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Summary. Let {¢,} be a strictly stationary, absolutely regular process defined
on a probability space (Q, o, P), i.e., £/s satisfy the condition

Bm)=E{ sup IP(AIM2 )= P(A)}]0

Ae HF

where .#° (a<b) denote the g-algebra of events generated by &, ..., &,. (It is
known that {¢,} is absolutely regular if {¢,} is ¢-mixing, i.e.

¢p(n)=_  sup  [P(AnB)—-P(4)P(B)|/P(B).0.

Be #Q o, Ac ME

For some class of one-sample rank-order statistics, generated by ab-
solutely regular processes, we shall prove theorems concerning the following
problems under the assumption that &; has a continuous (not necessarily
symmetric) distribution function.

(a) weak convergence to a process {U(t): 0=¢r=<1} defined by U(t)
= [ h(s)dW(s),
0

(b) functional laws of the iterated logarithm, and
(c) almost sure invariance principles and integral tests.

Some of them are extensions of Sen’s results [(Ann. Statist. 2, 49-62.
(1974; Zbl. 273, 60005) ibid. 2, 1358 (1974; Zbl. 292, 60012)] and Stigler’s
ones [ibid. 2, 676-693 (1974; Zbl. 286, 62028)].

1. Introduction

Let {&, —oo<i<oo} be a strictly stationary sequence of random variables
which are defined on a probability space (©,«/,P) and have a continuous
distribution function (df) F(x), xeR, the real line (— o0, ). For a<b, let .#°
denote the g-algebra of events generated by &,,...,&,. As in [18], we shall say

0044-3719/78,/0043/0101/$ 05.40



102 Ken-ichi Yoshihara
that the sequence is absolutely regular if

ﬂ(n)=E{A51‘14£>w \P(A[A2 )= P(A)} 10 (1.1)

as n— oo. Further, we shall say that {£,} satisfies the ¢-mixing condition if

¢(m)=_  sup  |P(AnB)—P(4)P(B)|/P(B)|0 (1.2)

Be# o, Ac AP
as n— 0. Since f(n) S ¢(n), so if {£;} is p-mixing, then it is absolutely regular (cf.
[7D).

Next, let u(x) be equal to 1 or 0 according x is =0 or <0, and for every
n=1, let

=Y ulel=¢), 1sisn (13)
Consider the one-sample rank-order statistic

m R .
:"‘Zl cn,is(éi)‘](ﬁ), n%M_Z_l (14)

where J is a score-function, s(x)=sgn(x) and the ¢, ; are defined by a continuous
function h(x) on I=[0,1] as

i
= <i< >
Cp h(n+1> 1<ign, n21. (1.5)
If h(x)=1 for all xel, then we write T, instead of T, ,,, ie.
T,= ) —=). .
m i; s(€) <m +1) (1.6)

Assuming that {£;} are independent and A(x)=1 on I, many authors studied
asymptotic normality of n™#(T,~ny) and, recently, Sen [15] tried to prove the
classical invariance principle or weak convergence to Brownian motion pro-
cesses for {T,} under some weak conditions.

Sen [15] remarked that, in particular, the Wilconxon signed rank statistic
can be expressed as a von Mises’ differentiable statistical functional, but, in
general, this characterization is not possible for {T,}. For U-statistics and von
Mises’ functionals generated by a strictly stationary, absolutely regular pro-
cesses, the invariance principle was established by the author [18]. But, for {T}
generated by such processes, different proofs are needed.

On the other hand, Stigler [16] proved asymptotic normality of linear
functions of order statistics of the form n™ ") h(i/n+1) X ;.

In this paper, extending the previous results, we shall prove the following
under suitable conditions on J and f(n);
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(i) weak convergence for {T, ..} (Sections 3 and 4),
(i) a functional law of the iterated logarithm for {7,} (Section 5)

and

(iii) almost sure invariance principles and integral tests for {T,} (with h(x)=1
on I) generated by ¢-mixing sequences.

Some extensions and modifications of the above results are stated in Sec-
tion 7.

2. Preliminary Lemmas

In this section, we assume that {£;} is a strictly stationary, absolutely regular
sequence of random variables with df F(x). In what follows, we shall agree to
denote by the letter M, with suffix or not, some quantity bounded in absolute
value.

The following lemma is proved in [18] (cf. Lemma 1 in [18]).

Lemma 2.1. Let 6 be some positive number. Let g(x,x,, ..., x,) be a Borel function
such that

Fo gy, Xgs oo, X I P dF DXy, o X)) dF P x4y, ) EM (2.1)
R%

where F* and F®) are distribution functions of random vectors (§;,...,¢; ) and
(&, s 0s & Tespectively, and iy <iy <--- < If Elg(&, . &y G TP S My, then

ng(éilaéiza-..:éik)_jl"'jg(xl’ ces Xy Xipqs v X)
Rk
dFD(xq, ., x)dF P (x;, ;.00 x)]
SAMITTOBG, L 1)) . (22)

As a special case, if g(x{,x,,...,%,) is bounded, say, |lg(x,,x,,...,x)|=M,, then
we can replace the right-hand side of (2.2) by 2M, (i, . —i;).
For any real number x, define H(|x[} and S,(x), respectively, as

H(|x[)=F(]x[) = F(— |x]) (2.3)
and

5,00= Y ¥,
where

Yy =u(x|=IEN—H(x)) (=0, £1, £2,...). (2.4)

Then, the process {Y (x)} is a strictly stationary, absolutely regular sequence of
random variables with the same function f(n) as that of {£;} and for any x and j,
IY(x)| =1, EY(x)=0 and

EYP(x)=H(lx){1— H(|x])}. (2.5)
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Lemma 2.2. Let a(0<a<1) be fixed. Choose a number p (0<p <a). Assume that
{¢;} are absolutely regular random variables with B(n). If x is a number such that
H(x))=1—-n"% then

P(n™ IS, (x)| zt[exp,{ — (1 —p) (1 +2)/2}])

<M nt{e” M0t 77 B(nf)} (2.6)

X

where exp,(x)=n".

