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Let U and V be commuting nonsingular automorphisms of the Lebesgue 
measure space (X, #), that is, both are invertible, measurable, and map #-null 
sets to #-null sets. Assume that the fixed point set of U mV n has measure zero 
unless r e = n= 0 .  While developing a cohomology theory for the orbit equiva- 
lence relation of a nonsingular action of a countable group on X, Feldman and 
Moore ([4, Theorem 4], [-5, Theorem 7]) proved the following result. If G is an 
abelian polonais group, and h: X ~ G  is measurable, then there are measurable 
f,g: X ~ G  such that 

f (Ux) g(Vx) 
h(x) = - -  a.e. (1) 

f(x) g(x) 

Their proof uses the hyperfiniteness of the nonsingular ~2 action generated by 
U and V to show that a certain two-dimensional cohomology group vanishes, 
establishes that this group is isomorphic to a two-dimensional Eilenberg- 
MacLane cohomology group of Z 2 with certain coefficients, and then uses 
spectral sequence methods to calculate the consequences. 

They remark that even for U and V independent irrational rotations of the 
circle group, and G the circle group or the reals, "we obtain very concrete and 
elementary statements that seem quite inaccessible by any other method." 

My purpose here is to give a direct proof of their result, using only the 
Halmos-Rohlin theorem for nonsingular 2~ 2 actions. The latter theorem seems 
to be a key ingredient, for it quickly yields the hyperfiniteness of nonsingular ;g2 
actions which begins the Feldman-Moore proof. 

The factorization (1) can be regarded as a functional equation in the two 
variables f and g. The Halmos-Rohlin theorem is useful in solving other 
functional equations as well. 

For example, a complex number 2 is an eigenvalue for a measure-preserving 
transformation U of X precisely when the functional equation 

2 -  f(Ux) 
f(x) 

0044-3719/78/0043/0135/$01.00 



136 D.A. Lind 

can be solved for measurable f mapping X to the circle group. An argument 
using the Halmos-Rohlin theorem gives a quick proof (unpublished) of Hansel's 
result [6] that an ergodic transformation induces an arbitrary eigenvalue on a 
dense collection of subsets (Conze [1] had previously proved this for a special 
class of eigenvalues). 

A functional equation also arises in the splitting of certain skew products. 
Let U be a measure-preserving transformation of X, A be an automorphism of a 
compact abelian group G, written multiplicatively, and h: X--*G be measurable. 
Define the skew product U XhA: X x G--*X x G by (U • t) = (U x, h(x)(A t)). 
This skew product is then isomorphic to the direct product U xA via an 
isomorphism of the form (x, t)~--,(x,f(x)t), where f :  X ~ G ,  if and only if f is a 
solution of the functional equation 

h , ,  f ( U x )  
txJ = A ~ j  " (2) 

I have shown in [9] how to use the Halmos-Rohlin theorem, together with a 
property of homeomorphisms called specification, to prove that for every 
transformation U, every ergodic automorphism A, and every h, there is a 
solution f of (2). One consequence is a simpler proof of the Bernoullicity of 
ergodic toral automorphisms (see [8, w 

I will now state the result I will prove. 

Theorem. I f  U and V are commuting nonsingular automorphisms of (X, #) such 
that UmV n has fixed point set of measure zero unless m = n = 0 ,  and if G is a 
group, then for every h: X--,G there are f g :  X--*G such that 

h(x) = f ( U x )  f ( x ) -  1 g(Vx) g(x)- 1 a.e. (3) 

Some remarks before beginning the proof. If G comes equipped with a r 
subalgebra of measurable sets (in [4, 5] G is polonais and therefore has a natural 
Borel structure), and h is measurable, the construction below easily gives 
measurable f and g. Also, using the axiom of choice to pick out one point in 
each orbit of V in the exceptional null set of (3), and redefining g inductively 
using (3) starting from its values at these points, it follows that f and g can be 
chosen so that (3) holds everywhere. Finally, this proof allows G to be non- 
abelian. 

Proof. First some notation. Since U and V commute, they generate a non- 
singular action of •2 on X given by (m,n).x=UmVnx,  where x E X  and 
(m,n)~)7 2. If Bc2g 2 and F c X ,  then BF denotes ~) bF. Also, F is called a B-set 

b s B  

if {bF: b sB} is a disjoint collection. If A, B c Z 2, then ~ B denotes ~ (B - a). Our 
A a s A  

assumptions on U and V mean that the resulting 2g 2 action is aperiodic, that is, 
#{x: a x = x }  =0 for nonzero a in 7/. 2. The following special case of Theorem 1 in 
[3], in which 7/2 here replaces a general countable abelian group, is the proofs 
foundation. 

Halmos-Rohlin Theorem. I f  7Z 2 acts aperiodically and nonsingularly on (X,#), 
then for every subset A of •2 and every e>O, there is a square B in ~2 and a 
measurable B-set F in X with #[((~ B)F] > 1-~.  

A 
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Conze [2] and Katznelson and Weiss [7] proved this in the measure- 
preserving case, and this is all that is needed for the application to independent 
rotations mentioned above. Nonsingular actions are trickier because sets which 
are easily shown to have small measure in the measure-preserving case must be 
dealt with by averaging arguments in [3]. 

The proof uses the Halmos-Rohlin theorem to construct f and g inductively 
on an increasing sequence of subsets so that (3) will hold on each subset. On the 
union of these sets, which will have measure 1, f and g will be defined and obey 
(3). 

