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Summary. Let I? be the unit cube of R? and X, be independent I*-valued
random variables that are distributed according to Lebesgue-measure. If S is
the set of closed convex subsets of I? we consider the process {{,(4)} s>

where u,(4)=(1/n)) 1,(X,). It is proved that this process suitably normalized

converges in a suitable weak sense to a Gaussian process.

§0. Introduction

Let I? be the unit cube in IR? and X, ieN, be a sequence of independent I*-
valued random variables that are distributed according to Lebesgue-measure A.
Let S be the set of closed convex subsets of I2. We consider the process

{(A)} 45 Where p(A)= Y 1,X,). It is the purpose of this paper to prove that
i=1

this process, appropriately normalized, converges in a suitably weak sense to a

Gaussian process.

S has two natural metrics: p(A4, B)=A(4—B)+A(B—A) and the Hausdorff
metric 6(4, By=max(sup infd(x,y), sup infd(x,y)) (d the Euclidean metric). It is

. xeAd yeB yeB xed
known that (S, ) is a compact metric space and that J and p generate the same

topology on the subset of S which consists of sets with nonvoid interior. There
exists a constant K >0 such that

(0.1) p(4,B)<K6(A,B) for all A,BeS (seee.g [5] (4.2)).

The first problem one encounters is that the paths of u, are not continuous on S.
They are of course bounded and Borel-measurable functions on S, but yu, as a
mapping from the basic probability space to the nonseparable Banach space of
bounded measurable functions on S (endowed with the sup-norm) cannot be
Borel-measurable. The tool for solving these problems is provided by the theory
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of weak convergence developed by Dudley [3]. In order to apply this theory one
has to show that p, is measurable as a mapping into the space of bounded
measurable functions on S equipped with the o-algebra generated by the balls of
the sup-norm. (This o¢-algebra is smaller than the Borel o-algebra). These
measurability considerations are found in §1. After some preliminary work in §2,
weak convergence in the sense of Dudley is proved in §3.

There is a paper by A. deHoyos in which such a theorem has been stated in
incorrect form because it does not take into account the fact that the paths of g,
are not continuous ([6], Cor. 3). Beside this the proof contains other defects, the
most serious one being that deHoyos seems to make use of the following false
statement:

If {Z:()} 17> {Z°(0)} ;1> nEN, £>0 are processes with some index set T and if
Z¢ — Z* in some weak sense for each ¢>0 and if Z%(t) » Z9(¢) and Z%(t) - Z°(t) in
L, as ¢ >0 for each t then Z2 — Z° weakly. ([6], p. 161).

§ 1. Notations and Measurability Considerations

Let S, 4, 6, p and d be defined as in §0. Let further #4(S) be the set of Borel-
subsets of S (with respect to ), B(S) the set of real-valued bounded £(S)-
measurable functions on S and C(S) the continuous functions on S. For feB(S)
we set || fl|=sup{|f(4)l: AeS}. (C(S), || ) is a separable and (B(S), | |) a
nonseparable Banach-space. Let ¢ and 2 be the class of Borel-subsets of C(S)
and B(S). Further let & be the g-algebra on B(S) which is generated by the balls
{11 f—gl <&l ens)eno-

Let (@, o7, P) be a complete probability space and X, ielN, be a sequence of
independent I*-valued, A-distributed random variables. Let

1A, w)=(1/n) z L(X (@) and  Y,(4,0)=}/n(g,4, o)—L(A)).
We interpret the g, (and Y) as mappings from Q to B(S): p,(w)(A4)=p,(A4, ®). The
aim of this section is to prove
Proposition 1. y,: (Q, &) — (B(S). %) is measurable for each n.

