Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1978

Weak Convergence of an Empirical Process Indexed by the Closed Convex Subsets of I^2

Erwin Bolthausen

Fachgruppe Statistik, Universität Konstanz, D-7750 Konstanz

Summary. Let I^2 be the unit cube of \mathbb{R}^2 and X_i be independent I^2 -valued random variables that are distributed according to Lebesgue-measure. If S is the set of closed convex subsets of I^2 we consider the process $\{\mu_n(A)\}_{A \in S}$, where $\mu_n(A) = (1/n) \sum_{i=1}^{n} 1_A(X_i)$. It is proved that this process suitably normalized converges in a suitable weak sense to a Gaussian process.

§0. Introduction

Let I^2 be the unit cube in \mathbb{R}^2 and X_i , $i \in \mathbb{N}$, be a sequence of independent I^2 -valued random variables that are distributed according to Lebesgue-measure λ . Let S be the set of closed convex subsets of I^2 . We consider the process $\{\mu_n(A)\}_{A \in S}$ where $\mu_n(A) = \sum_{i=1}^n \mathbf{1}_A(X_i)$. It is the purpose of this paper to prove that this process, appropriately normalized, converges in a suitably weak sense to a Gaussian process.

S has two natural metrics: $\rho(A, B) = \lambda(A - B) + \lambda(B - A)$ and the Hausdorff metric $\delta(A, B) = \max(\sup_{x \in A} \inf_{y \in B} d(x, y))$, $\sup_{y \in B} \inf_{x \in A} d(x, y)$ (d the Euclidean metric). It is known that (S, δ) is a compact metric space and that δ and ρ generate the same topology on the subset of S which consists of sets with nonvoid interior. There exists a constant K > 0 such that

(0.1) $\rho(A, B) \leq K \delta(A, B)$ for all $A, B \in S$ (see e.g. [5] (4.2)).

The first problem one encounters is that the paths of μ_n are not continuous on S. They are of course bounded and Borel-measurable functions on S, but μ_n as a mapping from the basic probability space to the nonseparable Banach space of bounded measurable functions on S (endowed with the sup-norm) cannot be Borel-measurable. The tool for solving these problems is provided by the theory of weak convergence developed by Dudley [3]. In order to apply this theory one has to show that μ_n is measurable as a mapping into the space of bounded measurable functions on S equipped with the σ -algebra generated by the balls of the sup-norm. (This σ -algebra is smaller than the Borel σ -algebra). These measurability considerations are found in §1. After some preliminary work in §2, weak convergence in the sense of Dudley is proved in §3.

There is a paper by A. deHoyos in which such a theorem has been stated in incorrect form because it does not take into account the fact that the paths of μ_n are not continuous ([6], Cor. 3). Beside this the proof contains other defects, the most serious one being that deHoyos seems to make use of the following false statement:

If $\{Z_n^{\varepsilon}(t)\}_{t\in T}$, $\{Z^{\varepsilon}(t)\}_{t\in T}$, $n\in\mathbb{N}$, $\varepsilon>0$ are processes with some index set T and if $Z_n^{\varepsilon} \to Z^{\varepsilon}$ in some weak sense for each $\varepsilon>0$ and if $Z_n^{\varepsilon}(t) \to Z_n^{0}(t)$ and $Z^{\varepsilon}(t) \to Z^{0}(t)$ in L_2 as $\varepsilon \to 0$ for each t then $Z_n^{0} \to Z^{0}$ weakly. ([6], p. 161).

§1. Notations and Measurability Considerations

Let S, λ , δ , ρ and d be defined as in §0. Let further $\mathscr{B}(S)$ be the set of Borelsubsets of S (with respect to δ), B(S) the set of real-valued bounded $\mathscr{B}(S)$ measurable functions on S and C(S) the continuous functions on S. For $f \in B(S)$ we set $||f|| = \sup\{|f(A)|: A \in S\}$. (C(S), || ||) is a separable and (B(S), || ||) a nonseparable Banach-space. Let \mathscr{C} and \mathscr{D} be the class of Borel-subsets of C(S)and B(S). Further let \mathscr{S} be the σ -algebra on B(S) which is generated by the balls $\{f: ||f-g|| < \varepsilon\}_{g \in B(S), \varepsilon > 0}$.

