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Summary. Let {~} be a strictly stationary, absolutely regular process defined 
on a probability space (f2, sd, P), i.e., ~'s satisfy the condition 

fi(n)=E { sup [P(AJM~ 

where ~,tZf (a <= b) denote the a-algebra of events generated by ~ . . . . .  , ~b- (It is 
known that {~i} is absolutely regular if {~i} is @mixing, i.e. 

~b(n)= sup [P(Ac~B)-P(A)P(B)I/P(B)~,O. 
B ~ I  ~ - ~ ,  A ~ J / l n  ~ 

For some class of one-sample rank-order statistics, generated by ab- 
solutely regular processes, we shall prove theorems concerning the following 
problems under the assumption that ~1 has a continuous (not necessarily 
symmetric) distribution function. 

(a) weak convergence to a process {U(t): O_<t_<l} defined by U(t) 

= i h(s) dW(s), 
0 

(b) functional laws of the iterated logarithm, and 

(c) almost sure invariance principles and integral tests. 

Some of them are extensions of Sen's results [(Ann. Statist. 2, 49-62. 
(1974; Zbl. 273, 60005) ibid. 2, 1358 (1974; Zbl. 292, 60012)] and Stigler's 
ones [ibid. 2, 676-693 (1974; Zbl. 286, 62028)]. 

1. Introduction 

Let {~, - o o < i < o o }  be a strictly stationary sequence of random variables 
which are defined on a probability space (f2,d0P) and have a continuous 
distribution function (df) F(x), x~R, the real line ( -oo ,  oo), For a<b, let Jdf~ 
denote the a-algebra of events generated by ~ . . . . . .  qb" As in [18], we shall say 
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102 K e n - i c h i  Y o s h i h a r a  

that the sequence is absolutely regular if 

fi(n)=E{ sup [P(A[J//_ ~ oo)-P(A)]} ~0 (1.1) 
Aed~g ~ 

as n--, oo. Further, we shall say that {~} satisfies the qS-mixing condition if 

~b(n)= sup IP(Ar~B)-P(A)P(B)I/P(B),~O (1.2) 
B~J4 "~ o~, AE dr 

as n ~  oo. Since fl(n)< O(n), so if {~i} is ~b-mixing, then it is absolutely regular (cf. 
[7]). 

Next, let u(x) be equal to 1 or 0 according x is > 0  or <0, and for every 
n>  1, let 

R,,i= ~ u(I~i[-~j]), l <i<n. (1.3) 
j = l  

Consider the one-sample rank-order statistic 

JR,hi\ ), 
where d is a score-function, s(x)= sgn(x) and the c.,~ are defined by a continuous 
function h(x) on I = [0, 1] as 

c,,i=h(~-f) l<_i<n, n>l. (1.5) 

If h(x)= 1 for all xeI, then we write T~ instead of T.,m, i.e. 

Tm= ~=l s(~,) \re+l/" (1.6) 

Assuming that {~} are independent and h(x) = 1 on I, many authors studied 
asymptotic normality of n-+(T,-n#) and, recently, Sen [15] tried to prove the 
classical invariance principle or weak convergence to Brownian motion pro- 
cesses for {T,,} under some weak conditions. 

Sen [15] remarked that, in particular, the Wilconxon signed rank statistic 
can be expressed as a yon Mises' differentiable statistical functional, but, in 
general, this characterization is not possible for {T,}. For U-statistics and yon 
Mises' functionals generated by a strictly stationary, absolutely regular pro- 
cesses, the invariance principle was established by the author [18]. But, for {T,} 
generated by such processes, different proofs are needed. 

On the other hand, Stigler [-16] proved asymptotic normality of linear 
functions of order statistics of the form n- 1 ~ h(i/n + 1) Xci ). 

In this paper, extending the previous results, we shall prove the following 
under suitable conditions on J and fi(n); 
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(i) weak convergence for {T,.m} (Sections 3 and 4), 
(ii) a functional law of the iterated logarithm for {T,} (Section 5) 

and 

(iii) almost sure invariance principles and integral tests for {T,} (with h ( x ) =  1 
on I) generated by ~b-mixing sequences�9 

Some extensions and modifications of the above results are stated in Sec- 
tion 7. 

2. Preliminary Lemmas 

In this section, we assume that {~} is a strictly stationary, absolutely regular 
sequence of random variables with t i fF(x) .  In what follows, we shall agree to 
denote by the letter M, with suffix or not, some quantity bounded in absolute 
value�9 

The following lemma is proved in [18] (cf. Lemma 1 in [1817�9 

Lemma 2.1. L e t  c5 be some positive number. L e t  g(x~, x 2 . . . . .  Xk) be a Borel  funct ion 
such that 

S "" ~ Ig(xl '  x2 . . . .  , xk)ll +a dFO )(Xl . . . .  , x j) dFCZ) (x j+ 1, ' . . ,  Xk) <--<- M I (2.1) 
R k 

(1) (2) where F and F are distribution funct ions  o f  random vectors (~11, .. , (i,) and 
< ""  < Ik" I fE[g( ( i l ,  ~i2 . . . . .  iik)] <= M1, then ({i,+ 1, , {i~), respectively,  and i 1 < i 2 " 1+~ 

r e g ( ~ l ,  ~,2, . . - ,  ~ , ~ ) -  ~ S g ( x l  . . . . .  x j, x j + l  . . . . .  xk) 
R k 

�9 dF(1) (x l , . . . ,  x j) dF(2)(xj+ 1 . . . . .  Xk)[ 

< 4 M l / 1  +~ {fi(ij +~ -- ij)} ~/~ +~. (2.2) 

As  a special case, / fg (x l ,x  2 . . . .  ,xk) is bounded, say, Ig(xl,x 2 .. . . .  Xk)[ < M 2 ,  then 
we can replace the right-hand side of(2.2) by 2M 2 f l ( i~+l- i j ) .  

For any real number x, define H(lx[) and S~(x), respectively, as 

H(Ixl) =F(Ix l ) -  F ( -  Ixl) (2.3) 

and 

S.(x) = ~ ~(x) 
j = l  

where 

Yj(x)=u(fxl-I~jl)-U(Ixl) (]=0, +1, __+2,...). (2.4) 

Then, the process {Yj(x)} is a strictly stationary, absolutely regular sequence of 
random variables with the same function fl(n) as that of {~j} and for any x and j, 
I~(x)l < 1, E~(x )=0  and 

E YjZ(x)= H(Ixl){ 1 - H(lx[)}. (2.5) 
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Lemma 2.2. Let c~(0 < cz < 1) be fixed. Choose a number p (0 <p < ~). Assume that 
{~j} are absolutely regular random variables with fi(n). I f  x is a number such that 
g(Ixl) > 1 - n -a, then 

V ( n -  l lS~ >__ t [exp, { - (1 - p) (1 + c0/2}] ) 

<= M 1 n o {e- Mat -Ji- H i - P  fl(nP)} (2.6) 

where exp,(x) = n x. 