Proof. Choose an integer k=k,=[n"]+1, and write

S,(x)=U(x)+ -+ Ugfx) (2.7)
where
Ux)=Yx}+ Y, () 4+ + Y, (), 155k (2.3)

and m;=m, ; is the largest integer for which j+m;k<n. We note that
m.<m,<n'"?~1 for j=1,....,k and k<n. (2.9)
Thus, from (2.8)

P(n™ 1S, (x)| = t[exp,{ — (1~ p) (1 +2)/2}])

<P(n 7t 3 Uz o1 )1 +2))

= _Zl P(n~ " U x)| z tLexp,{ —(1— p) (1 +)/2}]). (2.10)

Let j(1=j<k) be fixed. Define 4; by
A;={1 s Y)Wyt Ay | Ztlexp, { —(1 = p) (1 —)/2}1}

and put

v V)= boif (Y1:---,ymj)€Aj
g 15500 Vmy 0 Otherwise.

Since {y;,;(x)} are absolutely regular with B(ik), so using Lemma2.1 (with M,
=1) repeatedly, we have

P(U{(x)| z t[exp,{(1—p) (1 —a)/2}])
= Eg(YJ(x)a cer Y}+mjk(x))
éig;n'jj"g(yl, s Ym)AF () ... dF(y,, ) +2m; (k)
=P(Z,(x)+ - +Z, (x)|2t[exp,{(1—p) (1 —0)/2}]) +2m; B(k) (2.11)

where {Z,(x)} are independently and identically distributed random variables
with the same df F(x) as that of the random variable Y;(x). So, from Theorem 1
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in [10]

PZ(x)+ - +Z, (x)|zt[exp,{(1—p)(1—x)/2}])
<M, e M,

Thus, from (2.10)~2.12), we have (2.6), which completes the proof.

For any n(n=1) and for any i (1£i<n), let

! v
Shom g = HOE)+1)

and
R, ;
o *
e, I
JFi

105

(2.12)

(2.13)

(2.14)

Lemma 2.3. Under the assumptions of Lemma 2.2, there exists an n,=ny(t) such

that

P(L, |25t [exp,{—(1 —p) (1 +2)/2}], H(EHZ1-n"")
SM n~ %P {e” M 40t 7P B(nf)}

for all n=ny and for any i (1<iZn).
Proof. Let n and i be fixed. Let B={v: 1 -n"*<v=<1},

i—[nP] 1 n
Gl = Z Yx) and [H=-—— 3 Y,
+1j=i+[np]+1

putting {{)(x)=0 if i—[1n*]<0 and {}(x)=0 if i+[n"]>n. As
2
A= Z [CIEN +2n7 077,
so for all n such that 3n!! 71 =92 >

2
the left-hand side of (2.15) = Z

where, for j (j=1,2), x is the indicator of the cw-set

{w: 1[P(E) z2e[exp,{— (1 —p) (1 +2)/2}], H(E])eB}.

From Lemma 2.1

Ex?< | PRIz 2tlexp,{—(1~p)(1+2)/2}])dF(x)+25(n")

Hi{|x|)eB

and so from Lemma 2.2

ExVSM n*{e M +n' "7 B(n")} | dF(x)+2B(n’)

H(|x|)eB

SMn e M2tpnt P P}y (j=1,2).

(2.15)

(2.16)

(2.17)
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Thus, from (2.16) and (2.17), we have (2.14), which completes the proof of
Lemma 2.3.

By the method of the proof of Remark 1 in [12], we can easily show the
following lemma.

Lemma 2.4. Let {£;} be a not necessarily strictly stationary, absolutely regular
sequence of random variables with f(n) and E&;=0. If for all m(<n) and x>0

P(S,—S,lzx) =3, (2.18)
then
P( max |S,|=22x)<2P(S, |2 x)+4- P(i 1z >+4 p(p) (2.19)
1=ms<n j=1

where S,= Y & and p=p(n) > as n > and p<n.
j=1

3. Weak Convergence Theorems for {T, ,} when J" is Bounded Inside 1

For a score-function J{(u) put

p=uF)=s(x) J(H(x]) dF (x)). 3.1

It is obvious that if the score-function J is square integrable, then |y} < co.
Let h(x) be a continuous function on I. Let T, ,, be defined by (1.4) and put

O 1;1 (n+1> (3.2)

For every n=1, let

Ms

Hpm=H

il

i

0 for t=0
X,0={(T, o~ )fon®)  for t=kn (k=1,....n)
linearly interpolated for te[(k—1)/n, k/n] (k=1,...,n), (3.3)

where ¢ is a positive constant. Then, the stochastic process X,
={X,(t): 0=t<1} belong to the space C=C(I) of all continuous function on I
with which we associate the usual uniform topology defined by the metric

d(f,g)= S {lf()—g@): f, geC}. (3.4)

Now, we shall prove the following theorem, which is an extension Theorem 1
in [15].

Theorem 3.1. Let {;} be a strictly stationary, absolutely regular process with B(n)
=0(n"*%. Let J be a score-function having a bounded second derivative. If o2,
defined by (3.7), (below), is positive and finite, then X ,, defined by (3.3), converge in
distribution in the uniform topology on C to the stochastic process U=
{U(1): 0211}, where
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Ut)= j h(s)dW(s), 0=<t<1 (3.5)

and W={W(t): 0=t=<1} is a standard Brownian motion process.