Let (Ω, \mathscr{A}, P) be a complete probability space and X_i , $i \in \mathbb{N}$, be a sequence of independent I^2 -valued, λ -distributed random variables. Let

$$\mu_n(A,\omega) = (1/n) \sum_{i=1}^n 1_A(X_i(\omega)) \quad \text{and} \quad Y_n(A,\omega) = \sqrt{n}(\mu_n(A,\omega) - \lambda(A)).$$

We interpret the μ_n (and Y_n) as mappings from Ω to B(S): $\mu_n(\omega)(A) = \mu_n(A, \omega)$. The aim of this section is to prove

Proposition 1. $\mu_n: (\Omega, \mathscr{A}) \to (B(S), \mathscr{S})$ is measurable for each *n*.

Throughout this section ε , δ are always rational and >0. If $n \in \mathbb{N}$ let \mathscr{B}_n^* be the class of universally measurable sets in $((I^2)^n, \mathscr{B}((I^2)^n))$, that is the subsets of $(I^2)^n$ which are in the completion of $\mathscr{B}((I^2)^n)$ relative to any finite Borel-measure on $(I^2)^n$.

For $A \in S$ let $A^1 = A$ and $A^0 = A^c$ (the complement of A)

Lemma 1. Let $\Gamma \in \mathscr{B}(S)$, $n \in \mathbb{N}$, $(i_1, \ldots, i_n) \in \{0, 1\}^n$. Then

$$\bigcup_{\mathbf{A}\in\Gamma}A^{i_1}\times\cdots\times A^{i_n}\in\mathscr{B}_n^*.$$

Proof. Let Δ be a point which is separated from $(I^2)^n$. We define a map

$$\Phi: S \times (I^2)^n \to (I^2)^n \cup \{\Delta\}$$

$$\Phi(A, y_1, y_2, \dots, y_n) = \begin{cases} (y_1, \dots, y_n) & \text{if } y_k \in A^{i_k} \text{ for each } k \\ \Delta & \text{else.} \end{cases}$$

We claim that this map is Borel-measurable.

For $\delta(>0, \text{ rational})$ let $x_1^{\delta}, \dots, x_{m(\delta)}^{\delta} \in I^2$ be such that $\bigcup_{j=1}^{m(\delta)} U_{\delta}(x_j^{\delta}) = I^2$ where $U_{\delta}(x) = \{y \in I^2 : d(x, y) < \delta\}$. We will drop the upper index δ in x_i^{δ} when no confusion can arise.

Let V_1, \ldots, V_n be open in I^2 with $\Delta \notin V_1 \times \cdots \times V_n$. If we show that

(1.1)
$$\Phi^{-1}(V_1 \times \cdots \times V_n) \in \mathscr{B}(S) \otimes \mathscr{B}((I^2)^n)$$

measurability will follow.

For δ and $1 \leq j_1, \dots, j_n \leq m(\delta)$ let

$$A^{j_1,\ldots,j_n} = \{A \in S \colon A \cap U_{\delta}(x_{j_k}) \neq \emptyset \text{ for those } k \text{ with} \\ i_k = 1, A \cap U_{\delta}(x_{j_k}) = \emptyset \text{ for those } k \text{ with } i_k = 0\}$$

$$C^{i_k} = \begin{cases} U_{\delta}(x_{j_k}) & \text{if } U_{\delta}(x_{j_k}) \subset V_k \end{cases}$$

$$\mathcal{O}_{\mathcal{F}} = \begin{cases} \emptyset & \text{if not.} \end{cases}$$

It is easy to see that $A^{j_1,\ldots,j_n} \in \mathscr{B}(S)$. Now

(1.2)
$$\Phi^{-1}(V_1 \times \cdots \times V_n) = \bigcup_{\varepsilon > 0} \bigcap_{\delta < \varepsilon} \bigcup_{j_1, \dots, j_n = 1}^{m(\delta)} \Lambda^{j_1, \dots, j_n} \times C^{j_1} \times \cdots \times C^{j_n}.$$

In fact: If $(A, y_1, ..., y_n) \in \Phi^{-1}(V_1 \times \cdots \times V_n)$ then $y_k \in A^{i_k} \cap V_k$ for all k. So there exists $\varepsilon > 0$ such that for $\delta < \varepsilon$ and $y_k \in U_{\delta}(x_{j_k})$, $U_{\delta}(x_{j_k}) \subset V_k$ for all k and $U_{\delta}(x_{j_k}) \subset A^{i_k}$ for those k with $i_k = 0$. Further $U_{\delta}(x_{j_k}) \cap A^{i_k} \neq \emptyset$ for k with $i^k = 1$. So $(A, y_1, ..., y_n) \in$ right side of (1.2).