Proof. Choose an integer k = k~ = [n p] + 1, and write 

S,(x) = Ul(x) +. . .  + Uk(x ) (2.7) 

where 

Uj(x) = Yj(x) + Yj+g(X) +. . .  + Yj+mjk(x), 1 <_j <= k (2.8) 

and m3=m,, ~ is the largest integer for whichj+mjk<=n. We note that  

m~<<_ml < n l - ~  for j = l , . . . , k  and k<n.  (2.9) 

Thus, from (2.8) 

P(n- 11S.(x)[ ~ t [exp,{ -- (1 -- p) (1 + ~)/2}]) 

< P ( n  -1 ~ [Uj (x )]>t[exp ,{ - (1-p) ( t  +cQ/2}]) 
j = l  

k 
-<_ ~ P(n-(1 -P)] Uj(x)[ > t [exp,~{ - (1 - p)(1 + ~)/2}]). (2.10) 

j = l  

Let j(1 =<j < k) be fixed. Define Aj by 

A j =  {(Yl, ..., Ym~): lYl + ' "  +YmjI > t [exp,{ - (1  - p )  (1 - ~)/2}]} 

and put 

...,ymj)__ fl[ if (Yl . . . . .  Y m j ) ~ A j  
g(Yl, 0 otherwise. 

Since {yi+ik(X)} are absolutely regular with fi(i k), so using Lemma2.1 (with M a 
= 1) repeatedly, we have 

P([ Uj(x)[ > t [exp,,{(1 - p)(1 - e)/2}]) 

= ~ g ( ~ ( x )  . . . . .  ~ + ~ ( x ) )  

< ~mj~ g(Yl . . . . .  ym~)dF(yO.., dF(y~j) + 2mj fi(k) 

=P(IZa(x)+.. .+Zm,(X)l>t[exp,{(1-p)(1-cO/2}])+2m~fl(k)  (2.11) 

where {Z~(x)} are independently and identically distributed random variables 
with the same dfF(x) as that  of the random variable Y~(x). So, from Theorem 1 
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in [10] 

P(IZ~(x) +. . .  + Zmj(x)l > t [exp,,{(1 - p) (1 - ~)/2}]) 

_<~M1 e-M~t- . 

Thus, from (2.10)-(2.12), we have (2.6), which completes the proof. 
For  any n(n>_l) and for any i (1 <i<n),  let 

1 
r - { ( n -  1 ) H ( l g i l ) +  1} 

i n + l  

and 

105 

(2.12) 

(2.13) 

Rn'i 4 * . -  1 yj({,). (2.14) 
(n '~ -n+l  "'~ n + l  l<j~<n= = 

j4=i 

Lemma 2.3. Under the assumptions of  Lemma 2.2, there exists an n o =no(t  ) such 
that 

P( g, ~[ > 5t [exp,{ - (1  - p ) ( 1  + ~)/2}], H(]r > 1 - n  -~) 

< M 1 n-~+P{e-V2t +nl -P fl(nP)} (2.15) 

for all n> n  o and for any i (1 < i < n ) .  

Proof Let n and i be fixed. Let B = { v :  1 - n - ~ < v < l } ,  

~(l!(x~= 1 i-['~ and ~2) 1 n 

Z B(x), 
. . . . .  n + l  , ~  ~""-~ +1 "= j=i+[noJ+ 1 

~. i(x) - 0 if i - [n p] < 0 and ?-(2)/~ = 0 if i + [nq  > n. As putting ~{*) - - -  ~ n ,  i t " J  

2 

j = l  

so for all n such that  ln(i-P)(~ ~)/2>t 

2 

the left-hand side of (2.15) < ~, E)(j) (2.16) 
j = l  

where, for j (j = 1, 2), Z (j) is the indicator of the co-set 

{co: Iff~{)/(~)l > 2t [exp,,{ - (1 - p ) ( 1  + c~)/2}], H(I~il)~B}. 

F rom Lemma 2.1 

EZ~ ~ P(l~{)~(x)l> 2 t [ e x p ~ { - ( 1 - p ) ( l  +~)/2}])df(x)+ 2fi(no) 
H(Ixl)eB 

and so from Lemma 2.2 

EZ(J)<MlnP{e M2t+nl-P/3(nO)} [. dF(x)+2[3(n p) 
II(Ixl)eB 

<MnP-~{e-M~t+nl-Pfi(n~ ( j=  1,2). (2.17) 
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Thus, from (2.16) and (2.17), we have (2.14), which completes the proof of 
Lemma 2.3. 

By the method of the proof of Remark 1 in [12], we can easily show the 
following lemma. 

Lemma 2.4. Let {~i} be a not necessarily strictly stationary, absolutely regular 
sequence of random variables with fi(n) and E~i=0. I f  for all m( <n) and x > 0  

P(IS, - Sml > x) <�89 (2.18) 

then 

P ( m a x  ISmI>2X)<2P(LS.I>X)+4~P Ig~l_--X +4  fl(p) (2.19) 
l ~m<=n j 

where S .=  ~, ~j and p=p(n)--+~ as n--*~ and p<__n. 
j = l  

3. Weak Convergence Theorems for { T.,m} when J" is Bounded Inside I 

For a score-function J(u) put 

# = #j(F) = ~ s(x) J(H(lx[) de(x)). (3.1) 

It is obvious that if the score-function J is square integrable, then [#[ < 0o- 
Let h(x) be a continuous function on 1. Let T,,,, be defined by (1.4) and put 

#~,m----#~Cn, i = # ~  �9 (3.2) 
i = 1  i = 1  

For every n > 1, let 

O , for t = 0 

Xn(t)= (Tn,k--#n,k)/(~n~) for t=k /n  ( k = l  .. . .  ,n) 

tlinearly interpolated for t ~ [ ( k -  1)/n, k/n] (k = 1 . . . . .  n), (3.3) 

where ~ is a positive constant. Then, the stochastic process X,  
= {Xn(t): 0<t_< 1} belong to the space C =  C(I) of all continuous function on I 
with which we associate the usual uniform topology defined by the metric 

d(f,g)= sup {]f(t)-g(t)[: f, g~C}. (3.4) 
O_--<t--<l 

Now, we shall prove the following theorem, which is an extension Theorem 1 
in [15]. 

Theorem 3.1. Let {~i} be a strictly stationary, absolutely regular process with fi(n) 
=O(n-4). Let J be a score-function having a bounded second derivative. I f  (~2, 
defined by (3.7), (below), is positive and finite, then X , ,  defined by (3.3), converge in 
distribution in the uniform topology on C to the stochastic process U= 
{U(t): 0__<t< 1}, where 
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t 

U(t)=~h(s)dW(s), O<t_<l  (3.5) 
0 

and W =  { W(t): 0-< t_< 1 } is a standard Brownian motion process. 

