and 
A c~ U~(xj~)=g if ig =0 .  By compac tness  of  A we have YkZA if ig = 1. So 

(A, yl . . . . .  yn)~Cl)- a(V~ • ... • Vn) 

So (1.2) and (1.1) are proved.  
N o w  

U Ai~ X ... • .,4 i~ = ~ ( F  • (12)n) ~ (I2)n. 
A~F 

As S • (12) n is a complete  separable  metr ic  space and ~ is measurable ,  it follows 

f rom T h e o r e m  3.4 Ch. I of  [7] that  U Ai~ / "" • Ai~ is analytic, so in .~*. 
A ~ F  

The same p roo f  gives the following corol lary which is p robab ly  well known  but 
has until now escaped my  attention.  

Corollary.  Let K be a compact metric space, 2 ~ the set of closed subsets of K equipped 
with the Hausdotff metric and filrther ~ ( 2  K) the class of Borel subsets of 2 r~ (with 
respect to the Hausdorff metric). I f  F e ~ ( 2  K) then ~ F is analytic in K. 
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Proof of Proposition 1. Let 

T: (I2)"-~B(S) be defined as follows 

7'(y...., y.)=(1/n) ~ 1.(y) 
j = l  

Clearly #,(co, A) = T(X 1 (co),..., X,(co))(A). 
By the completeness of (O, d ,  P) it suffices to prove that 

T: ((I2)",~*)~(B(S),5 '~) 

is measurable. 
Let geB(S) and a > 0 be fixed. We will show that 

(1.3) Dg,r 1 .... ,y,)e(I2)": ]]T(Yx,. . . ,y,)-g][-<r 

Let 

rk = {A eS: Ig(A) - k/nl > or} e~(S).  

As is easy to see 

n 

(1.4) D~.~=kO0 (~ [ U A',x. . .•  c. 
= A e F k  i l  . . . . .  i n~{0 ,1}  n 

i l  + ' " + i n = k  

By Lemma 1 

0 U A"x . . . xA '~  *. 
AeFk il  . . . . .  in 

i l + ' " + i n = k  

So Dg,~ which is the intersection of the complements of these n + 1 sets is in N*. 
The proposition is proved. 

E. B o l t h a u s e n  

w 2. Approximating Convex Sets from Above 

In order to prove weak convergence of our empirical process, we want to use a 
technique like that employed by Strassen and Dudley [81 for the case of Lipschitz- 
continuous independent summands in C(K), where K is a compact metric space. 
Instead of continuity we use the fact that the summands in ~(1A(Xi)--~.(A)) 
up to the Lipschitz-continuous 2(A) are monotone in A. To make this work, we 
have to approximate the elements in S from above by classes of not to many sets. 

We have to blow up 12 somewhat. Let S be the set of closed convex subsets of 
[ -1 ,212 .  The following proposition is taken from Dudley [5] (Theorem 4.1) 

N(e)  

Proposition 2. For  e > 0 there exist coverings S = U S} with 6 (S})<e and log(N (e)) 
j = l  

=o(e -~) as ~j,0 for each fl> 1/2, where 

~(~)= sup ~(A,B). 
A , B e S ~  
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Let BJ m) be elements  in S~. m for l < j < N ( 2 - m ) .  For  A~S let Am={x~lR2: 
- m  " - 2  . . . .  Am=I2~B} re+l). F r o m  the d(x,A)<2 }~S. Then  A~sSj for some j. Let  

convexity of  A~S and the above  const ruct ion one has: 

(2.1) for each AeS, m~N Am~S 

(2.2) A,, = A 

(2.3) " " --m-- O(Am, A)<3. 2 1 

Let ; t~=ca rd{A~:  A~S}. Then 

(2.4) 2 , < N ( 2  m-x). 

Let  n o w / l m = { X e I 2 :  d(x, (A~)~)>-2-"+l}.  Then  one easily obtains 

(2.5) A~ES 

(2.6) A,,~A 

(2.7) there is a constant  c > 0  such that  for each m ~ N ,  AeS p(A,,,Am)<C2 -m. 