Conversely if $(A, y_1, ..., y_n) \in \text{right side of } (1.2)$ then there is an ε such that for $\delta < \varepsilon$ there exists $j_1, ..., j_n$ with $y_k \in U_{\delta}(x_{j_k}) \subset V_k$ for all k, $A \cap U_{\delta}(x_{j_k}) \neq \emptyset$ if $i_k = 1$ and $A \cap U_{\delta}(x_{j_k}) = \emptyset$ if $i_k = 0$. By compactness of A we have $y_k \in A$ if $i_k = 1$. So

 $(A, y_1, \dots, y_n) \in \Phi^{-1}(V_1 \times \dots \times V_n)$

So (1.2) and (1.1) are proved.

Now

$$\bigcup_{A\in\Gamma} A^{i_1}\times\cdots\times A^{i_n}=\Phi(\Gamma\times(I^2)^n)\cap(I^2)^n.$$

As $S \times (I^2)^n$ is a complete separable metric space and Φ is measurable, it follows from Theorem 3.4 Ch. I of [7] that $\bigcup_{A \in \Gamma} A^{i_1} \times \cdots \times A^{i_n}$ is analytic, so in \mathscr{B}_n^* .

The same proof gives the following corollary which is probably well known but has until now escaped my attention.

Corollary. Let K be a compact metric space, 2^{K} the set of closed subsets of K equipped with the Hausdorff metric and further $\mathscr{B}(2^{K})$ the class of Borel subsets of 2^{K} (with respect to the Hausdorff metric). If $\Gamma \in \mathscr{B}(2^{K})$ then $| \ | \Gamma$ is analytic in K.

Proof of Proposition 1. Let

 $\Psi: (I^2)^n \to B(S)$ be defined as follows

$$\Psi(y_1, ..., y_n) = (1/n) \sum_{j=1}^n 1.(y_j)$$

Clearly $\mu_n(\omega, A) = \Psi(X_1(\omega), \dots, X_n(\omega))(A).$

By the completeness of (Ω, \mathcal{A}, P) it suffices to prove that

 Ψ : $((I^2)^n, \mathscr{B}_n^*) \to (B(S), \mathscr{S})$

is measurable.

Let $g \in B(S)$ and $\sigma > 0$ be fixed. We will show that

(1.3)
$$D_{g,\sigma} = \{(y_1, \dots, y_n) \in (I^2)^n : \| \Psi(y_1, \dots, y_n) - g \| \le \sigma \} \in \mathscr{B}_n^*.$$

Let

$$\Gamma_k = \{A \in S \colon |g(A) - k/n| > \sigma\} \in \mathscr{B}(S).$$

As is easy to see

(1.4)
$$D_{g,\sigma} = \bigcap_{k=0}^{n} \bigcap_{A \in I_k} \left[\bigcup_{\substack{i_1, \dots, i_n \in \{0, 1\}^n \\ i_1 + \dots + i_n = k}} A^{i_1} \times \dots \times A^{i_n} \right]^c.$$

By Lemma 1

$$\bigcup_{\mathbf{A}\in\Gamma_k}\bigcup_{\substack{i_1,\ldots,i_n\\i_1+\cdots+i_n=k}}A^{i_1}\times\cdots\times A^{i_n}\in\mathscr{B}_n^*.$$

So $D_{g,\sigma}$ which is the intersection of the complements of these n+1 sets is in \mathscr{B}_n^* . The proposition is proved.

§2. Approximating Convex Sets from Above

In order to prove weak convergence of our empirical process, we want to use a technique like that employed by Strassen and Dudley [8] for the case of Lipschitz-continuous independent summands in C(K), where K is a compact metric space. Instead of continuity we use the fact that the summands in $\sum (1_A(X_i) - \lambda(A))$ up to the Lipschitz-continuous $\lambda(A)$ are monotone in A. To make this work, we have to approximate the elements in S from above by classes of not to many sets.