To prove Theorem 3.1, we need some lemmas.
Firstly, let

= [s0x) {u(lx] = €)= H(|x])} J'(H(Ix])) dF (x)
+ (G JHIEN - Es(E) JHAED (=0, £1, £2,..) (3.6)

It is obvious that Ex,;=0. Put

o’ =lim Var(Z 11)/ (3.7)

n— 1

if the limit exists. It is easily proved that if {£;} is a strictly stationary, absolutely
regular sequence with f(n)=0(m"*) and J” is bounded, then {y;} is a strictly
stationary, absolutely regular sequence of bounded random variables satisfying
B(n)=0(n"*) and the limit in (3.7) exists. (cf. [13]).

If the score-function possesses a bounded derivative, then by Taylor expan-
sion

R .
J m, i ¥ .J/ H .
where &% ; and (, ; are the ones defined in (2.13) and (2.14), respectively, and
k,, {x) is bounded, say |k, (x)|SM,, —oo<x<oo, Isizm. (cf. [3]).

We note that

1
“m+1

m;fiﬂmm:|‘m+l

So, from (1.4), (3.2). (3.6) and (3.8) and Taylor expansion, it follows that

‘ =l — Z(—’nlm’

m

=\ ¢ i[SENIES )+ L i T (EE )+ G2 ke AHIEDN}

=

—{J 503 (ulx| = 1&:) — H(x1)) J'(H(x]) dF (x) — s(Z,) J(H(Ifil))}]|

m

= Z cn,iS(éi){J(fi,i)_J(H(lfim}(
+ ,_i Cai[$(E) & i T (E0)

= sCo){ullx] — &) — H(bD} ' (H(Ix]) dF(x)

+M ) e, d G
i=1
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IngE]

=

i

Icn,il{lﬁi‘;l H(&DI- |J(H(Iél))l+ ClEn i~ H(|~fil)|2}

[ lewd 58 T EED
— [1506) ullx] — 1) — H(xD} J'(H(]) dF o)
Mo S Iyl 1%~ HOEN  d

i=1

+M, Z Icn,il Ciz

i=

< i Z lc,, ,I{IJ (H(ED) +1}

[IV |+— Z (€, - 1] 5G0) {us(lx] = &) — H(x)} J'(H(|x])) dF ()]

nyil m,i]
=1

+M, z Icn,i| Crznt (3.9)

i=1

where

Y Y cailSE) UGl —1E;) — H(EN} T (H(E])

m
m+1 1Zismigjsm

j*i
— JsGe) ulx] = 1&:) — H(xI)} J'(H(|x[)) dF (x)]. (3.10)
As ¢, |Emax{h(x):0=x=1}=|h| and u(x), s(x) and J'(u) are bounded, so

from (3.9) we have that for all m(Zn)
T tm— 2 Co i SV + My Y G2+ M, (3.11)
i=1 i=1
Lemma 3.1. Under the conditions of Theorem 3.1, the following relations hold:
ElV,P=0(1), EIV,)*=0(1). (3.12)
Proof. Let
8y, 2)=s() {u(lyl ~ =) — H{yD} J'(H(y])
— § s(x) {u(lx] ~ [zl) — H(xD} J'(H(|x])) dF (x).
Then
§8(v, 2)dF(y)=| g(y, 2) dF(z)= [ g(y, 2) dF(y) dF(2)=0

and so, using the same technique as in the proof of Lemma 3 in [18], we have
the desired relations.
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Lemma 3.2. Under the conditions of Theorem 3.1

- 1).
. ; ot (3.13)
E( Z Ciz)é{E Z Crznl } =0(m™%).
i=1 i=1
Proof. (3.13) follows easily from Lemma 2.1.
Lemma 3.3. Under the conditions of Theorem 3.1
R 2
lim E Z s(&)J ( +1) mu /(m62)=1 (3.14)

if o2, defined by (3.7), is positive and finite.

Proof. The proof is casily obtained from (3.2), (3.7), (3.11)«3.13) and (1.4) putting
Cni=1(0=1,...,m)

Now, we consider stochastic processes ¥, ={Y,(f): 0=t <1} defined by

0 for t=0
k
Y(t)= (Z c"!ini> /(an%) for t=k/n (k=1,2,...,n)
i=1
linearly interpolated for te[(k—1)/n k/n] (k=1,...,n). (3.15)

Lemma 34. Let Y, ={Y(1): 0=<t=1} (n=1,2,...) be random elements in C defined
by (3.15). Then, under the conditions of Theorem 3.1, Y;,—'@—> U.
Proof. For any n(nz1), let

0 for t=0
Z ()= (Z ﬂ)/anz for t=k/n (k=1,2,...,n)
linearly interpolated  for te[(k—1)/n k/n] (k=1,2,...,n). (3.16)

Since {#,} is a strictly stationary, absolutely regular sequence of bounded
random variables with B(n)=0(n"*%), so from Theorem?2 in [13], we have that

Zn—@—> W. Thus, from Theorem 1 in [11] we have the lemma.

Lemma 3.5, If the conditions of Theorem 3.1 are satisfied, then for any ¢>0
Pd(X,,Y)>e) -0 (n—>o0). (3.17)

Proof. To prove (3.17), it is enough to prove

1

p( max >3 ) S0 (n—cw) (3.18)

1=m=n

n oy — Z i
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for every £>0. In order to prove (3.18), from (3.11), it suffices to show that for
every >0

P(max |V, |>eon?) >0 (n—o0) (3.19)
1<msn
and
P( max ik (H(EN L, l}2>sani> -0  (n—o0) (3.20)
l=msni=1

From (3.12)

P( max |V,|>eon?)< z P(|V, | >ean?)

