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In the recent upswing of ergodic theory, symbolic dynamics has come to play an 
increasingly important role, both in proving general theorems and in providing 
concrete examples of dynamical systems with desired properties. The earliest 
examples of this type (Morse [211, 1921) are constructed by the use of sub- 
stitutions, and the idea of substitution dynamical systems was formalized by 
Gottschalk and Hedlund ([51, 1955). Their topological properties have been 
studied extensively by Gottschalk ([4], 1963), Kamae ([9], 1972) and Martin 
([15], 1971). On the other hand, measure-theoretic properties of substitution 
dynamical systems have only recently been investigated (Kakutani [7], 1967; 
Keane [101, 1968; Jacobs-Keane [61, 1969; Neveu [231, 1969; Coven-Keane 
[11, 1971; Keane [11], 1972; Klein [14], 1972). 

These results all deal with metric properties of substitution dynamical 
systems generated by substitutions of constant length. 

In general, metric properties of dynamical systems are of more interest for 
ergodic theory as well as more difficult to establish. In particular, the interesting 
case of substitutions of non-constant length has (with the exception of the 
classical special cases considered by Morse and Hedlund [221, 1940, and 
Kakutani [81, 1972) scarcely been touched. 

In [17, 18], it was shown that any substitution minimal set possesses a 
unique invariant probability measure, thus providing a canonical dynamical 
system associated with the substitution. In the author's thesis [19] ergodic 
properties of certain classes of substitutions of non-constant length were devel- 
oped, and this article contains essentially these results. 

A substitution 0 over a finite alphabet I is a map from I to ~) P. Here we 
n>2 

shall principally be interested in the case I = {0, 1}, and 0 can be represented as 

0-* 0 o aO0_a a 0 a 1 .. .  O: 
1 ~ aol all . . .  a~ 1 _ 1 

If a ~ = 0 and a~ = 1, then two one-sided infinite O-1 sequences 

O 0 = w O = w  o o o 
W 1 W 2 . . .  
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and 

O l = w  1 _ 1 1 - - W O W  1 W 1 . , ,  

can be generated in an obvious manner  by successive replacement of a symbol i 
by the block 0 i. 

In the first paragraph, we study the coincidence density d(O) of such a 
substitution, defined as the density of the set of integers k for which o _  w k -w~ .  A 
method is developed for calculating d(O), and this method suffices to calculate 
d(O) for the classes of substitutions which are studied in the sequel. It is a rather 
surprising fact that the coincidence density does not always exist. 

In the second paragraph, we study the class of substitutions defined by 

0: 
0 -----~ 0 n + l - p  1 0 p 

1--->10 n, n > p > O .  

It is shown by using a modified continued fraction expansion developed in [-12, 
13] that the associated dynamical systems have discrete spectrum and that all 
eigenfunctions are continuous. The proof  is rather complicated, but we have not 
succeeded in finding a simpler one. 

In the last section, an example is given of a substitution dynamical system 
with partly continuous spectrum. The methods here have been used sub- 
sequently by M. Dekking and he has been able to extend this result to a much 
larger class of substitutions. 

Many questions remain to be answered, and in [3] a systematic study of 
substitution dynamical systems and their topological and metric properties will 
be published. 

The author  is grateful to M. Keane for valuable advice in the writing of this paper. 

I. Coincidence Values 

A substitution 0 over a finite alphabet I is a map 0 from I to Q) I". 
n__>2 

The substitution 0 associates to each letter i~I  a block 0 i=  a~ a~ a i We " ' "  l i - -  1"  

say that 0 is of constant length if Ii = lj for all i , j e I ;  otherwise 0 is of non-constant 
length. 

If 0 is a substitution, then for any block b = b o b  ~ . . . b n _ ~ I "  we define Ob 
=OboOb 1... Obn_ 1. 

In particular, we may define the substitution 0 S for s > l  inductively by 
setting 0 s+ 1 i = 0(0 s i) (s > 1). 

The k th element of 0 S i will be denoted by 0 s i(k). 
Now let i e I  such that for some s >  1, the block OSi begins with the letter i. 