We have to blow up I^2 somewhat. Let \hat{S} be the set of closed convex subsets of $[-1,2]^2$. The following proposition is taken from Dudley [5] (Theorem 4.1)

Proposition 2. For $\varepsilon > 0$ there exist coverings $\tilde{S} = \bigcup_{j=1}^{N(\varepsilon)} \tilde{S}_j^{\varepsilon}$ with $\delta(\tilde{S}_j^{\varepsilon}) < \varepsilon$ and $\log(N(\varepsilon)) = o(\varepsilon^{-\beta})$ as $\varepsilon \downarrow 0$ for each $\beta > 1/2$, where

$$\delta(\tilde{S}_{j}^{\epsilon}) = \sup_{A, B \in \tilde{S}_{j}^{\epsilon}} \delta(A, B).$$

Let $B_j^{(m)}$ be elements in $\tilde{S}_j^{2^{-m}}$ for $1 \leq j \leq N(2^{-m})$. For $A \in S$ let $A_m = \{x \in \mathbb{R}^2 : d(x, A) \leq 2^{-m}\} \in \tilde{S}$. Then $A_m \in \tilde{S}_j^{2^{-m-1}}$ for some j. Let $\hat{A}_m = I^2 \cap B_j^{(m+1)}$. From the convexity of $A \in S$ and the above construction one has:

(2.1) for each $A \in S$, $m \in \mathbb{N}$ $\hat{A}_m \in S$ (2.2) $\hat{A}_m \supset A$ (2.3) $\delta(\hat{A}_m, A) \leq 3 \cdot 2^{-m-1}$ Let $\lambda_m = \operatorname{card} \{ \hat{A}_m : A \in S \}$. Then (2.4) $\lambda_m \leq N(2^{-m-1})$.

Let now $\check{A}_m = \{x \in I^2 : d(x, (\hat{A}_m)^c) \ge 2^{-m+1}\}$. Then one easily obtains

- (2.5) $\check{A}_m \in S$
- $(2.6) \quad \check{A}_m \subset A$
- (2.7) there is a constant c > 0 such that for each $m \in \mathbb{N}$, $A \in S \rho(\hat{A}_m, \check{A}_m) \leq c 2^{-m}$.

Note that one cannot have $\delta(\hat{A}_m, \check{A}_m) \leq c \, 2^{-m}$ in (2.7).

§3. Weak Convergence of the Empirical Process

Let (M, d) be a metric space and \mathcal{M} the class of Borel-sets. If \mathcal{M}' is another σ -algebra of sets in M, v a measure on (M, \mathcal{M}') and F a bounded function on M we set

$$\int_{*}^{*} F \, dv = \inf\{ \int f \, dv: f \ge F, f \, \mathcal{M}' \text{-measurable} \}$$

$$\int_{*} F \, dv = \sup\{ \int f \, dv: f \le F, f \, \mathcal{M}' \text{-measurable} \}.$$

We take the following definition from Dudley [3]:

If v is a Borel-measure on M and v_n is a sequence of measures (not necessarily Borel), we say

 $v_n \rightarrow v \text{ (weak *)}$

if for every bounded continuous function F on M

$$\lim_{v \to \infty} \int F \, dv_n = \lim_{v \to \infty} \int F \, dv_n = \int F \, dv.$$

A set \mathscr{K} of measures on M is said to be weak*-sequentially relatively compact if for any sequence $\{\beta_n\} \subset \mathscr{K}$ there is a subsequence converging weak* to a Borel-measure on M.

Let μ be the Gaussian measure on $(C(S), \mathscr{C})$ such that for $A, B \in S$

$$\int_{C(S)} f(A) \mu(df) = 0, \qquad \int_{C(S)} f(A) f(B) \mu(df) = \lambda(A \cap B) - \lambda(A) \lambda(B).$$

Such a measure exists (see Dudley [4], Theorem 4.3). Clearly μ extends to a Borelmeasure on $(B(S), \mathcal{D})$.