1smsn m=1

n

<(84 4 2 Z le|4=0(n~1) (321)

and from (3.13) (using the boundedness of k,, (x))

>80n2>

< i P(M1 i C,Z,,,,'>80‘n%>
m=1 i
smiesny 3B S af

=0(n"*logn). (3.22)

P( max

1<m=n

Z ko, AH(E) &

i=1

So, (3.19) and (3.20) hold. Thus, we have the lemma.

Proof of Theorem 3.1. Theorem 3.1 follows from Theorem 4.1 in [1] and Lemmas
3.4 and 3.5.

Define the score function J (1) by

n

T () J(u) if 0Zusn/(n+1),
W=\ Jnfn+1)  if nfn+1)<u<l.

If J(u) is twice differentiable, then J"(u)=J(u) (0Zu<n/(n+1)). If
I wIsMn*=°  (0=u=l) (3.23)

for some §(0<d<1), then we can prove the relation

P( max
1=m=n
by the same method used in (3.22). Thus, we can slightly extend Theorem 3.1 to
the following form.

m

Y. KHE) G

i=1

>ean%> -0 (h-o0) (3.24)

Theorem 3.2. If, among conditions in Theorem 3.1, the score-function J is replaced
by a score-function J* for which (3.23) holds, then the conclusion of Theorem 3.1
remains true.
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4. Functional Central Limit Theorem for {T, ,} when J is a General Score-
function

In this section, we shall consider a more general score-function.
1
First, we note that [ |J(u)[**?du<M for some y>0, then Eln|**7 <M where
0
y, is the random variable defined by (3.6).

Lemma 4.1. Let {n,} be a strictly stationary, absolutely regular sequence of random
variables with B(n). If En;=0 and Eln**'=i<oco and Y {f(n)}""?**" <o for
some y >0, then

n 2
E( 2 m) <M
i=1
where 1=2/2+7y).
Proof. The proof is easily obtained since from Lemma 2.1
[En; 1| S M{Elnol* 7} @ D{(i—j)} 2.

Let § be any number such that 0< 5 <3. Let the class #;={L} consisting of
functions L on I possessing the following properties:

(i) L is twice differentiable inside [0, 1)
(ii) L is nondecreasing, and
(iii) as u "1

(dP/du®) L) =0((1—u)~*77*%)  (i=0.1,2). (4.1)
1
It is obvious that for Le %, [ |L(u)]**? du <M where 0<y <36/(1—20).
o]

Theorem 4.1. Let {£,} be a strictly stationary, absolutely regular process with
1

function P(n). Let Je ¥ (0<5<3) be given. If [[Jw)|**"du<oo where y=44/
(1—20) and A>0 is sufficiently small and if 0

Bln)=0(n~ 502~ 42)

then for any ¢>0

P( max

1<m<n

#nm Z:anm

gerﬁ) <M, (n—>ow0) (4.3)

where M, depends only on ¢ and o, and ©=2/(2+y).

Proof. Let o=1—0/3 and define d as the smallest integer j for which «/<1/5
holds. For any n=1, let

A=A, ={u: 1-n"<uzl}
A=A, ={u: 1—n""<usgl—n""""} (j=2,...,d-1)
Ag=A, ;={u: 0Su<1—n""}. (4.4)
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Let y(u: A) be the indicator of the set A. For every n=1, we define functions
Kw=K, () (=1,....donl by

0 if 0gusl—n""
K,w)=K, {(w=1J(u) if 1—-n"*<usn/n+1)
Jn/(n+1)) if n/n+1)Susl. 4.5)

K w=K, (u)=J(u)y(u: A4) (=2,....d).
Then, for almost all ue[0,n/(n+1)) (n=1)

d d d
= Z_:l K, Ju= .;1 Kiw), J'(w)= -21 K7 (u) (4.6)
and
M, x(u: A)[exp, {G+i—08)e'}]
<(d9/du) K () S M, 7(u: A))[exp, {(k+i—8)2 "] .7

(i=0,1,2; j=1,...,d).

Since it is obvious that
E( =ty m Z c,, ,n)

so, putting n, = [exp, «’], we have that for any ¢>0

.
e

<Mndfen?)?=0(n"" (4.8)

P( max |T, ,~ thym— ch,m

1<=msno

:u’n m- Z cn,ini
i=1

for some r>0. Thus, to prove (4.3), it is enough to show that for any £>0 there

exists an integer N =N (g) such that for all n=N and for some © (0<t<1)

P( max

noEmz=n

T)‘I,m—:un,m— Z cn,i ni 28 n%> éMl /11' (49)
i=1

From (3.9) we have that

M"m chlrlll

i{cnﬂ(é (TEE D)+ i (G )+ G R (HACDN)

,Ll m Z Cn,inil
i=1
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=M, Y VA& ) = JH(ED)
i=1

d 2
+ 2 |V 4+ —
jgl [ e m- 1

3 I fu(xi-12)

~H ()} K (H () dF ) |

+ ) i lewd kD (H(ED) C2. (4.10)

i=1i=1

where VY and k), ,(H(/&]) are the ones obtained in (3.10) and (3.8) on
replacing J by K, respectively. We note here that if H(¢hed; j=1,...,d—1)
then H(|¢;))>2 and so

« _m—l 1 m
Gyt FUED+ — ST HEDSHOE).