Note  that  one cannot  have 6(Am, A , , ) < c 2  m in (2.7). 

w 3. Weak Convergence of the Empirical Process 

Let (M, d) be a metr ic  space and ~# the class of  Borel-sets. If  Jr/ '  is ano ther  a -a lgebra  
of  sets in M, v a measure  on (M, ~#/') and F a bounded  function on M we set 

F d v = in f{yfdv :  f > F, f J# ' -measurab le}  

j" f dv = sup {Sf dv: f < F, f Jr  

We take the following definition f rom Dudley  [3]:  
If  v is a Bore l -measure  on M and v, is a sequence of measures  (not necessarily 

Borel), we say 

v, --, v (weak*) 

if for every bounded  cont inuous  function F on M 

lim ~ F dvn= lim ~ F dvn= ~ F dr. 
, 

A set 2r of  measures  on M is said to be weak*-sequent ia l ly  relatively compac t  if for 
any sequence {ft,} c X there is a subsequence converging weak* to a Borel- 
measure  on M. 

Let  # be the Gauss ian  measure  on (C(S),Cg) such that  for A, BES 

f(A)g(df)=O, ~ f(A)f(B)#(df)=2(Ac-~B)-2(A)2(B). 
C ( S )  C ( S )  
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Such a measure exists (see Dudley [4], Theorem 4.3). Clearly # extends to a Borel- 
measure on (B(S), 9). 

Let ~A : B (S) ~ 1R, K A (f)  =f(A) and 3 ~' be the a-algebra generated by 3'  and the 
~:A'S. Further let #" be the measures on (B(S),3 ~') induced by the maps 

f2--* B(S) 

co --+ Yn(', co)= ]/n(#,(., co)- 2(-)). 

By Proposition 1 the #" are defined on (B(S), 5P'). 
We can now formulate our main result. An earlier unsuccessful attempt at such 

a theorem was made by deHoyos [6]. 

Theorem 1. # ' -*  # (weak*). 

We quote the following version of the Bernstein inequality 

Lemma 2. Let ~i be i.i.d.r.v, with E(~ i )=0 ,  2 o.2 E(~ i )= and IGI_-< 1 a.s. Then 

P i~1 >t  <2exp( - t2 / (2na2+2t /3 ) ) .  

For a proof see [1]. 
A straightforward corollary is 

Lemma 3. For any a > 0  and A, BeS  

P([ Y,(A) - Y~ (B) I > a) __< 2exp( - n a2/(2n p (A, B) + 21~  a/3)). 

We state the following convention for the rest of the paper: m and n are always 
related by m=[ logn/~ log2]  where c~<2 is fixed and sufficiently close to 2 
(' sufficiency' being clear in what follows) 

Lemma 4. For each e>0  and m e n  { feB(S):  ~ ' sup If(A) -f(A, ,)  I > ~} e ~ .  
A c S  

Proof. Let B(S)={geB(S):  g(A)=g(B) whenever Am=/~,~}. Clearly (/~(S), 1[ II) is 
separable. Let Q be a countable dense subset in/~(S). For f e B ( S )  let f e B ( S )  be 
defined byf(A)=f(Am). Then clearly sup If(A)-f(Am)l > e if and only if there is a 

A s S  

e '>e such that for each 6 > 0  there exists a geQ such that [If-g[[ > e ' - 8  and Hf 
-g[] < ~. So the lemma follows. 

Lemma 5. For each e > 0 lira (#")* {f: sup If(A) -f(Am) l > e} = 0. 
n ~  0o A s S  

Proof. From Lemma 4 it follows that 

(p')* {f: sup If(A) -f(A~)[ > e} = P {co: sup I Y,(A, co) - Y, (~im, co)l > ~). 
A e S  A e S  

We therefore have to show that 

(3.1) lim P{co:sup [Y~(A, co)- Y,(A~,co)l >e} =0.  
n ~  co A s S  
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Now [2(A~)-2(A,,)t = O t2-m), 1/4 = o(2"), so there is a no(e) such that for n > no(e ) 

(3.2) {co: ]fn~l(#,(A)-),(A))-(#,,(Am)-2(Am))l>e} 

c {co: ]/n(#.(A,~) - #,,(A)) > 2e/3} 

c {co: ]/n(#,(Am) - #,(Am)) > 2e/3} 

= {co: ]fnzl#.(A,.-Am)-)~(Am-A~)[>e/3}. 

Let {~ = I~_~.,(X~)-)~(Az-Ar~). Then E({0 = 0, E(~ 2) = 0 ( 2 - " )  and I~l < 1 a.s. By 
Lemma 2 

(3.3) P {co: sup 1 ~  Ip,(e{m --A,~)-- 2(A m -Am)] >e/3} 
A eS  

<22mexp(-ne2/(cn2-"+2]/nze)) for some c > 0  

=o(1). 