Let $\kappa_A: B(S) \to \mathbb{R}$, $\kappa_A(f) = f(A)$ and \mathscr{S}' be the σ -algebra generated by \mathscr{S} and the κ_A 's. Further let μ^n be the measures on $(B(S), \mathscr{S}')$ induced by the maps

$$\Omega \to B(S)$$

$$\omega \to Y_n(\cdot, \omega) = \sqrt{n}(\mu_n(\cdot, \omega) - \hat{\lambda}(\cdot)).$$

By Proposition 1 the μ^n are defined on $(B(S), \mathscr{S}')$.

We can now formulate our main result. An earlier unsuccessful attempt at such a theorem was made by deHoyos [6].

Theorem 1. $\mu^n \rightarrow \mu$ (weak*).

We quote the following version of the Bernstein inequality

Lemma 2. Let ξ_i be i.i.d.r.v. with $E(\xi_i) = 0$, $E(\xi_i^2) = \sigma^2$ and $|\xi_i| \le 1$ a.s. Then $P\left(\left|\sum_{i=1}^n \xi_i\right| > t\right) \le 2\exp(-t^2/(2n\sigma^2 + 2t/3)).$

For a proof see [1]. A straightforward corollary is

Lemma 3. For any a > 0 and $A, B \in S$

 $P(|Y_n(A) - Y_n(B)| > a) \leq 2\exp(-n a^2/(2n \rho(A, B) + 2\sqrt{n} a/3)).$

We state the following convention for the rest of the paper: *m* and *n* are always related by $m = \lfloor \log n/\alpha \log 2 \rfloor$ where $\alpha < 2$ is fixed and sufficiently close to 2 ('sufficiency' being clear in what follows)

Lemma 4. For each $\varepsilon > 0$ and $m \in \mathbb{N}$ $\{f \in B(S): \sup_{A \in S} |f(A) - f(\hat{A}_m)| > \varepsilon\} \in \mathscr{S}'.$

Proof. Let $\hat{B}(S) = \{g \in B(S): g(A) = g(B) \text{ whenever } \hat{A}_m = \hat{B}_m\}$. Clearly $(\hat{B}(S), || ||)$ is separable. Let Q be a countable dense subset in $\hat{B}(S)$. For $f \in B(S)$ let $\hat{f} \in \hat{B}(S)$ be defined by $\hat{f}(A) = f(\hat{A}_m)$. Then clearly $\sup_{A \in S} |f(A) - f(\hat{A}_m)| > \varepsilon$ if and only if there is a $\varepsilon' > \varepsilon$ such that for each $\delta > 0$ there exists a $g \in Q$ such that $||f - g|| > \varepsilon' - \delta$ and $||\hat{f} - g|| < \delta$. So the lemma follows.

Lemma 5. For each $\varepsilon > 0$ $\lim_{n \to \infty} (\mu^n)^* \{ f : \sup_{A \in S} |f(A) - f(\hat{A}_m)| > \varepsilon \} = 0.$

Proof. From Lemma 4 it follows that

$$(\mu^n)^* \{ f: \sup_{A \in S} |f(A) - f(\hat{A}_m)| > \varepsilon \} = P\{ \omega: \sup_{A \in S} |Y_n(A, \omega) - Y_n(\hat{A}_m, \omega)| > \varepsilon \}.$$

We therefore have to show that

(3.1)
$$\lim_{n\to\infty} P\{\omega: \sup_{A\in S} |Y_n(A,\omega) - Y_n(A_m,\omega)| > \varepsilon\} = 0.$$

Weak Convergence of an Empirical Process

Now $|\lambda(\hat{A}_m) - \lambda(\check{A}_m)| = O(2^{-m}), \sqrt{n} = o(2^m)$, so there is a $n_0(\varepsilon)$ such that for $n \ge n_0(\varepsilon)$ (3.2) $\{\omega: \sqrt{n} | (\mu_n(A) - \lambda(A)) - (\mu_n(\hat{A}_m) - \lambda(\hat{A}_m))| > \varepsilon \}$ $\subset \{\omega: \sqrt{n} (\mu_n(\hat{A}_m) - \mu_n(A)) > 2\varepsilon/3 \}$ $\subset \{\omega: \sqrt{n} (\mu_n(\hat{A}_m) - \mu_n(\check{A}_m)) > 2\varepsilon/3 \}$ $\subset \{\omega: \sqrt{n} | \mu_n(\hat{A}_m - \check{A}_m) - \lambda(\hat{A}_m - \check{A}_m)| > \varepsilon/3 \}.$