To prove Theorem 3.1, we need some lemmas. 
Firstly, let 

r h = Is(x) {u(Ix[ - I~i]) - H(Ix[)} J'(H(Ixl))dF(x) 

+{s(~i)J(H(l~il))-Es(~i)J(H(l~i[))} ( i=0,  +1 ,  + 2  .. . .  ) (3.6) 

It is obvious that Erh=O. Put 

()/  o -2= lira Var ~ ~i n (3.7) 
n~oo \ i = 1  

if the limit exists. It is easily proved that if {~i} is a strictly stationary, absolutely 
regular sequence with fi(n)=O(n -4) and J" is bounded,  then {~h} is a strictly 
stationary, absolutely regular sequence of bounded  random variables satisfying 
fl(n)=O(n -~) and the limit in (3.7) exists. (cf. [13]). 

If the score-function possesses a bounded  derivative, then by Taylor expan- 
sion 

j (  Rm, i'] ~. 
\m + l / =  J(r ,) + ~,,,,~ J'(~*. ~) + ~2,, km' i(H(l~,])) (3.8) 

where ~*,i and ~m,i are the ones defined in (2.13) and (2.14), respectively, and 
k,,,i(x) is bounded,  say ]km.i(x)[<M o, - oo  < x <  0% 1 <_i<_m. (cf. [3]). 

We note that 

1-2n( l~ , ] )  <_ 1 
I~*, i -  H(l~i[)l= m + 1 - m + 1" 

So, from (1.4), (3.2), (3.6) and (3.8) and Taylor  expansion, it follows that 

T,,,~-~,.~-i~=l c,,irh 

= ~ c.,~[s(~) {J(~,~ ,) + ~,, , J'(~m.~) + *  ~,,2 km,~(H([~,l)) } 

- {[, s(x) (u(lxl -[~,l) - H(lxl)) J'(H(Ixl)) dF(x) - s(~,) J(H(l~,l))}] 

< ~ % ,  s(~3 {J(~*, 3-J(H(I~,I))} 
I i = 1  

+ ~= ~ ~ J (~m,3 Cn, i [S(~i )~m, i '  * 

- ~ s(x) {u(lx[ - Ir - H([xl)} J'(H(]x])) dF(x) 

§ ~ Ic..,I ~,., 
i = 1  
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< Y~ * - H ( I ~  I)? Ic,,g ,,,,-H(I~,I)[" IJ'(H(l~il))[+ ,, , 
/=1 

+ Ic,,~[. Is(~3 C,,,i J'(H(I~,[)I 
i 

- 5 s(x) {u(lx I -1{,[) - H(]x[)} J'(H(Ix])) dE(x) 

+ M o  ~ I%,1" [~*, ,-H( ~,l)[" 1~.,,,I 
i=l 

/=1 

< - -  ~ Ic,,il IJ'(H([~,I))I+ 
- m + l / = l  

+ [[Vm I 2 " + ~ f , ~  Ic,.,I. If s(x) {u( Ix l -  I~,1) - ~/(Ixl)} J'(/4(Ixl)) dV(x)l 

+ r e + l / = 1  M~ ~ 'C,,,['[~m,,'] 

+ M o  ~ 1%,1~a m,, 
/=1 

where 

1 
r m = ~ l  , ~ ~ c,,~[s(~,){u(l~,l-l~jl)-H(l~ii)} J'(H(]~,l)) 

<i~m l< j<m 
j+' 

-- ~ S(X) {U(IX [ --If /I)  -- H(INI)} J'(H(IxD) dF(x)]. 

(3.9) 

(3.10) 

and d'(u) are bounded} so As 1%,1<max{h(x): 0_<x_< 1} = ][h[I and u(x), s(x) 
from (3.9) we have that for all m ( <  n) 

Yn'm--~n'm--/=1 ~ Cn'iI~i ~-[Vml-~ml /=1 ~ ~2"+M2" (3.11) 

Lemma 3.1. Under the conditions of Theorem 3.1, the following relations hold: 

EIVm[ 2 = O(1), EIVm]4=O(1). (3.12) 

Proof. Let 

g(y, z) = s(y) {u(ly I --]zl) - H(lyD} J'(H(ly])) 
- ~ s(x) {u(Ixl -Izl) - H(Ixl)} J'(H(lx[)) dF(x). 

Then 

g(y, z) dF(y) = S g(Y, z/dF(z)  = iS g(Y, z) dF(y) dV(z) = 0 

and so, using the same technique as in the proof of Lemma 3 in [18], we have 
the desired relations. 
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Lemma 3.2. Under the conditions of Theorem 3.1 

E/~=1 (2 2 m,i =O(m-  1) �9 

(3.13) 
E(/~,=l~2,/)~{E/~=I 2 [2"1-~ ~,/ ~ =O(m-~). 

Proof (3.13) follows easily from Lemma2.1. 

Lemma 3.3. Under the conditions of Theorem 3.1 

l imE ~ s ( ~ / ) J ( ~ , ) - m # 2  /(ma2)=l (3.14) 
m~oo / = l  / 

if ~ 2, defined by (3.7), is positive and finite. 

Proof The proof is easily obtained from (3.2), (3.7), (3.11)-(3.13) and (1.4) putting 
c,,,i=l (i= 1, ...,m). 

Now, we consider stochastic processes Y,= {Y,(t): 0_<t_< 1} defined by 

f o r 0  

Y,(t) = c,,i t h (a ) for t = k/n (k = 1, 2,..., n) 
i 

(linearly interpolated for t~[(k-  1)/n, k/n] (k = 1 ..... n). (3.15) 

Lemma 3.4. Let Y,= {Y,(t): 0<t_< 1} (n= 1, 2 .... ) be random elements in C defined 

by (3.15). Then, under the conditions of Theorem 3.1, Y , ~  U. 

Proof For any n(n> 1), let 

k 1 

Z.( t )=  /- ~i (an~) 

linearly interpolated 

for t = 0  

for t = k/n (k = 1, 2 ..... n) 

for t~[(k-1)/n,k/n] ( k = l , 2  .. . . .  n). (3.16) 

Since {th} is a strictly stationary, absolutely regular sequence of bounded 
random variables with fi(n)=O(n-4), so from Theorem2 in [13], we have that 

Z,  ~ W. Thus, from Theorem 1 in [11] we have the lemma. 