Throughout this section ¢, § are always rational and >0. If neN let Z¥ be the
class of universally measurable sets in ((I%)", 2((I*)"), that is the subsets of (I?)"
which are in the completion of %((I?)") relative to any finite Borel-measure on
(1%

For AeS let A'=A4 and A°=A° (the complement of A)

Lemma 1. Let I'e%(S), neN, (i, ...,i,)e{0,1}". Then
U A x . x Ame B,

Aell
Proof. Let A be a point which is separated from (I?)". We define a map
@: Sx(I?) = (IHru{a)

Wis-ey,) if yeA™ for each k

¢(A3,V1’ yza"-ayn)z{A else
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We claim that this map is Borel-measurable.
m(d)

For 4(>0, rational) let x{, ..., xJ, ;,€I? be such that ~U1 Uy(x%) =17 where Uj(x)
j=
={yel*: d(x,y)<4}. We will drop the upper index & in x? when no confusion can

arise.
Let V,...,V, be open in I* with A¢V, x --- x V. If we show that

(11 =V, x - x V)eB(S)® B(I2Y)

measurability will follow.
For 6 and 1 <j,,....j, =m(f) let

Atn={AeS: AnUy(x;)+# for those k with
i,=1, AnUy(x;)=f for those k with i, =0}

crJUstx) i U=V,
[1] if not.

It is easy to see that A/JneZ(S). Now
(12) @' (Vyx--xV)

m(d
= N O) Advedn s Cit L Cn,
e>0 d<e ji,oiijn=1

In fact: If (A, yy,...,y,)e @~ ' (V, x - x V,) then y,eA™ AV, for all k. So there exists
¢>0 such that for 6<¢ and y,e Us(x;,), Us(x;) <V, for all k and Us(x;,) < A* for
those k with i, =0. Further Us(x, ) n A%+ for k with i*=1. So (A4, Vi, ..., V,)ETight
side of (1.2).

Conversely if(4, y;. ..., y,)eright side of (1.2) then there is an ¢ such that for § <g
there exists jj,...,j, with y,e Us(x; )=V, for all k, An Us(x; )% if i,=1 and
AnUslx;) =@ if i,=0. By compactness of 4 we have nedifi =1.So

(A1, y)e@ YV x - x V)

So (1.2) and (1.1) are proved.
Now

A% x - x A= (I x (I3 (1),

Ael’

As S x(I*)" is a complete separable metric space and @ is measurable, it follows

from Theorem 3.4 Ch. T of [7] that (] A" x --- x A™ is analytic, so in BE,

Aell
The same proof gives the following corollary which is probably well known but

has until now escaped my attention.

Corollary. Let K be a compact metric space. 2X the set of closed subsets of K equipped
with the Hausdorff metric and further AB(2%) the class of Borel subsets of 2K (with
respect to the Hausdorff metric). If I'e B(2%) then UF is analytic in K.
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Proof of Proposition 1. Let
¥: (I?)"— B(S) be defined as follows

P (15 .- ) =(1/n) -21 L(y)

Clearly p,(w, 4)=Y(X,(w), ..., X, (0))(A).
By the completeness of (@, o, P) it suffices to prove that

¥ (1%, # ¥~ (B(S), %)

is measurable.
Let geB(S) and ¢>0 be fixed. We will show that

(13) Dy o= {p--» Y@ | ¥y, ....v,) — 2| So}e B,
Let
I,={AeS: |g(4)—k/n|>c}eB(S).

As is easy to see

n
(L4 D= N[ U A*x-oxam.
k=0 Aelii it,...,ine{0,1}"
i1+ +in=k

By Lemma 1
Al x o x A e BE.

Aely B1seeny in
iy Finmk
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So D, , which is the intersection of the complements of these n+1 sets is in #}.

The proposition is proved.

§ 2. Approximating Convex Sets from Above

In order to prove weak convergence of our empirical process, we want to use a
technique like that employed by Strassen and Dudley [8] for the case of Lipschitz-
continuous independent summands in C(K), where K is a compact metric space.
Instead of continuity we use the fact that the summands in ) (1,(X)—A(A4))
up to the Lipschitz-continuous A(4) are monotone in 4. To make this work, we
have to approximate the elements in S from above by classes of not to many sets.

We have to blow up I? somewhat. Let S be the set of closed convex subsets of
[ —1,272 The following proposition is taken from Dudley [5] (Theorem 4.1)

N(e)

Proposition 2. For ¢>0 there exist coverings § = U §j with 5(§j-) < ¢ and log(N (g))
j=1

]_
=o(eF) as ¢| 0 for each B>1/2, where

5(S%= sup 6(4,B).