Now,

M=

W&, d) = LH ()]

1

= Y (HED L) O)=3 Y S mt 1) Ky

j=1i=1

i

where for each i (i=1,...,m) Si=H(Ifil)—rci(H(lfiI)—f;'j,i) and k; is a random
variable such that |« <1. Since for each j (j=1, wnd=1)and i(i=1,...,m)

Ex(%;: A)=P;z1—n"*)SPH(E)21-n")sMn
so for each j (j=1,...,d—1)and i (i=1,...,m)
EK}(9) =[exp,{G—0) o/ }TEx(9;: A)<exp,{—8)oi™1}.
Let k, and k; be the integers such that 2" <n,<2%*! and 2%~ <p <21 Then

for each j (j=1,...,d—1) and >0

P( max i(m+1)_1K}(9i)g4en%>

noEmsn j=1

kyi—1 m
<y P( max ) Kj(9)=2"2¢ n%)
ji=1

k=ko 2ksm< 2kt 2

=(k,—k,) max P< max K}(gi)gzk-#zsn%)'
koSk =k 1smgok+l ;I

Let j (j=1,...,d—1) and k (k,<k=k,) be fixed. We note that K(3) is an

absolutely regular sequence of random variables with the same p(n) as that of

{¢;}. and for any v(Z2k+Y)
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Zk +1
P ( Y Ki(§)=2t e iﬁ>
i=v

2k+1
_P( Y IKi(%) —EK(9)l éZ"srﬁ)
) sk+1
<@'en)™! Y EIK(9)~EK)9)ISMyn™"
where y and M, are positive numbers which are independent on j, k and v.
Hence, putting p=[2"4], we have from Lemma 2.4 that

P( max Y K}(Si)éf‘“sn%)

1smg2k+l =
2k+l

s2p(| Y w60 E0)

3k k

+2% BRH+M,n 7 =0(n"").

>2ke ni)

As k; —ky=0(logn), so for each j (j=1,...,d—1)
P( max (m+1)“1K}(9i)g4an%> =0(@n"" (4.11)
noSmsn i=1

where 0 <y’ <.
On the other hand, for j=d, using the properties of Je.%;, we have that for
any >0

Y (m+1)"TK9)SM[exp,{G—0)}]<en?
i=1
and thus (4.11) also holds for j=d. Hence, for any ¢>0

P( max Z W& J,,(H(Ié,-l))|ésn%>—>0 (4.12)

as n— 0.
Since the sequence 69, defined by

0= s(x) {u(x] — &) — H(xD} K5(H(Ix]) dF (x),

is a strictly stationary, absolutely regular sequence of random variables with the
function B(n) satisfying (4.2), and E6Y,=0 and E|0’]* " < oo for some 3 >0, so

<Z 9")) =cm(l +o(1))

for some constant ¢ (cf. [12]). Thus, from the Bonferonni inequality
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gan%)

Ht
2, O

i=1

P( max 2(m+1)"!

nos=ms=n

<y P<(m+1)‘1 > 09, gsni>
m=no i=1
SM@EEn)™ Y m'=0m tlogn) (j=1,...,4d). (4.13)

Next, from Lemma 4.1 it follows easily that for all m=n,

E ]V,,f’31|2§MVar(170)§MO A
and so

P( max [V9|zen?)

(Pt Y EVORPEME  (j=1,..,4). (4.14)
m=1
Finally, let
n=exp, {2’77} (j=1,...,d).

Let (¥, ;i nosm=n} (j=1,....d) and {y¥,;: n,Sm=<n} (j=1,...,d) be col-
lections of random variables, defined, respectively, by

i 1< 2 (1 — j=1/9
. { i 1C,, 1 < (0g m)* [exp,, { ~(1=p)(1 +29 27 */2}] w1s)
o 0  otherwise
and
ST L |G, il < (log m)? [exp,, { — (1= p)(1 +a)/2}] (4.16)
X2m.i 0  otherwise ‘
where p=4/6.

Noting |{,, /<1 for all m and i, from (4.10) we have that for any j (1=j=d
—1) and for any m (no=m=n,_;_,)

S lead KO (HOED 2.
i=1

<11 Y, 205D 4,)

{(log ny*[exp, {§— )&~ —(1 —p)(1+2) o/ ~}]
(1=, Mexp, (G~ 0) e/~ 11} (4.17)
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Accordingly, for each j (1£j=d—1)

P( max Y e, (H(ED) c,i,i>2en%>

ngEm=ng-j-1 j=1

gP(nm S HHED: A, )ogn?

: [ex 1.9 ocj*1+éx—j ]>sn%

+P< max |k Z 2HED: A4, )X =290

ngEmzsn

~[exp,{G—9) o/ *}1ze né) =1 +1,, (say).

Since for any i and j (1Zj<d—1)
P(H(E)ed, )=PH(E)Z1—n"")SMn™*,

so forany j(1<j<d—1)

LsMnt S PH(E)EA, )(ogn)?

i=1

el 95

. . (1 6\ .
< M(log n)*[exp, —%—l—oaf“l—oc’—k(*—E) W —

2
=0(™")

where ¥’ is a positive constant.
On the other hand, from Lemma 2.3 and (4.2)

Z P(Ilhll Z 2(HED: 4, )

m=ngp

C (=P Mexp, {G—8) &/~ Y] zen?)