Lemma 3.5. I f  the conditions of Theorem 3.1 are satisfied, then for any ~ > 0  

P(d(X n, Y,) >e) ~ 0  (n ~ov).  (3.17) 

Proof To prove (3.17), it is enough to prove 

P(max\l<=m<=n,Tn,,-#n,m-~cni,h>3sn~) ~ 0 '  /=1 , (n --,oe) (3.18) 
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for every ~>0. In order to prove (3.18), from (3.11), it suffices to show that for 
every e > 0 

P( max ]gml>e~rn~)~O (n~oo) (3.19) 
l <_m<_n 

and 

P max kmi(g(ICil)){ re, i} >ean~ --,0 (n~oo). (3.20) 
l < m < n i = l  

From (3.12) 

P( max Igml>eo-n~)< ~ p(lgml>e~rn ~) 
l <-m<--n m=l 

<(e4 a4n2)-i ~, EIV~I4=O(n -1) (3.21) 
m =l  

and from (3.13) (using the boundedness of km, i(x)) 

P max ~, km, i(H(lgil)) ~an ~ 
\ 1  __<m=<n[i= 1 

n f m 2 ~2 

3 m = l  k i = l  

= O(n- 1 log n). (3.22) 

So, (3.19) and (3.20) hold. Thus, we have the lemma. 

Proof of Theorem 3.1. Theorem 3.1 follows from Theorem 4.1 in [1] and Lemmas 
3.4 and 3.5. 

Define the score function J,(u) by 

J" , (J(u) if O<u<-n/(n+l), 
n~ u) ~J(n/(n + 1)) if n/(n + 1) < u < 1. 

If J(u) is twice differentiable, then J"(u)= J"(u) (0 < u < n/(n + 1)). If 

IJj(u)l<Mn~-a ( 0 < u < l )  (3.23) 

for some ~(0<~<�89 then we can prove the relation 

( m k'nI~,i(H('~i'))~.,.i2 ) P max ~ >ean ~ ~ 0  (n~oo) (3.24) 
\ l <=m<-<.nli= l 

by the same method used in (3.22). Thus, we can slightly extend Theorem 3.1 to 
the following form. 

Theorem 3.2. If, among conditions in Theorem 3.1, the score-function J is replaced 
by a score-function J* for which (3.23) holds, then the conclusion of Theorem 3.1 
remains true. 
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4. Functional Central Limit Theorem for {T.,,.} when d is a General Score- 
function 

In this section, we shall consider a more general score-function. 
1 

First, we note that  y [J(u)lZ+Tdu<=M for some ~>0,  then E[tli[z+7<=M where 
o 

t/i is the random variable defined by (3.6). 

Lemma 4.1. Let {r/i } be a strictly stationary, absolutely regular sequence of random 
variables with fl(n). I f  E t h = 0  and E[qil2+7=2< oo and ~ {fl(n)}~/(2+7) < oo for 
some ? > O, then 

E qi <M2~ 
i 

where r = 2/(2 + ?). 

Proof. The proof  is easily obtained since from Lemma 2.1 

[Eqi rlj[ <= M {Elt/o[2 +,} 2/(2 + 7 ) { / ~ ( i - - j ) )  y/(2 + 7) 

Let 6 be any number  such that  0 < 6 < �89 Let the class 5~ = {L} consisting of 
functions L on I possessing the following properties: 

(i) L is twice differentiable inside [0, 1) 
(ii) L is nondecreasing, and 

(iii) as u 7  1 

(d(O/du(O)L(u)=O((1-u)-~-i+~) ( i=0,  1,2). (4.1) 
1 

It is obvious that  for LESOo ~ ]L(u)[ 2 + 7 du < M where 0 < ? < 36/(1 - 26). 
o 

Theorem 4.1. Let {~i} be a strictly stationary, absolutely regular process with 
1 

function fl(n). Let d ~ ( 0 < 6 < � 8 9  be given. I f  y[J(u)[2+~du<oo where 7=4gff 
( 1 - 2 6 )  and 2 > 0  is sufficiently small and if o 

fl(n) = O(n- 60(2 - 6 ) / 6 ) ,  (4.2) 

then for any e > 0 

P ( m a x T " " - # ~ ' ~ - ~ c " ' i q i > = e n ~ )  <M~ \ i  ~m-<,l i=1 (n -~ oo) (4.3) 

where M o depends only on e and a, and r = 2/(2 + ?). 

Proof Let 7 = 1 - 6 / 3  and define d as the smallest integer j for which : d < l / 5  
holds. For  any n > 1, let 

AI=A.,t={u: 1 - n - ' < u < l }  

Aj=A, , j={u:  1-n-~J <u<=l -n  -~J-1} 
--c~d Ad=A,,d={u: O < u < - l - n  }. 

( / = 2  . . . .  , d - l )  

(4.4) 
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Let  Z(u: A) be the indicator  of the set A. For  every n > l ,  we define functions 
Kj(u) = K.,i(u) (j = 1 ..... d) on 1 by 

l 
0 

KI(U)=Kn, I(R)= J(u) 
[.J(n/(n + 1)) 

K j(u) = K.,j(u) =a(u))((u: Aj) 

if O<-u<- l - n  -~ 
if 1 - n - ~  <u<n/(n+ l) 
if n/(n+ 1 ) < u < l .  

( j = 2  . . . . .  d). 

Then, for almost  all ue[0 ,  n/(n + 1)) (n>  1) 

d d d 

J(u)= E Kj(u), J'(~)= E K~(u), J"(u)= E K)'(u) 
j = l  j = l  j = l  

and 

M a Z(u: A j) [exp.  { ( � 8 9  6) c~J}] 

< (d(O/du (~ Kj(u) < m 2 )((u: A j) [exp.  {(�89 + i - 6) a j -  1 }] 

( i=0 ,  1, 2; j = l  . . . . .  d). 

Since it is obvious that  

E T. ,m-#. ,m- c.,itli < M m  2, 
i = l  

so, putt ing n o = [ e x p .  c~d], we have that  for any e > 0 

(4.5) 

(4.6) 

(4.7) 

\l_-<m<nol ' ' i=~ 

< M n g/(e n~) a -- O (n-~) (4.8) 

for some r > 0 .  Thus, to prove (4.3), it is enough to show that  for any e > 0  there 
exists an integer N = N(e) such that  for all n > N and for some z (0 < z  < 1) 

P ( m a x  Tn , , . - # . , , . -~  c.,irh >~n-i)<M1 2L (4.9) 
\no <m<n i=1 

F r o m  (3.9) we have that  

T.,m " r/i --#n,m-- E Cn, i 
i=1 

= i~=1 {c., is(~i)(J(~m,i)+~m,i * J'(~m,3* + ~,~ km ,(H( ~i )))} 

--#n,m-- i=1 ~ Cn'i~i 
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~M2 ~ IJ,(~*,z)-J.(H(l~.zl))l 
i=1 

d j = l  

-H( lx[ )}  K)(H (Ix[)) dF(x)] 
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d 

�9 n,m,i( (1~i1)) ~m.i (4 .10)  
j = l  i=1 

where V u) and u) ,,~ k . . . .  i(H([~i[)) are the ones obtained in (3.10) and (3.8) on 
replacing Y by Kj,  respectively. We note  here that if H([g~I)~Aj ( j=  1 . . . . .  d - 1 )  
then H([{i[)>�89 and so 

m - 1  1 m 
~* . -  H ( I ~ I ) +  - 

"~ m + l  m + l - r n + l  H([~il)<=H(]~i[)" 

