Skip to main content
Log in

Behavior of oxide scales on 2.25Cr-1Mo steel during thermal cycling. I. Scales formed in oxygen and air

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The acoustic-emission (AE) technique has been applied to study scale-damage processes during thermal cycling of a tube, preferentially between 600 and 300°C in air, oxygen, and air + 0.5% SO2. The AE measurements were accompanied by optical and electron-optical investigations on tube rings exposed to the same cycling conditions. During the first period of cycling, a scale rich in hematite is formed. It suffers compressive stresses during cooling. The result is a buckled multilayered scale with separated lamellae. The scaling rate is lower than under isothermal conditions. AE signals start after 175°C cooling. After longer exposure times, the scale contains an increasing amount of magnetite and becomes more compact. The scaling rate increases and is comparable to that under isothermal conditions. AE signals are already observed after 50°C cooling and are correlated with crack formation in the magnetite caused by tensile stresses there. The addition of SO2 to air enhances the crack-healing process due to higher Fe diffusion in FeS. The scale is more compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Baxter, R. C. Hurst, and R. T. Derricott,Werkst. Korros. 35, 266 (1984).

    Google Scholar 

  2. R. Rolls and M. Nematollahi,Oxid. Met. 20, 19 (1983).

    Google Scholar 

  3. H. E. Evans and R. C. Lobb,Corros. Sci. 24, 209 (1984).

    Google Scholar 

  4. P. Hancock,Werkst. Korros. 21, 1002 (1970).

    Google Scholar 

  5. R. C. Hurst, M. Davies, and P. Hancock,Oxid. Met. 9, 161 (1975).

    Google Scholar 

  6. C. Coddet, G. Béranger, and J. F. Cretién, inMaterials and Coatings to Resist High Temperature Corrosion, D. Holmes and A. Rahme, eds. (Applied Science Publications, London, 1978), p. 175.

    Google Scholar 

  7. A. Ashary, G. H. Meier, and F. S. Pettit, inHigh Temperature Protective Coatings (The Metallurgical Society AIME, Proceedings of a Conference in Atlanta, 1983).

  8. J. C. Baram, D. Itzak, and M. Rosen,Testing Eval. 7, 172 (1979).

    Google Scholar 

  9. C. Coddet, G. de Barros, and G. Béranger,International Congress on Metal Corrosion (National Research Council Canada, Toronto, Vol. 4, 1984, p. 66).

    Google Scholar 

  10. C. Coddet, G. de Barros, and G. Béranger, inCorrosion and Mechanical Stress at High Temperature, V. Guttman and M. Merz, eds. (Applied Science Publications, London, 1981), p. 417.

    Google Scholar 

  11. A. S. Khanna, B. B. Jha, and B. Raj,Oxid. Met. 23, 159 (1985).

    Google Scholar 

  12. H. Jonas and J. A. Golczewski,J. Nucl. Mater. 120, 272 (1984).

    Google Scholar 

  13. J. Stringer,Werkst. Korros. 23, 747 (1972).

    Google Scholar 

  14. P. Hancock and R. C. Hurst,Adv Corrs. Sci. Technol. 4, 1 (1974).

    Google Scholar 

  15. D. J. Baxter and K. Natesan,Rev. High Temp. Mater. 3/4, 149 (1983).

    Google Scholar 

  16. M. I. Manning,Corros. Sci. 21, 301 (1981).

    Google Scholar 

  17. C. H. Hsueh and A. G. Evans,J. Appl. Phys. 54, 6672 (1983).

    Google Scholar 

  18. T. E. Mitchell, D. A. Voss, and E. P. Butler,J. Mater. Sci. 17, 1825 (1982).

    Google Scholar 

  19. J. K. Tien, and J. M. Davidson, inProceedings of the Symposium of the TMS-AIME Meeting, Detroit, Michigan, Oct. 21–24, 1974, J. V. Cathcart, ed. (New York, 1975), p. 200.

  20. E. Metcalfe and M. I. Manning,The Spatting of Steam Grown Oxide from Austenitic and Ferritic Alloys, CEGB Report RD/L/R (1966).

  21. A. G. Evans, G. B. Crumley, and R. E. Demaray,Oxid. Met. 20, 193 (1983).

    Google Scholar 

  22. A. Norin,Oxid. Met. 9, 259 (1975).

    Google Scholar 

  23. W. K. Appleby and R. F. Tylecote,Corros. Sci. 10, 325 (1970).

    Google Scholar 

  24. J. Stringer,Corros. Sci. 10, 513 (1970).

    Google Scholar 

  25. C. H. Wells, P. S. Follansbee, and R. R. Dils, inProceedings of Symposium of the TMS-AIME Meeting, Detroit, Michigan, J. V. Cathcard, ed. (New York, 1975), p. 220.

  26. A. A. Pollock,Int. Adv. Nondes. Test,7, 128 (1980).

    Google Scholar 

  27. Y. Ikeda and K. Nil,Oxid. Met. 12, 487 (1978).

    Google Scholar 

  28. A. Rahmel,Mitt. VGB 74, 319 (1961).

    Google Scholar 

  29. A. T. Gorton, G. Bitsianes, and T. L. Joseph,Trans. Met. Soc. AIME,233, 1519 (1965).

    Google Scholar 

  30. M. I. Manning and E. Metcalfe,Steamside Spoiling from Type 316 Superheater and Reheater Tubes, CEGB-Report RD/L/N/15/75 (April 1975).

  31. J. Armitt, R. Holmes, M. I. Manning, D. B. Meadowcroft, and E. Metcalfe,The Spalling of Steam-Grown Oxide from Superheater and Reheater Tube Steels, EPRI FP-686, TPS, 76-655 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christi, W., Rahmel, A. & Schütze, M. Behavior of oxide scales on 2.25Cr-1Mo steel during thermal cycling. I. Scales formed in oxygen and air. Oxid Met 31, 1–34 (1989). https://doi.org/10.1007/BF00665485

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00665485

Key words

Navigation