Mn™* % [exp,{(G~08)o'~*}] ]

m=no

IA

2 E{y(H(&D): 4, )=, )}

Z [expn {G=0)od™'}]

m=np

. mt —Hp{e“Mz(IOgm)z +mlr ﬁ(m”)}

<M[exp, {—§+E=0) o~ }1n; T 100 =0 (n )

Ken-ichi Yoshihara

(4.18)

(4.19)

(4.20)
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for any j (1£j=<d—1) and for some r”>0. From (4.19) and (4.20) it follows that

P( max o, [, (HOEDIZ, >zené>

noSMSEng-j-1 i=

=0(n™") 4.21)

for any j (1£j=<d—1) and for some r>0.
Similarly, for j (1=j<d—1) and for some r>0

P( S 3 lend L AHGENIE, ,zzm)

ng—;-1Emsni=1

gP(uhu S 1(H(E): 4,)(logn)*

i=1

exp, {G—8) /™ — (1 —p)(L+o)}] 26 %)
+P( max (B 'Y 2(H(ED: 4,))

ha-j-15msn i=1
4= )lew, (G- 2en
0w (4.22)

For j=d and for all m (n,<m=<nj it follows from Lemma 3.2.
m 2
E( 2. len il e, (H(ED) Cfn,i)
i=1

< |\h|| [exp, {2(G—0)«"}]- E (_Z C,i,i)
<M[exp, {(5—28)0%}]-m L. (4.23)

Since, from the definition of d, (5—248)a?—1<0, so

P( max i le il (K, (HED CmLEZSnZ)

noEmsn j=1

SMn[exp,{(5—26)«"}] i m'=0(n" (4.24)

m=ng

for some r>0. Hence, (4.9) follows from (4.12)4.14), (4.21), (4.22) and (4.24), and
the proof of Theorem 4.1 is completed.

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied. If h(t)
satisfies the Lipschitz condition

h(t,)—h(t)=Mqlt,—t;] (2, 5,€D), (4.25)
then
P( max |y ¢, gsn%> <M (n—>0) (4.26)
lzmznji=1

Jor any £>0 where T1=2/(2+7).
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Proof. Let

1
o5=1lim Var(z 11)

n—

Ken-ichi Yoshihara

(4.27)

If 6,>0, then from Theorem1 in [11], ¥,—2>U where {Y}, U are random
elements, defined by (3.15) and (3.5), respectively. Thus, noting ¢, <A?*, from

Theorem 1 in [4, Chap. 1, §3]

$ en )z %)

i=1

lim P( max

n— o 1sm<n

=1lim P( sup |U,()|=¢/o,)

n— O 0st=1

=P( sup |U(®)|z¢/o0)

0gr=1

<o2/e? j h2 (1) dt < M A2+,
0

Now, we consider the case where o,=0, ie.,

=E118+2 Z Erlon]:O.

j=1
As
Enon | SM X {BEN <M, 17j1200-0
and from (4.25)

Ic".j+i—cn,i| éMO]/(m + I)a

o5

SO

lIMg

2
nl”) ch;Eﬂo'f'z Z cnt nJE”OUJ i

1Zi<jsm

I
IIMg

( 2ZE17011,>

+2 Z Z cn,t(Cn,}+l—cn,i)En071j

i=1 j=1

S[hi?mEng+2 ). Enon,
i=1 i=1 j=m—i+1
m—1 m—i
+2 ”hH Z Z |cn jriT n,il |E’70”I,|
i=1 j=1

SIEMEY Y jo1oesd

i=1 j=m—i+1

+2 ||k My 7 Y G =M

i=1

(4.28)
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Hence, we have that for all m

m 2
E( Y Cn,i’%) <M
i=1

and so

2
Co,i m-) SMe 2 AN (4.29)

Thus, we have the theorem.

Theorem 4.3. Let {&} be a strictly stationary, absolutely regular process with
Junction B(n). Let J be a twice differentiable score-function which admits the
polynomial approximation using function in £; (0<5<3) as follows: For every
A >0 there exists a decomposition

J () =Lo(u)+ Ly (1) — L (u) (4.30)

where L is a polynomial and L,e ¥ (i=1,2) for which
1
[ AL @+ Ly )P} du<d (431)
0

and y=46/(1—20). Assume that h(t) satisfies the condition (4.25). If (4.2) holds and
o2, defined by (3.7), is positive and finite, then the conclusion in Theorem 3.1
remains true.

Proof. The proof easily follows from Theorems 3.1, 4.1 and 4.2.

Remark. If {¢;} is a sequence of i.i.d. random variables, in Theorem 4.3 we can
replace the condition (4.25) by a weaker condition that h(x) is continuous on I.
The proof is obtained from the proofs of Theorems 4.2 and 4.3.

5. A Functional Law of the Tterated Logarithm for {7}

In this section we assume that A(x)=1 for all xel.

Let Cy(<= C) be the space of continuous functions on I vanishing at 0, with
the uniform topology and for each we®, define the functions X*(¢,w) in C, as
follows:

X*(t,w)=X,(t,w)2loglogns®)~! (n=3/c? (5.1)

and X (¢, ) is the one defined by (3.3) with h(x)=1 for all xel. We denote K the
set of absolutely continuous functions on I with f(0)=0 and

}{f’(t)}zdtgl. ' (5.2)
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Theorem S5.1. If the conditions of Theorem 3.1 are satisfied, then for almost all
weQ, the sequence of functions {X*(t,w), n=3/c*} is precompact in C, and its
derived set coincides with the set K.

To prove Theorem 5.1, we need the following lemmas.