Now, 

~, rL(~*,i)-J.(H(l~il))l 
i = i  

d i 
= ~ (H([~il)-~*,i)J~(0i)<3 ~ ~ ( r e + l )  iKj(gi)  

i=1 j = l  i = l  

where for each i ( i = 1  . . . . .  m) 0i=H(l~l)-~c~(H(l~il)-~* 3 and ~c i is a r andom 
variable such that  [K~[ _-< 1. Since for each j ( j=  1 . . . . .  d - 1 )  and i (i = 1 . . . .  , m) 

E Z(8~: A j) ~ P(Oi > 1 -- n -~J) < P(H(I~I) > 1 - n -~j) < M n ~ 

so for each j (j = 1 . . . .  , d -  1) and i (i = 1 . . . . .  m) 

EK)(O~) < [exp.  { ( I -  6) 0~ j -  i } ]  E X  (O i : A j) ~ exp. {(�89 6) ~ J -  1}. 

Let  k o and k s be the integers such that  2 k~ < n  o < 2  ko+ 1 and 2 k~- a < n  < 2  k~. Then 
for e a c h j  ( j = l  . . . . .  d - l )  and e > 0  

P(maX\.o__<., =<. i= l~(m+l) - lK}(Oi)>4en-~)  

< ~ P max K)(Oi)>2k+2~n ~ 
k=ko \ 2k-<m-<2k+ 1 j = l  

< ( k l - k o )  max P max Kj(Oi)>2k+2en ~ " 
ko<=k<=kl \ 1-<m-<2k+l i=1 

Let j (] '=1 . . . . .  d - l )  and k ( ko<k<kl )  be fixed. We note that  K)(O~) is an 
absolutely regular sequence of r andom variables with the same fi(n) as that of 
{~i}, and for any v ( < 2  k+l) 



114 Ken-ichi Yoshihara 

(2 1 ) 
P K)(Oi)>2k+le.n ~ 

\ i = v  

<= P LK)(O~) - EK)(,9~)] > 2 k e n ~ 
\ i='~ 

2k+ 1 

=<(2ken~) -1 y'  EIK)(O~)-EK)(O~)I<=Man-~ 
i = v  

where ? and M 2 are positive numbers which are independent on j, k and v. 
Hence, putting p = [2k/4], we have from Lemma 2.4 that 

P (  max ~K)(gi)>2k+2en ~) 
i -<m-<2k+i i = 1  

/I 2~+ , (Kj(O~) - EKj(O~) ) N2P~ i~=1 ' ' >2ken} 
3 k  k 

+ 2X-fi(2~) + M2 n-~ = O(n- ~). 

As k 1 - k 0 = 0(log n), so for each j (j = 1,..., d -  1) 

P(\,o_-<~,max i=l ~ (m+ 1) -1K}(Oi)>4en~)=O(n -7") (4.11) 

where 0 < 7' < 7. 
On the other hand, for j=d,  using the properties of je~qo, we have that for 

any e > 0  

(m + 1)-1 K)(O~) < M [expn {4 (3_ 6)}] < e n ~ 
i = 1  

and thus (4.11) also holds for j = d .  Hence, for any 8>0  

P (\no <=m<_,max i=l ~ IJ"( ~*'~) - Jn(H ([~il))l > e n~) -+ 0 (4.12) 

a s  H --~ o o .  

Since the sequence 0 (j). defined by 

O(J),,i -- ~ s(x) {u(Ix[ -1~i1) - H([x[)} K )(H (]x])) dF(x), 

is a strictly stationary, absolutely regular sequence of random variables with the 
function fi(n) satisfying (4.2), and EOn,i=o(J) and E 0t3)'n t 2 +7'< O0 for some 7 '> 0, so 

E (i~= l O(~!~)2=cm(l + o(l)) 

for some constant c (cf. [12]). Thus, from the Bonferonni inequality 
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P(\,o<=m<=.max 2(m+ 1)- 1 i=l ~ O(j)'n't ~--'~n�89 

<=m~.o P((m+ 1)-1 =~ 0.~ _>e n "~) 

<=M(e2n) -1 ~ m-l=O(n-llogn) 
m~tl o 

( j = l  . . . .  ,d). (4.13) 

Next, from Lemma4.1 it follows easily that for all m>n o 

E IV_ u) 2 < M Var(r/o ) < M o 2 ' 

and so 

P(  max V(J) > i 
�9 n,m ~,?,Fl-) 

no <ra<n 

~(e2  0-2 rt) -1  ~ E V (j), .,,. 2<M2:_ ( j=l ,  ...,d). (4.14) 
m=l 

Finally, let 

nj=exp.{~ e-j} ( j = l  . . . .  ,d). 

Let {Z]s!~,i: noNm<=nj}_ ( j = l ,  ...,d) and t,~2,,,,iY"(J) ." nj<=m<=n} ( j = l ,  ...,d) be col- 
lections of random variables, defined, respectively, by 

X, ( j )  _ {10 1,m,i --  

and 

if I~,il < (log m) 2 I-exp~ { - (1 - p)(1 + ~) 7J- 1/2}] 
otherwise 

(4.15) 

)(s) _ f l  if I~m,~l<_(logrn)2Eexp~{-(1-p)(l+cd)/2}] 
2,m,~- [0  otherwise 

(4.16) 

where p = a/6. 
Noting I~,~,il~l for all m and i, from (4.10) we have that for a n y j  (l<j<d 

- 1 )  and for any m (no<m<nd_j_x) 

Ic,,il I k(s),,m,i (H([~il))l C~,g 
i=1 

< ]rh]l ~, z(H(Ir A,,j) 
i=1 

�9 {(log n) 4 [exp, {(~- 5) cd-1 _ (1 - p)(1 + e) ~J- 1}j 

+(1 -Zf!m.~)[exp, {(5-  a) cd- 1}3}. (4.17) 
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Accordingly, for each j (1 < j  _-< d - 1) 

P(\.o<=,.<=.dmax j-1 j=l~ ]Cn'il]k~)'i(H(l~il))l~2'i>28n�89 
= P  z(H([~I): A.,)(log n)4 

" [ e x p , { ( ~ - ~ )  cd- 1 + ~ } ]  >~n~ ) 

+ P  max Ilhl l  z(H(I~il): A..j)(I-z~I!,..,) 
\ n o  < m < n  i =  

�9 [exp, {(~- 6) ~J- 1}] >~ n~) +I2, (say). 