A4,BeS?
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Let B{™ be elements in SJZ:'" for 1<j<N(27"). For AeS let A,,={xeR*:
d(x,A)<2-™}eS. Then A,eS? """ for some j. Let 4, =I>BY"*", From the
convexity of 4eS and the above construction one has:

(2.1) for each AcS, meN A4,eS

(22 A,-A

(2.3) 6(4,,4)<3.27 1

Let A =card{A,: AeS}. Then

(24) 1,SN@2 ™).

Let now A, ={xeI?: d(x,(4,))=2"™+'}. Then one easily obtains

(2.5) A,eS

(26) A,cA

(2.7) there is a constant ¢>0 such that for each melN, AeS p(/Im, /Im)gc2"".

Note that one cannot have 6(4,, 4, )<c2 ™ in (2.7).

§ 3. Weak Convergence of the Empirical Process

Let (M, d) be a metric space and .# the class of Borel-sets. If .#” is another o-algebra
of sets in M, v a measure on (M, .#") and F a bounded function on M we set

%
[ Fdv=inf{{ fdv: f =F, f . -measurable}
{ Fdv=sup{{fdv: f<F, f.#'-measurable}.

*

We take the following definition from Dudley [3]:
If v is a Borel-measure on M and v, is a sequence of measures (not necessarily
Borel), we say

v, —v (weak™®)

if for every bounded continuous function ¥ on M
*
lim { Fdv,=lim | Fdv,=[Fdv.
*

A set A of measures on M is said to be weak*-sequentially relatively compact if for
any sequence {fi,} = there is a subsequence converging weak® to a Borel-
measure on M.

Let p be the Gaussian measure on (C(S), %) such that for 4, BeS

[ f(Audf)=0, | f(Af(B)u(df)=Ai(AnB)—A(A) A(B).

c©s) C(s)
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Such a measure exists (see Dudley [4], Theorem 4.3). Clearly y extends to a Borel-
measure on (B(S), 2).

Letx,:B(S)> R, x,(f)=f(A4) and &' be the g-algebra generated by & and the
K ,'s. Further let " be the measures on (B(S),#") induced by the maps

Q- B(S)
0= Y, (-, 0) =1/ n(p,(, 0) —i(-)).

By Proposition 1 the u* are defined on (B(S), &).
We can now formulate our main result. An earlier unsuccessful attempt at such
a theorem was made by deHoyos [6].

Theorem 1. y" — u (weak*).

We quote the following version of the Bernstein inequality
Lemma 2. Let ¢, be iidru. with E(¢)=0, E(¢3)=0¢* and |£|Z1 as. Then
P ( >t)éZexp(—tz/(2n02+2t/3)).

2 &
i=1

For a proof see [1].
A straightforward corollary is

Lemma 3. For any a>0 and A, BES
P(|Y,(4)— Y,(B)| >a)<2exp(—na?/2n p(4, B)+2)/na/3)).

We state the following convention for the rest of the paper: m and n are always
related by m=[logn/alog2] where a<?2 is fixed and sufficiently close to 2
(‘sufficiency” being clear in what follows)

Lemma 4. For each ¢>0 and meN { feB(S): sup |f(4)—f(4,)|>e}e¥".
AeS
Proof. Let B(S)={geB(S): g(4)=g(B) whenever A =B, }. Clearly (B(S), || |} is

separable. Let Q be a countable dense subset in BKS). For feB(S) let feB(S) be
defined by f(4)=f(4,,). Then clearly sup |f(4)—f(4,)| > ¢ if and only if there is a
: AeS

¢ >¢ such that for each §>0 there exists a geQ such that | f—g|>¢ —6 and ||f
—g|| <. So the lemma follows.

Lemma 5. For each £¢>0 lim (u")* {f:sup|f(4) —f(/Im)|>a} =0.
AeS

n— 0

Proof. From Lemma 4 it follows that
(WY {/:5up f (4)=f (4,)| > &} = P{w:5up|Y, (4, ) = Y, (4, )| > &}.