Lemma 5.1. If the conditions of Theorem 5.1 are satisfied, then almost all weX2, the
sequence of functions {Y*(t,w), n=3/a?} is precompact in C, and its derived set
coincides with the set K, where

Y¥*(t,w)=(2loglogne?)~*Y,(t,w) (5.3)
and Y (t, w) is defined by (3.15) with h{x)=1 for all xel.
Proof. For each we, let

Z¥(t,w)=2loglogns®)~*Z (t,0) (5.4)

where Z,(t,w) is defined by (3.16) with h(x)=1 for all xel. Since {#,;} are strictly
stationary absolutely regular and bounded, and satisfy the conditions of Theo-
rem1 in [13], so from the theorem we have that for almost all weQ, the
sequence of functions {Z*(z, w), n=3/a?} is precompact in C, and its derived set
coincides with the set K. Thus, from the definition of Y, (f,w), we have the
lemma.

Lemma 5.2. Under the conditions of Theorem 3.1

P(lim d(X*, Y*)=0)=1. (5.5)

R— 00

Proof. To prove (5.5), it suffices to show that for every ¢>0

P( T,— .~ Y, m|>ex(m) i-0->=0 (5.6)
i=1
where
y(n)=(2no?loglogn ¢?)t. (5.7)

From (3.11)~3.13) and the Bonferonni inequality

y P( max |T,—p,~ Y 1 >38x(k2)>
k=1

1Emgk? i=1

<MY ik H <o, (5.8)
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So, from the Borel-Cantelli lemma we have

P( T,—p,— . ;| >ex(n) i.o.)
=1
§P( max |T,—p,— Y n,|>ey(k?) i.o.)
K<ngk+1)? i=1
gP( max |T,—p,— Y n;|>(e/2) x((k+1)?) i.o.>:O, (5.9
1<ns e+ 1) =1

which implies (5.6). Thus, the proof is completed.
Proof of Theorem 5.1. The proof is obtained from Lemmas 5.1 and 5.2.

By the same method of the proof of Theorem 5.1, we have the following
theorems

Theorem 5.2. If the conditions of Theorem 4.3 are satisfied, then the conclusion of
Theorem 5.1 remains true.

6. Almost Sure Invariance Principles and Integral Tests of {T,}
for Some ¢-mixing Processes

In this section, we assume that {£;} is a strictly stationary, ¢-mixing sequence of
random variables with function ¢(n), and that h(x)=1 for all xel.

{n;}, defined by (3.6), is a strictly stationary ¢-mixing sequence of random
variables with the same function ¢(n) as that of {£;}. Thus, if E In|**? < oo for
some >0, then we can use the martingale approximation method in [8] and
[10], from which we have the following:

Let T be an ergodic one to one measure preserving transformation defined
on the probability space (@, &, P). Write L,(P) for the Hilbert space of random
variables with finite second moment and define the unitary operator U on L, (P)
by UX(w)=X(Tw) for XeL,(P), weQ. We define

Yo= _io [E{n;|.a° } —E{n;|.d L} eL,(P)

Y, =U"Y, k=1 (6.1)
and
Zo=Y E{nlatZL};  Z,=U*Zyk=1. (6.2)
=0

Then, for every non-negative integer k

EY,=EZ,=0, E|Y[**’<ow, E|Z/*'<w® (6.3)
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and
n=Y.—-UZ,+Z, 6.4)
and the sequence (Y,,.#* ) is a stationary ergodic martingale difference se-

quence. (cf. Theorem 8.1 in [&]).
Now, we put

V=Y E{¥2|Y,,... Y}, (6.5)
i=1
Finally, we define random process S={S(t), 0<t< 0} by

S(t)—{Tk—k'u for t=k (k=0)

" |linearly interpolated for te[k,k+1], k=0. (66)

By the same reason in [8], we use a phrase “if necessary redefining the X;s
on a new probability space” will imply that the joint distributions of the X's are
kept the same.

Theorem 6.1. Let {£,} be a strictly stationary, ¢-mixing sequence. Let J be a
score-function having a bounded second derivative and assume that ¢(n)=0(n"*).
For a=0, let

f®=t(loglogt)} %, t>e° 6.7
and suppose that as t — o0
V,—no*l=o(f,(t) as. (6.9)

Then, upon redefining {S(t), 0<t< o0} on a new probability space, if necessary,
there exists a Brownian motion W={W(t), 0<t< oo} such that as n— o

IS(t)—o W(t)|=o(t*(loglog )* ~¥*) as. (6.9)
The following is a theorem concerning integral tests for {T }.

Theorem 6.2. Under the conditions of Theorem 6.1, we have the followings:

(a) For every real function ¢, 0<@ /
P(S(m)>V,} o(V,) i0)=0 (or 1)

according as I(p)< oo (or =), where

I{e )— BQ <(p (t> (6.11)
(b) Let M, = max |S(i)|. Then for every real function ¢, 0<¢ /7,
1<iZn

P(M, <V {p(V)} ! i0)=0 (or 1) (6.12)
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according as I, (@) < o (or =), where

}0 L (“) (-%ﬁ) du. (6.13)

1

The proofs of Theorems 6.1 and 6.2 need following lemmas.

Lemma 6.1. Under the conditions of Theorem 6.1 we have that

SV =g W(t)+o(t?(loglog ) ~'?) as. (6.14)
as t— o0, where SV ={SU (1), 0<t< oo} is a random process defined by

SO =SV =(T—ku) if k<t<k+1, k0. (6.15)

Proof. The proof is analogous to the proof of Lemma 6 in [18].