Since for any i and j (1 <=j<d-1) 

P(H (I~il)eA.,j) = n(H (l~il) >= 1 - n -~j) < M n -~, 

so for any j (1 <j__< d -  1) 

n d ~ j - 1  

Ii<=Mn --~ ~ P(H(l~i])eA,,)(logn) 4 
i = 1  

�9 1 5 

= O ( n - r ' )  

where r' is a positive constant. 
On the other hand, from Lemma 2.3 and (4.2) 

12--< E P Ilhll z(H(I~[):A,,j) 
r e = n o  i = i 

> ~" �9 (1 - )/~!m, i) [exp. {(5 - 5) eJ- 1)j _ e n ) 
? l d -  j 1 

< M . - ~  ~ [ e x p . { ( ~ - 5 ) ~ J - ~ } ] l l h l l  
r e = n o  

E{z(H(I~il): A.,j) (1 - Z (j)l,~,ij~u 
i ~ 1  

r i d -  j 1 

<-Mn -~ ~ [-exp,{(~-b)as-1}] 
m : n  o 

�9 rn ~ - ~ * ~  { e -  M.(,o~m)~ + ml -~ p(m~)} 

N M [ e x p , { - � 8 9  cd- a}] nolV-~+l~176 -~'') 

(4.18) 

(4.19) 

(4.20) 
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for any j (1 < j  < d - 1 )  and for some r ' >  0. From (4.19) and (4.20) it follows that 

P \no<=m<na-J( max ~ i=1~ ,c..,Ik] .... (2~ i( H(li/I))' ~',~,, >2e n ~) 

= O(n-') (4.21) 

for a n y j  (1 < j < d - 1 )  and for some r>0.  
Similarly, fo r j  (1 <j<d-1)  and for some r > 0  

P ( ~< ~ Ic.,,, [k~)~,. ,(H (14,1))' ~'2.~rn,~ -- 2e n 4) 
\na j-l_rn<_n /=1 

< P (  ]PhH ,=1 ~ )~(H(Ir n) 4 

. [exp, {(~ - 6) cd-1 _ (1 - p)(1 + cd)}] > e n ~) 

+P( max Ilhll ~ z(H(I~I): A,, 4) 
\ n d - j  l<-m<--n i = 1  

\ 

(1 (J) e ) " -22,,,,,i)[ xP,{(~-6)}] >en+ 
/ 

= O(n-"). (4.22) 

For j = d and for all m (n o < m < n) it follows from Lemma 3.2. 

, ~2 ]2 
/,n ~ i /  

< M[exp,  {(5-26) ~e}]. m 1. (4.23) 

Since, from the definition of d, ( 5 -  2c5)cd-1 < 0, so 

P(\,o__<m_ -<'max i=1 ~ [c"'~[[k~e')~i(H(l:i))l~2">2en~) 

<Mn-1[exp ,{ (5 -26)cd}]  ~, m-l=O(n -~) (4.24) 
m m n o  

for some r>0 .  Hence, (4.9) follows from (4.12)-(4.14), (4.21), (4.22) and (4.24), and 
the proof of Theorem 4.1 is completed. 

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied. If h(t) 
satisfies the Lipschitz condition 

th(t2)-h(tl)l<Molt2-tal (t~,t2eI), (4.25) 

then 

P(lmax ,=~ c,,irli >on ~) <=M2 ~ (n--*oo) (4.26, 

for any e > 0 where z = 2/(2 + 7). 
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Proof. Let 

ag = lim nVar r h . (4.27) 
n~o:? i 

If ao>0,  then from Theorem1 in [11], Yn e ' U where {Y,}, U are random 
elements, defined by (3.15) and (3.5), respectively. Thus, noting a o < 21/<z + r), from 
Theorem 1 in [4, Chap. 1, w 3] 

( m > �89 

lim P max ~ On, i t  h = g / ' l  
n~oo \ l<ra<n i=1  

= lim P( sup IG(t)l>=~/~ro) 
n~ov O=<t=<l 

= P (  sup IU(t)l>e/ao) 
O_<t<_l 

1 
< a2/e 2 ~ h 2 (t) at < M ),2/<2 + ~). (4.28) 

o 

Now, we consider the case where a o = 0, i.e., 

a ~ = E t / ~ + 2  ~ Er/or/;=O. 
j = l  

As 

[E rlo t/i[ _< M 2 ~ {fl(j)}:,/<2 + r)< M1 2~j- 12o(2 -6) 

and from (4.25) 

SO 

[c,,j+ i -c,,il  < Moj/(m + 1), 

E Cn'i~i ~--i Cn'i 
\ i = 1  l <=i<j<-m 

2 Er/~+ E r/o r/j Cn. i 
i=1  

m-1  m- i  

i=1 j=l 

m-1  m- i  

+211h[I ~ E Ic.,j§ 
i=1  j = l  

< [ihll2 Mt 2~ ~ ~ j-120(2-6) 
i=1  j=m--i+l  

+2  lihll M2)~* ~, j{fi(J)}~/(2+~)<= M)c*. 
j = l  
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Hence, we have that for all m 

Cn,i q i < M 2 ~ 
i 

and so 

P max ~ c,,itl i >en  ~ 
\ l < - m < n l i = l  ] 

~(en�89 -2 E c,,itl z <=M~-22 ~. (4.29) 
m = l  \ i = i  

Thus, we have the theorem. 

Theorem 4.3. Let {~} be a strictly stationary, absolutely regular process with 
function fi(n). Let J be a twice differentiable score-function which admits the 
polynomial approximation using function in Y6 (0<6<21) as follows: For every 
2 > 0 there exists a decomposition 

J (u) = L o (u) + L 1 (u) - L 2 (u) (4.30) 

where L o is a polynomial and L i ~ d  ~ (i = 1, 2) for which 

1 

f. {Igl(u)12+' +lg2(u)12+~} du<,~ (4.31) 
0 

and 7---46/(1-2~5). Assume that h(t) satisfies the condition (4.25). If(4.2) holds and 
a 2, defined by (3.7), is positive and finite, then the conclusion in Theorem 3.1 
remains true. 

Proof The proof easily follows from Theorems 3.1, 4.1 and 4.2. 

Remark. If {~i} is a sequence of i.i.d, random variables, in Theorem 4.3 we can 
replace the condition (4.25) by a weaker condition that h(x) is continuous on I. 
The proof is obtained from the proofs of Theorems 4.2 and 4.3. 

5. A Functional Law of the Iterated Logarithm for {T~} 

In this section we assume that h(x)= 1 for all x~I.  
Let C o ( c  C) be the space of continuous functions on I vanishing at 0, with 

the uniform topology and for each ~o~2, define the functions X, (t, co) in C O as 
follows: 

X*(t, co)=X,(t ,a))(21oglogna2) -a (n> 3/a 2) (5.1) 

and X,(t, co) is the one defined by (3.3) with h(x) = 1 for all x~I.  We denote K the 
set of absolutely continuous functions on I with f ( 0 ) =  0 and 

1 

{f ' ( t )}  2 dr__< 1. (5.2) 
0 
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Theorem 5.1. I f  the conditions of Theorem 3.1 are satisfied, then for almost all 
cocO, the sequence of functions {X*(t, co), n> 3/a 2} is precompact in C o and its 
derived set coincides with the set K. 