To continue the proof, let A={0,  1} 2. Using the Halmos-Rohlin theorem, 
inductively find squares Bk={O, 1 , . . . , n k - - 1 } 2 = I  2 and (Bk+A)-se ts  F k with 
#[( (~ B k ) F k ] > l - - 2  -k. If F k = F k C ~ [ ~  ( ~ B j + ~ ) ~ + I ]  , then F k is again a Bk-Set, 

Bk- i  j>k  B1 
BkF k increases, ~ t ( B k F k ) > l - - ( 2 - k + 2 - k - l + . . . ) = l - - 2 - k + l ,  and for j > k  and 
x~Fj., Bk_F k intersects B j x  in complete squares of side n k sprinkled about in Bj. 

Let I k = {0, 1 . . . . .  nk} = I k U {nk}, U~ = Ik • Ik, S t  = Ik • Ik, Ek = Uk Fg, E~ = U~ F k 
=E k~3 UEk, ~ _ , r E k - - B k F k = E k W V E  k. Thus B k is the square B k with a border of 
thickness one on the right, and B~ is B k with a border on top. Both E~ and E~ 
increase to sets of full measure, and I will inductively define f on each E~ and g 
on each E~, so that (3) holds on E k = E~ c~Etk . Since E k also increases to a set of 
full measure, the theorem will be proved. 

Define f arbitrarily on El, measurably if G is measurable. Define g arbitrari- 
ly on (11 • {0})F1, measurably if G is measurable, and then up the columns of B~ 
using (3) as follows. If x e ( I  1 • {0})F1, put 

g ( V x )  = [ f ( x ) f ( U x )  -1 h(x)] g(x), 

and continue inductively to get 

g(V j+ ~ x) = [ f ( V J x )  f ( U W  x ) -  1 h ( W  x)] g( W x) 

J 
: [ y o f  (Vmx) f (UVmx)- l h(Vmx)] g(x) 

J 
for O < j < n l ,  where I~ g~ means g;gj-1 ... g0. This defines g on 

m - 0 

n t c  

U vJ((I1 x {0})F1)=(11 x I1)E1 = E l ,  
j=o 

and (3) holds for x e E  1. 

Now assume f and g have been defined on E~_ 1 and E~,_ 1, respectively, and 
that (3) holds for XeEk_ I. Notice that for xeFk,  the set E~_~ occurs in Bkx  as 
rectangles, each of size n k_ i x  (n k_ 1+ 1), which I call (k-1)-rectangles. I will 
extend the definition of g from these ( k -  1)-rectangles where it is already defined 
to all of B k x. This extension is done one column at a time, using some flexibility 
in defining f on the next column to the right. 

Let C={0} X lk, C={0} x lk, and fix x ~ F  k. Extend f arbitrarily from 
C x  ~ E~_ 1 to Cx .  Let J = {j: 0 <=j < n k, W x e ( I  k_ 1 x {0})F k_ 1}, so J specifies the 
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times when the first column intersects the base of  a ( k -  1)-rectangle. Since F k _ 1 
is a (B k_ ~ +A)-set,  the (k-1) - rec tangles  are spaced at least a unit distance apart. 
Hence for j6J ,  it follows that  ( 1 , j - 1 ) x  = U v J - l x r  1, and therefore f is not  
defined at such points. Let  C ' =  {1} x Ik, the next column to the right of  C, and 
extend f arbitrarily f rom C'XC~Uk_ ~ to {UV~x: O<i<n  k, i+ l r  Extend g to 
C x using f as follows. If  p and q are consecutive elements of  J, then q - p > n k _ 1 
+ 1, and g is already defined on 

{VP+ix: O<_i<_nk_l}U{Vq+iX: ONi<_nk_l} , 

but  not  on {V ix :p  + n k_ 1+ 1 < iN  q - 1 } .  Use (3) to define g across this gap by 
setting 

[ g(V 'x)= f ( V " x ) f ( U V " x )  -~ h(Vmx g(VP+nk-lX) 
m = p + n k - l + l  

(4) 

for p+n  k_ 1 + 1 <_ i<-q-1 .  The problem now is to fit together the just defined 
g(V~- lx )  and the previously defined g(Vqx) to make (3) work. The solution is 
simply to rig the value of  f at UV q- ~ x, where it is not  yet defined, to be 

f ( U V  q- 1 x) = h (V q-1 x) g(V q- t  x) g(V q x)-  a f ( v q - 1  x). 

Let r = minJ .  This process defines f on all of C'x,  except at U W - i x  if r > 0, and 
there let f be arbitrary. If  r > 0 ,  define g on {Vix: 0__<i<r} by 

g(Vr- ix )= h ( V r - m x ) - l f ( u v r - m x ) f ( v r - m x ) - i  g(Vrx), 
Lln : 1 

where 1 _< i__ r. To finish the first column, if s = m a x  J, define g on {Wx:  s+n k_ 1 
+ 1 <_i<_nkl by Equat ion  (4) with p replaced by s. Thus g is defined on C x  =({0} 
x Ik)X, f is defined on (Cw C' )x=({0 ,  1} x Ik)X , and (3) holds on Cx. 

Proceeding inductively, if g is defined on ({0,1 . . . . .  j - l }  X ik)X and f on 
({0, 1 . . . . .  j} x Ik)X SO that (3) holds on ({0, 1 . . . . .  j -  1} x Ik)X , exactly the same 
procedure employed for the first co lumn extends the definition of  g to 
({0,1 . . . . .  j } x i k ) X  and of  f to ({0,1 . . . . .  j + I } x l k ) x ,  with (3) holding on 
({0, 1 . . . . .  j} x Ik)X. Continuing to j = n  k -  1 provides the required extensions of  f 
to E~, and of  g to E~, with (3) holding on E k. This completes the proof. 
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