Lemma 6.2. Under the conditions of Theorem 6.1 we have that as n— oo

sup{T —kp— anl[k (loglog k) ~#/2]~ }——>0 (6.16)
k>n
Proof. Let

={k(logloghk)} %, k=e"

From the proof of Lemma 3.5, we have that there exists a y (0<y<1/3) such that
for any ¢>0

m

T,—mu—Y 1

i=1

P( max

1sm=n

>80n~)—0(n*1”). (6.17)

>28>

T,—ku— i ni‘>s(k+1))

i=1

Thus, for any ¢>0
P{supc,
k>n
<> P max

k=[n%] KEmskh+1)2

<) P( max
k=[nZ]

T,—kp— Zm

i=1

k
Ti—ku—) n;

1smgk+1)? i=1

>e(k+ 1))

<M Y (k+1) F=0(n Y6)-0

k=[n3]

as n— o0, Hence, we have the lemma,

The proof of Theorem 6.1 is obtained from Theorem 4.3 in [8] and
Lemmas 6.1 and 6.2, and that of Theorem 6.2 follows from Theorems 5.2 and
6.3 in [8] and Lemmas 6.1 and 6.2.

For a more general score-function the following theorems hold.
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Theorem 6.3. Let {&;} be a strictly stationary, ¢-mixing sequences. Let J be the
score-function defined in Theorem 4.3. Then, under the analogous conditions to the
ones in Theorem 6.1, the conclusion in Theorem 6.1 remains true.

Theorem 6.4. Under the conditions of Theorem 6.3, the conclusion in Theorem 6.2
remains true.

The proofs of these theorems are similar to those of Theorems 6.1 and 6.2
and so are omitted.

7. Some Concluding Remarks

Remark 7.1. All the results in the preceding sections are concerned with scores
a,(i) defined by

i
N=J| — <iZn.
a,(i) (n+1)’ 1Z5ign

But, we can prove the analogous results for more general scores a,(i). Firstly,
Theorem 4.3 remains true if T, is replaced by

TO=Y ¢, 5()a,0)

i=1

where the scores a,(i) satisfying the following condition

(C) For given scores a,fi) there exists a function J of the type defined in
Theorem 3.2 for which the following relations hold:

(1) lima,(1+4+[un])=J(u), 0=u<l; (7.1)
(ii) for any >0
n R.
q,,:q,,(s)=P(n‘% Y {an(Ri)~J(;ﬁ)} >g)—>0 (n—0) (7.2)
Ri<n
(iii) r,=n"*a,(n) >0 (n >x). (7.3)

Secondly, Theorems 5.2, 6.3 and 6.4 remain true, if J(u) is replaced by the
scores a,(i) satisfying the condition (C): For given scores a,(i) there exists a
function J of the type defined in Theorem 3.2 for which (7.1), (if') g, =O((logn) ™)
and (iii") r,=O0((log n)~*) hold. The proofs of these assertions are easily obtained
and so are omitted.

Remark 7.2. In the preceding sections and Remark 7.1, we studied the case
where regression constants are defined by a continuous function h(x) (cf. (1.5)). If
{&} is a sequence of i.i.d. random variables, we can consider the case where
regression constants are arbitrary but bounded. More specifically, let {&;} be
iid. random variables with continuous dfF(x). Consider the simple linear rank
statistics.
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. - Rmi
T;= 3 ¢;s(&)J (m) nzl (7.4)

i=1
h

where ¢,,...,c, are arbitrary bounded constants, ie., [¢|]<M, (i=1) and Y ¢}

i=1

=0(n). Then #(j=1) (defined by (3.6)) are i.i.d. random variables with Ex;=0. If
1

JeZL0<d<3), and | |[J(w)|**7 < oo for some small >0 and y=45/(1—23), then
0

from Kolmogorov’s inequality
Y. ¢ -2—3< 2 Cf))
=1

j=1
n —1 n 2
g(ﬁ y c}> E( s cjn]) <M JHE*n (7.5)
J J

=1 i=1

P( max

1smzn

and from the proof of Theorem 4.1

Tw/,“lv‘(z Cj)_ 2 €ty

i=1 i=1

1

ga( Sn_: ciz)z) SMJHEED (7.6)

=1

P( max

1<mzn

where ¢>0 is arbitrary and » is arbitrary large integer. Thus we have the
following:

(i) Let J be a twice differentiable score-function which admits the poly-
nomial approximation stated in Theorem 4.3. Let o,={Var(y,)}*. If Z, defined
by

0 for t=0

Z()= <§ cinl) /O’O(i ci2>% for t=k/n (k=1,...,n) (7.7

i=1 i=1

linearly interpolated for te[(k—1)/n, k/n] (k=1,...,n).

converges weakly to W, then X, defined by

0 for t=0
k n 1
X ()= <E’—u<z ci)) /Uo(z cf) for t=k/n (k=1,2,...,n) (7.8)
i=1 i=1
linearly interpolated for te[(k—1)/n, k/n]
(k=1,2,...,n)

converges weakly to W,

(i) Under the conditions of (i), for almost all we®, the sequence of functions

{<2loglogaé Y cf) 7X;(t, w), ;@3/05}
=1

i=

is precompact in C,, and its derived set coincides with the set K.
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(iii) Under the condition of (i), the conclusions of Theorems 6.3 and 6.4
remain true.

The proofs of (i)—(iii) are obtained by the same methods used in the preceeding
sections and so are omitted,

Remark 7.3. Let T.* be a simple linear rank statistic defined by

n R*.
T* = J 2L
£ S el 19
where ¢, ;=h(i/n+1)(i=1,...,n)(heC) and
Ri =), u(&;—¢&)). (7.10)
j=1

Then, all results in the preceding sections (being replaced T, by T.*) are proved
by the same methods as the corresponding ones. Some of them are the
extensions of Stigler’s results in [16].

If £(iz1) are iid. random variables, corresponding results to Remarks 7.1
and 7.2 are also obtained.

Acknowledgement. The author would like to thank the editor and the referee for their useful
comments.
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