To prove Theorem 5.1, we need the following lemmas. 

Lemma 5.1. I f  the conditions of Theorem 5.1 are satisfied, then almost all cocO, the 
sequence of functions {Y*(t, co), n> 3/a 2} is precompact in C o and its derived set 
coincides with the set K, where 

Y* (t, co) = (2 log log n a2) - ~ Yn(t, co) (5.3) 

and Y,(t, co) is defined by (3.15) with h(x)=l for all x~l. 

Proof. For each coeQ, let 

Z,* (t, co) = (2 log log n 0 "2) - �89 Z n (t ,  (2)) (5.4) 

where Z,(t, co) is defined by (3.16) with h(x)= 1 for all xEI. Since {th} are strictly 
stationary absolutely regular and bounded, and satisfy the conditions of Theo- 
rem 1 in [13], so from the theorem we have that for almost all co~f2, the 
sequence of functions {Z*(t, co), n > 3/0 -2} is precompact in C o and its derived set 
coincides with the set K. Thus, from the definition of Yn(t, co), we have the 
lemma. 

Lemma 5.2. Under the conditions of Theorem 3.1 

P( l im d(X*, Y*)=0)= 1. (5.5) 

Proof To prove (5.5), it suffices to show that for every e > 0  

P( Tn-~tn-i~=lt/i >e)~(n) i .o . )=0  (5.6) 

where 

z(n) = (2n 0.2 log log n 0.2)�89 (5.7) 

From (3.11)-(3.13) and the Bonferonni inequality 

~ P (  max [ T m - ; ~ -  ~ t/i >3~z(k2)) 
k = l  1 <-m<-k2 i = l  

=< ~ P( max [gml>~x(k2)) 
k = l  1 s 

( m ) 
+ P  max M li  \l~m~k~ ~, ~'~>~z(k~) 

__<M ~ {k-2+k-~}<oo. (5.8) 
k = l  
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So, from the Borel-Cantelli lemma we have 

P(T~-#~-i~= ~ h >ez(n ) i . o . )  

< P  max  > e Z ( k  2) i.o. 
\k  2 <=n<(k + 1)-" 

< P max T. > (e/2) z((k + l) 2) 
1 <n <(k+ 1) 2 

121 

i.o.) =0, (5.9) 

which implies (5.6). Thus, the proof is completed. 

Proof of Theorem 5.1. The proof is obtained from Lemmas 5.1 and 5.2. 

By the same method of the proof of Theorem 5.1, we have the following 
theorems 

Theorem 5.2. I f  the conditions of Theorem 4.3 are satisfied, then the conclusion of 
Theorem 5.1 remains true. 

6. Almost Sure Invariance Principles and Integral Tests of { T.} 
for Some @mixing Processes 

In this section, we assume that {~j} is a strictly stationary, @mixing sequence of 
random variables with function qS(n), and that h(x)= 1 for all xeI. 

{t/i}, defined by (3.6), is a strictly stationary C-mixing sequence of random 
variables with the same function r as that of {r Thus, if E lr]il4+~<oo for 
some 7 >0, then we can use the martingale approximation method in [8] and 
[10], from which we have the following: 

Let T be an ergodic one to one measure preserving transformation defined 
on the probability space (s d ,  P). Write L z (P) for the Hilbert space of random 
variables with finite second moment and define the unitary operator U on L 2 (P) 
by UX(co)=X(Tco) for X~Le(P ), ~o~(2. We define 

Yo= ~ [E{rblJ/g~ 
j=O 

Yk=gkYo, k>l  (6.1) 

and 

Z o =  ~ E{t/ j IJd '_-I};  Z k = U k Z o ,  k > l .  (6.2) 
j=0 

Then, for every non-negative integer k 

EYk=EZk=O, E JYk[4+~< ~ ,  ElZkl4+~'<~ (6.3) 
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and 

tlk= Yk -- UZk + Zk (6.4) 

and the sequence (Yk, jdk oo) is a stationary ergodic martingale difference se- 
quence. (cf. Theorem 8.1 in [8]). 

Now, we put 

Vn= ~ E{y/2[Y1 . . . . .  Y/-1}. (6.5) 
i = 1  

Finally, we define random process S =  {S(t), 0 < t <  m} by 

S ( t ) = y T k - k #  for t = k  (k>=O) 
(6.6) l linearly interpolated for t ~ [ k , k + l ] ,  k>0 .  

By the same reason in [8], we use a phrase "if necessary redefining the X'~s 
on a new probability space" will imply that the joint distributions of the X'~s are 
kept the same. 

Theorem 6.1. Let {4,} be a strictly stationary, alp-mixing sequence. Let J be a 
score-fimction having a bounded second derivative and assume that ~(n)=O(n-4). 
For ~ > O, let 

f~(t) = t(log log t)- ~, t > e e (6.7) 

and suppose that as t ~ 

IV,-n o-z[ =o(L(t))  a.s. (6.8) 

Then, upon redefining {S(t), 0__<t< ~ }  on a new probability space, if necessary, 
there exists a Brownian motion W =  {W(t), 0 < t <  ~ }  such that as n ~  

[S(t)-a W(t)l =o(t~(log log 0 (1-~)/2) a.s. (6.9) 

The following is a theorem concerning integral tests for {T,}. 

Theorem 6.2. Under the conditions of Theorem 6.1, we have the followings: 

(a) For every real function go, 0 < go 7 

P(S(n) > V,) ~p (V,) i.o.) = 0 (or 1) 

according as I(go) < ~ (or = ~),  where 

 (go)  go(t)ex = 1 / -  p ~ f - ) d t .  (6.11) 

(b) Let M,  = max [S(i)I. Then for every real function go, 0 < go/~, 
l <=i<=n 

P(M,<V,~{go(V,)} -~ i .o.)=0 (or 1) (6.12) 
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according as 11 (~o) < Go (or = or), where 

( 8 (P2 (U}~ 
11(~9)----- ~1 @2(b/)L/exp =2 ] du. (6.13) 

The proofs of Theorems 6.1 and 6.2 need following lemmas. 

Lemma 6.1. Under the conditions of Theorem 6.1 we have that 

S~l~(t) =~r W(t) + o(t~(loglog t) (1 ~/2) a.s. (6.14) 

as t-+m, where S(I)={S(~*(t), 0 < t <  c~} is a random process defined by 

SO~(t)=S~=(Tk-k#) if k < t < k + l ,  k>=O. (6.15) 

Proof The proof is analogous to the proof of Lemma 6 in [18]. 