We therefore have to show that

(3.1)  lim P{w:sup|Y,(4,w)— Y,(4,, )| >} =0.
S

n— Ae
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Now [Md,)— A ) =02"™), yrn=0(2’"), so there is a #y(e) such that for n=n(e)

(32) {0 Vil (A) ~ 2A4)~ (1, (4,)—~ MA,) >z}
< (o Vi, (A,) — 1, (4) > 2¢/3}
< {w: V(e (A,) - 1,(4,) > 2¢/3}
c{w: Vnlud,—A4,)— 1A, —A4,) >3}

Let&=1; 1 (X)—i(A,—4,). Then E(£)=0, E(¢})=0(2"™) and |¢,|<1 as. By
Lemma 2

(3.3) P{w:supynlu, (A, —A4,)—MA,—A,)>¢3)

AeS
<24, exp(—n 82/(cn2‘m+2ﬂs)) for some ¢>0
=o(1).
(3.2) and (3.3) prove (3.1).

Proof of Theorem 1. 1f A, ..., A,€S are fixed, one has by the multivariate central
limit theorem

(B4 wrrglue o wwg ]l pkgl)  weakly in R
Let ¢>0 be fixed. We shall prove that

(3.5) lim limsup (u*{f: sup |f(A)—f(B)|>¢}=0.

-0 a-aw d(A,B)y< o

By (0.1) it suffices to prove this relation with J(-.-) replaced by p(:,-). We have
(3.6) {f: sup [f(A)—f(B)|>¢}

p(A,B)<d

={f:suplf(4)—f(4 1 >33 0{fs sup If(A,)—f(B,)>e/3}.

p(A.By<d

Clearly the last event is in %, It suffices therefore to show that

(3.7) lim limsup P(w: sup |Y,(4,)—Y,(B,)>e=0.

650 p-ow plA,B) <o

Let (>0, then (Lemma 3)

P(sup |Y,(d)— Y, (A,_)I>0<73p; ()

AeS

where

pj,,,@):zexp(—]/ﬁ Cley/n2-i4283) (note p(A, A, )=c27 by 2.7).
Take {;=j~~; then there exists m, such that for m, <j=m

pj,n(élj) < Zexp( — 2<am/2)2<2j/3)/(2.’am/2) + 2<5j/6J))
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(recall the relation between m and n: 2(“m/2)§W§2‘“(m+ D/2)) " whence for
10/6 <a<2 p; ,(()<2exp(—2%73-1). Applying (2.4), for each ¢>0 there exists

m, (o) Zm, such that for m; <m'<m 3y AZp, () <o, whence

j=m

(3:3) Z P{sup|Y,(4)~ Y,(4;_ )I>j "} <a.

j=m AeS

Let now ¢, ¢ >0 be given and choose m, =m, (¢/3) such that

0

39 Y j2<s.

J=m2
If p(A4, B)< ¢ then from Lemma 3
limsup 42 P {|¥,(4) — Y,(B)| >#/3}

n—

2
<limsup /2 2exp (—@—/(2n(5+c 2~ +2]/£s/3))

n— 0

<3exp(2f —ce2(1/(5+c'275))

for some ¢, ¢’ >0, any f>1/2 and k= k, (). We can therefore choose 9, (s, &, ) >0,
my>max(m,, k (f)) and n, such that for all 0<d <,

(3.10) }L,flsP{|Yn(ﬁm3)—Y,,(E,n3)|>s/3}<s’/3 if nzn,, p(4,B)<d.
(3.8)—(3.10) give
P( sup |Y,(4,)—Y,(B,)>¢)

pi{A,B)<d
<P( sup |Y,(4,)—Y,(B,,)>¢3)

p{4,B)<é

+2 Z P(sup|Y,(A)— Y,(4,_I>j" )<<,

j=m3+1 AeS

for n=n, and m 2 m,, that is for n sufficiently large. This yields (3.7) and with (3.6)
and Lemma 5 (3.5).

It follows from Theorem 1 and Proposition 2 of [ 3] that y" is weak-sequentially
relatively compact.

If ™ is a subsequent converging to v then for A4,,...,4,€S

(e rgls o w™ kg = (u hAll N )

It follows that
(urgl . ope =0kl vk

Now proposition 2 of [ 3] shows that v too sits on C(S). But the finite dimensional
separate the distributions on (C(S), ¥). So it follows that v=_p.
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