(3.2) and (3.3) prove (3.1). 

Proof of Theorem 1. If A>..., AkeS are fixed, one has by the multivariate central 
limit theorem 

(3.4) (#, ~c711~, .... /~,, KA k.- 1) ~ (~l ~,1.- , . . . ,  # K71~) weakly in IRk. 

Let e > 0  be fixed. We shall prove that  

(3.5) lim limsup (#")* {f: sup ff(A)-f(B)l>e}=O. 
a 4 0  n~cc, 6(A,B) < 6  

By (0.1) it suffices to prove this relation with ~(.,-) replaced by p(., .). We have 

(3.6) {f :  sup I f(A)-f(B)l>z} 
p(A,B)<5 

c {f: sup If(A)-f(-Am)l > e/3} u {f: sup ]f(fi*m)--f(/~,,)t > ~/3}. 
A e S  p(A,B)<5 

Clearly the last event is in 5 f'. It suffices therefore to show that 

(3.7) l iml imsupP(co:  sup JY,(Am)-Y,(;Bz)J>e)=O. 
5 ~ 0  rt~oo p (A ,B)<6 

Let ~ >0,  then (Lemma 3) 

P(sup ] Yn(A j) - Yn(Aj_ 1)1 > ~,) <=),~ fl j.,(~) 
A eS  

where 

pj,,((,J=2exp(-]/nl~2/(cl~f72-J§ (note p(Aj,,dj l)__<c'2-J by (2.7)). 

Take ~'j =j-~-; then there exists m o such that  for m o =<j =< m 

pj..((j) < 2exp( - 2(~m/2)2(2j/3)/(2(~m/2)§ 2(5 J/6))) 
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(recall the relation between m and n: 2(~'*/2)__<1/n<2(~("+1)/2)), whence for 
10/6 < c~ < 2 pj,,(~j) < 2 exp( - 2 (2i/3-1)). Applying (2.4), for each a > 0 there exists 

m 1 (o-) > m o such that  for rn 1 _< m' _< m ~ 22 pj,,((j) < a, whence 
j = m '  

(3.8) ~ P{suplY.(Jj)--Y.(Jj_Ol>j-2}<a. 
j = m '  AES 

Let now 5, d >  0 be given and choose m 2_> m 1 (d/3) such that 

(3.9) ~ j -  2 < ~/3. 
j ~ m2 

If p(A, B) < 3 then from L e m m a  3 

limsup 22 P {I Y,(Jk) - Y,(/~k)t > 5/3} 
n--*~ 

<limsup)~ 
< 3 exp (fig _ C e2 (1/(~5 + C' 2 -  k))) 

for some c,c'>O, any f l>  1/2 and k>_=kl(fl). We can therefore choose bx(e,e',fl)>O, 
m3>max(mz, kl(fl) ) and n I such that for all 0 < 6 < 6 1  

(3.10) ;~ P{IY,(A,,,)- Y,(B,,3)I>e/3}<e'/3 if n>=nl, p(A,B)<6. 

(3.8) - (3.10) give 

P(  sup I Y.(A, 3 -  Y.(/3m)l > e) 
p ( A , B ) < 5  

< p (  sup IY.(J,.3)-- Y.(JBm3)I>e/3 ) 
p(A, B) < 5 

+ 2  ~ P(suplY~(Jj)-Y.(Jj_Ol>j-z)<d. 
j = m 3 + l  A~S  

for n = n 1 and m >= m3, that  is for n sufficiently large. This yields (3.7) and with (3.6) 
and L e m m a  5 (3.5). 

It follows from Theorem 1 and Proposi t ion 2 of [3J that  #" is weak-sequentially 
relatively compact.  

If #,,k is a subsequent converging to v then for A~ . . . . .  A,,~S 

link 1"s 1 i lnku.--  l~ . .  
I~ At  ' " ' l ' ~  ' V A n ]  ----)" ( #  bs ' " '  # K A 1 ) '  

It follows that 

(# b2All . . . .  # ~A))=(v ~L ~ . . . . .  v ~S))- 

Now proposi t ion 2 of [3~ shows that  v too sits on C(S). But the finite dimensional  
separate the distributions on (C(S), ~). So it follows that  v=#. 
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