Lemma 6.2. Under the conditions of Theorem 6.1 we have that as n--+oo 

s u p l  Tk-k#- ~=1 t~i [k~(l~176 e--'O" (6.16) 
k>.kl i 

Proof Let 

ck={k(loglogk)}-+, k>eq 

From the proof of Lemma 3.5, we have that there exists a 7 (0 < y < 1/3) such that 
for any e > 0 

( m ' h > e  ) P max Tm-m#-~=l  an +- =O(n-l+~). (6.17) 
\1 __<m<,, I = 

Thus, for any e > 0 

P(supck T k - k # - i ~  * r h > 2 e )  

< ~, P (  max 1) 2 g k - - k  # -- ~ /~i >g( kTt- 1)) 
k = [n�89 \k2<=m<(k + i=l 

m a x  
k= [n~-I 1 <m~(k+ i=1 

< M  ~ (k+ l )  ~=0(n-1/6)~0 
k = [17�89 

as n ~ oQ. Hence, we have the lemma. 
The proof of Theorem 6.1 is obtained from Theorem 4.3 in [8] and 

Lemmas 6.1 and 6.2, and that of Theorem 6.2 follows from Theorems 5.2 and 
6.3 in [-8] and Lemmas 6.1 and 6.2. 

For a more general score-function the following theorems hold. 
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Theorem 6.3. Let {~i} be a strictly stationary, @mixing sequences. Let J be the 
score-Junction defined in Theorem 4.3. Then, under the analogous conditions to the 
ones in Theorem 6.1, the conclusion in Theorem 6.1 remains true. 

Theorem 6.4. Under the conditions of Theorem 6.3, the conclusion in Theorem 6.2 
remains true. 

The proofs of these theorems are similar to those of Theorems 6.1 and 6.2 
and so are omitted. 

7. Some Concluding Remarks 

Remark 7.1. All the results in the preceding sections are concerned with scores 
a,,(i) defined by 

( i )  l<i<-n. a,,(i)=J ~ - ~  , 

But, we can prove the analogous results for more general scores a,(i). Firstly, 
Theorem 4.3 remains true if T, is replaced by 

T~ ~  ~ c,,is(~i)a,(i) 
i = 1  

where the scores a,(i) satisfying the following condition 

(C) For given scores a,(i) there exists a function J of the type defined in 
Theorem 3.2 for which the following relations hold: 

(i) lima,,(l+[un])=J(u), 0 < u < l ;  (7.1) 
n ~ o o  

(ii) for any e > 0 

q,=q,(e) =P a,(Ri)-J >e 4 0  (n--+co) (7.2) 

Ri<n 

r .=n -a.(n)--,O (n--,oo). (iii) - �89 (7.3) 

Secondly, Theorems 5.2, 6.3 and 6.4 remain true, if J(u) is replaced by the 
scores a,(i) satisfying the condition (C'): For  given scores a,(i) there exists a 
function J of the type defined in Theorem 3.2 for which (7.1), (ii') q, = O((log n)-1) 
and (iii') r, = O((log n)- 1) hold. The proofs of these assertions are easily obtained 
and so are omitted. 

Remark 7.2. In the preceding sections and Remark7.1, we studied the case 
where regression constants are defined by a continuous function h(x) (cf (1.5)). If 
{~i} is a sequence of i.i.d, random variables, we can consider the case where 
regression constants are arbitrary but bounded. More specifically, let {~i} be 
i.i.d, random variables with continuous dfF(x). Consider the simple linear rank 
statistics. 
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T , = i ~  1 "" c, s(~) J , n > 1 (7.4) 

w h e r e  c I . . . . .  c, are arbitrary bounded constants, i.e., [ci]<M o (i> 1) and ~ c 2 
i = 1  

= O(n). Then qj(j__> 1) (defined by (3.6)) are i.i.d, random variables with Et/ j=0.  If 
1 

J~5~ <6  <�89 and S IJ(u)12+Y< oo for some small 2 > 0  and 7=46 / (1 -26 ) ,  then 
0 

from Kolmogorov's inequality 

P max ~ cj >e  c 
\ 1  N m < n l j =  1 j 1 

" 1 E  r/ = < e z ~ c~ cj <M22/(2+r) (7.5) 
k j=l \ j= l  

and from the proof of Theorem 4.1 

P max T,~-# cj - cj e c/2 < M 2  2/(2+~) (7.6) 
\1<=re<n] i i = l  i 

where e > 0  is arbitrary and n is arbitrary large integer. Thus we have the 
following: 

(i) Let J be a twice differentiable score-function which admits the poly- 
nomial approximation stated in Theorem 4.3. Let ao = {Var(~/o)}~. If Z;, defined 
by 

/ ; k  ) /  ( n ) for t = 0  

Z:,(t) = ~ cz ~h ~o 2 c~ for t = kin (k = 1 . . . . .  n) (7.7) 
\ i = 1  / / \ i = 1  / 

linearly interpolated for te [ ( k -  1)/n, k/n] (k = 1,..., n). 

converges weakly to W,, then X',, defined by 

[ i  ( ) ) /  ( ) f~ , 
X',(t) = Tk'-l~ 2 c, G O ~ c 2 for t =- k/n (k = 1, 2 . . . . .  n) (7.8) 

\ \ i  = 1 / /  / \ i  = 1 

linearly interpolated for te [-(k- 1)/n, k/n] 
( k =  l ,  2, .. .  , n) 

converges weakly to W. 

(ii) Under the conditions of (i), for almost all co~O, the sequence of functions 

2 ' co), n-->3/o- 2 loglog a c i X,(t,  _ 
i 

is precompact in C o and its derived set coincides with the set K. 
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(iii) U n d e r  the  c o n d i t i o n  of  (i), the c o n c l u s i o n s  of  T h e o r e m s  6.3 a n d  6.4 
r e m a i n  true. 

The  proofs  of  (i)-(iii) are  o b t a i n e d  by  the  s ame  m e t h o d s  used  in  the  p receed ing  

sect ions  a n d  so are omi t t ed .  

R e m a r k  7.3. Le t  T*  be  a s imple  l inear  r a n k  stat is t ic  def ined  by  

T*= ~= c,,,J (7.9) 

where  % i = h(i/n + 1) (i = 1 . . . . .  n) (h e C) a n d  

R,*~ = ~ u ( r  ~j). (7.10) 
j = l  

Then ,  all  resul ts  in  the  p reced ing  sec t ions  (be ing  rep laced  T, by  T*) are  p r o v e d  
by  the  s ame  m e t h o d s  as the  c o r r e s p o n d i n g  ones.  S o m e  of  t h e m  are the  
ex tens ions  of  Stigler 's  resul ts  in  [16].  

If  ~ i ( i>1)  are i.i.d, r a n d o m  var iab les ,  c o r r e s p o n d i n g  resul ts  to R e m a r k s 7 . 1  
a n d  7.2 are also ob ta ined .  

Acknowledgement. The author would like to thank the editor and the referee for their useful 
comments. 
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