Let $\xi_i = 1_{\hat{A}_m - \check{A}_m}(X_i) - \hat{\lambda}(\hat{A}_m - \check{A}_m)$. Then $E(\xi_i) = 0$, $E(\xi_i^2) = O(2^{-m})$ and $|\xi_i| \leq 1$ a.s. By Lemma 2

(3.3)
$$P\{\omega: \sup_{A \in S} \sqrt{n} |\mu_n(\hat{A}_m - \check{A}_m) - \lambda(\hat{A}_m - \check{A}_m)| > \varepsilon/3\}$$
$$< 2\lambda_m \exp(-n\varepsilon^2/(cn2^{-m} + 2\sqrt{n}\varepsilon)) \quad \text{for some } c > 0$$
$$= o(1).$$

(3.2) and (3.3) prove (3.1).

Proof of Theorem 1. If $A_1, ..., A_k \in S$ are fixed, one has by the multivariate central limit theorem

(3.4)
$$(\mu^n \kappa_{A_1}^{-1}, \dots, \mu^n \kappa_{A_k}^{-1}) \rightarrow (\mu \kappa_{A_1}^{-1}, \dots, \mu \kappa_{A_k}^{-1})$$
 weakly in \mathbb{R}^k .

Let $\varepsilon > 0$ be fixed. We shall prove that

(3.5)
$$\lim_{\delta \to 0} \limsup_{n \to \infty} (\mu^n)^* \{ f: \sup_{\delta(A,B) < \delta} |f(A) - f(B)| > \varepsilon \} = 0.$$

By (0.1) it suffices to prove this relation with $\delta(\cdot, \cdot)$ replaced by $\rho(\cdot, \cdot)$. We have

$$(3.6) \quad \{f: \sup_{\rho(A,B)<\delta} |f(A) - f(B)| > \varepsilon\} \\ \subset \{f: \sup_{A\in S} |f(A) - f(\hat{A}_m)| > \varepsilon/3\} \cup \{f: \sup_{\rho(A,B)<\delta} |f(\hat{A}_m) - f(\hat{B}_m)| > \varepsilon/3\}.$$

Clearly the last event is in \mathscr{S}' . It suffices therefore to show that

(3.7)
$$\lim_{\delta \to 0} \limsup_{n \to \infty} P(\omega: \sup_{\rho(A,B) < \delta} |Y_n(\hat{A}_m) - Y_n(\hat{B}_m)| > \varepsilon) = 0.$$

Let $\zeta > 0$, then (Lemma 3)

$$P(\sup_{A\in\mathcal{S}}|Y_n(\hat{A}_j) - Y_n(\hat{A}_{j-1})| > \zeta) \leq \lambda_j^2 \rho_{j,n}(\zeta)$$

where

$$\rho_{j,n}(\zeta) = 2\exp(-\sqrt{n}\,\zeta^2/(c\,\sqrt{n}\,2^{-j}+2\,\zeta/3)) \quad \text{(note } \rho(\hat{A}_j,\hat{A}_{j-1}) \leq c'\,2^{-j} \text{ by (2.7)}.$$

Take $\zeta_j = j^{-2}$; then there exists m_0 such that for $m_0 \leq j \leq m$

$$\rho_{j,n}(\zeta_j) \leq 2\exp(-2^{(\alpha m/2)}2^{(2j/3)}/(2^{(\alpha m/2)}+2^{(5j/6)}))$$

(recall the relation between *m* and *n*: $2^{(\alpha m/2)} \leq \sqrt{n} \leq 2^{(\alpha(m+1)/2)}$), whence for $10/6 < \alpha < 2 \rho_{j,n}(\zeta_j) \leq 2\exp(-2^{(2j/3-1)})$. Applying (2.4), for each $\sigma > 0$ there exists $m_1(\sigma) \geq m_0$ such that for $m_1 \leq m' \leq m \sum_{j=m'}^m \lambda_j^2 \rho_{j,n}(\zeta_j) < \sigma$, whence

$$(3.8) \quad \sum_{j=m'}^{m} P\{\sup_{A\in S} |Y_n(\hat{A}_j) - Y_n(\hat{A}_{j-1})| > j^{-2}\} < \sigma.$$

Let now ε , $\varepsilon' > 0$ be given and choose $m_2 \ge m_1(\varepsilon'/3)$ such that

$$(3.9) \quad \sum_{j=m_2}^{\infty} j^{-2} < \varepsilon/3.$$

If $\rho(A, B) < \delta$ then from Lemma 3

$$\begin{split} \limsup_{n \to \infty} \lambda_k^2 P\{|Y_n(\hat{A}_k) - Y_n(\hat{B}_k)| > \varepsilon/3\} \\ &\leq \limsup_{n \to \infty} \lambda_k^2 2 \exp\left(-\frac{n \varepsilon^2}{3} \left/ (2n(\delta + c' 2^{-k}) + 2\sqrt{n} \varepsilon/3)\right) \\ &< 3 \exp(2^{\beta k} - c \varepsilon^2 (1/(\delta + c' 2^{-k}))) \end{split}$$

for some c, c' > 0, any $\beta > 1/2$ and $k \ge k_1(\beta)$. We can therefore choose $\delta_1(\varepsilon, \varepsilon', \beta) > 0$, $m_3 > \max(m_2, k_1(\beta))$ and n_1 such that for all $0 < \delta < \delta_1$

$$(3.10) \quad \lambda_{m_3}^2 P\{|Y_n(\hat{A}_{m_3}) - Y_n(\hat{B}_{m_3})| > \varepsilon/3\} < \varepsilon'/3 \quad \text{if } n \ge n_1, \quad \rho(A, B) < \delta.$$

(3.8) - (3.10) give

$$\begin{split} P(\sup_{\rho(A,B)<\delta} |Y_n(\hat{A}_m) - Y_n(\hat{B}_m)| > \varepsilon) \\ &\leq P(\sup_{\rho(A,B)<\delta} |Y_n(\hat{A}_{m_3}) - Y_n(\hat{B}_{m_3})| > \varepsilon/3) \\ &+ 2\sum_{j=m_3+1}^{\infty} P(\sup_{A\in S} |Y_n(\hat{A}_j) - Y_n(\hat{A}_{j-1})| > j^{-2}) < \varepsilon'. \end{split}$$

for $n \ge n_1$ and $m \ge m_3$, that is for *n* sufficiently large. This yields (3.7) and with (3.6) and Lemma 5 (3.5).

It follows from Theorem 1 and Proposition 2 of [3] that μ^n is weak-sequentially relatively compact.

If μ^{n_k} is a subsequent converging to v then for $A_1, \ldots, A_n \in S$

$$(\mu^{n_k} \kappa_{A_1}^{-1}, \dots, \mu^{n_k} \kappa_{A_n}^{-1}) \to (\mu \kappa_{A_1}^{-1}, \dots, \mu \kappa_{A_n}^{-1}).$$

It follows that

$$(\mu \kappa_{A_1}^{-1} \dots, \mu \kappa_{A_n}^{-1}) = (\nu \kappa_{A_1}^{-1}, \dots, \nu \kappa_{A_n}^{-1}).$$

Now proposition 2 of [3] shows that v too sits on C(S). But the finite dimensional separate the distributions on $(C(S), \mathcal{C})$. So it follows that $v = \mu$.

Acknowledgement. I should like to thank the refree for pointing out some minor errors and suggesting some improvements in the paper's presentation.

References

- 1. Bennet, G.: Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc., 57, 33-45 (1962)
- 2. Billingsley. P.: Convergence of probability measures. New York: Wiley 1968
- 3. Dudley, R.M.: Weak convergence of probability measures on nonseparabel metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10, 109-126 (1968)
- 4. Dudley, R.M.: Sample functions of Gaussian processes. Ann. Probability 1, 66-103 (1973)
- 5. Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundary. J. Approx. Th. 10, 227–236
- 6. deHoyos, A.: Continuity and convergence of some process parametrized by the compact sets in R^s ; Z. Wahrscheinlichkeitstheorie und verw. Gebiete **23**, 153–162 (1972)
- 7. Parthasaraty, K.R.: Probability measures on metric spaces. New York: Academic Press 1967
- 8. Strassen, V., Dudley, R.M.: The central limit theorem and *e*-entropy; Lecture notes in Mathematics **89**. Berlin-Heidelberg-New York: Springer 1969

Received September 30, 1976; in revised form February 25, 1978