Then the block 02si begins with the block 0 S i, the block OaSi begins with 02~ i, 
etc., and we can define an infinite sequence O~i as the "l imit" of O"Si. This 
sequence will be denoted by 

�9 i i w i = 0 ~ i = % wl w2 .... 
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In this paragraph, we shall assume that t = { 0 ,  1} and that 00 and 91 begin 
with 0 and 1 respectively. Our goal is to study the subset of N defined by 

o =w~} and in particular we shall calculate the relative density of this {heN:  % 
set in certain cases. We call 

0 
d(0)= lim card{heN:  n < N  and w, =w~} 

N~oo X 

whenever this limit exists, the coincidence density of 0. 

1.1. Balanced Blocks and Balanced Substitutions 

Definit ioni .  The blocks b = b o b l . . . b m _  ~ and C = C o q . . . c , _  ~ are said to be 
equivalent (b ~ c) iff m = n and card {k: b k = 0} = card {k: c k = 0}. 

Lemma2.  Each pair b, c o f  equivalent blocks o f  length n admits a unique 
decomposition into a sequence o f  pairs o f  minimal equivalent blocks, in the 
following sense: 

1) There exist integers r> l and n o = O < n l  <n2 < . . .  <n~=n such that for  
each 0 <= t < r, the blocks 

bnt bnt + 1 " ' "  bn, + ~- 1 

and 

Cnt Cnt + 1 " ' "  Cnt + 1-1 

are equivalent, and 

2) The sequence n o . . . .  , n r is maximal with respect to the property 1). 

Proof. Define n 1 as the minimal number for which b o .... , b,,_ 1 and c o . . . . .  cn~- 1 
are equivalent, etc. 

Lemma 3. I f  b ~ c, then 0 b ~ 0 c. 

Proo f  Let k and n - k  be respectively the number of zeros and ones in b (and in 
c). If u o and v 0 are the number of zeros in 00 and 01 respectively, then the 
number of zeros in Ob (and in Oc) is Uo k + v o ( n - k ) .  

A similar calculation holds for the number of ones. 

Definition4. Let 0 be a substitution over I={0 ,  1} such that 00 and 01 begin 
with 0 and 1 respectively. We set n o = 0  and define r~ inductively for t > l  by 

nt =inf{n: n > n t _ l + l ,  wO w o . . .w  o w ~ W 1 1 
- -  n t - I  n t - l + l  nt 1 N  n t - 1  n t - l + l  " ' ' W n ~ - - l } "  

We distinguish two cases: 
Case 1. nl = oo. 
In this case, we say that 0 does not possess balanced blocks. 
Case 2. n I < os. 
In this case, Lemmas 2 and 3 imply that n t < oo for all t, and we say that 0 

possesses balanced blocks. 
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In case 2, we set 

^ wO wO ) t 
I =  { ~w~t_ 1 w~ [ . . . . . . .  1+1"'" ,~-1 " t > l  

W 1 W 1 �9 
n t - l + l  "" nt-1 

and we call the elements of [ balanced blocks for 0. It can happen that [ is finite 
or infinite. In case 1, we set simply [ =  ~. 

Lemma5.  l f  (bc)~f,, then Ob~Oc. 

Any pair of minimal equivalent blocks b', c' of 0 b and Oc given by Lemma 2 are 
b ~ ^ 

suchthat (c,)~I. 

Proof. I f ( b c ) ~ L t h e n b y d e f i n i t i o n b ~ c a n d h e n c e O b ~ O c b y L e m m a 3 .  Nowle t  

b" and c" be 0 - 1 - b l o c k s  such that w ~ begins with b"b and w ~ begins with c"c. 
Since Ow~ ~ and Owl=w 1, w ~ and w 1 begin respectively with O(b"b) and 
O(c"c). Moreover, by the definition of L we may choose b" and c" such that 
b" ,-~ c". Then b" b ~ c" c and 

O(b" b) = O(b") O(b) 

~ O(c") O(c) = O(c" c). 

If n 0 = 0 < n  , ... < n  r is the minimal equivalent decomposition of O(b"b) and 
O(c" c), then since O(b") ~ O(c'), the construction of Lemma 2 shows that for some 
t,n t is the beginning index of O(b) in O(b"b), and hence nt< ... <n r yields the 
minimal decomposition for O(b) and O(c). 

It  follows from Definition 4 that if b', c' is a pair of minimal equivalent 

blocks of O(b) and O(c) (given by Lemma2),  then eI .  
C ~ 

Corollary 6. I f  [~f~, then 0 induces a map 

0:[--, Uf" 
n>=l 

(b) 
where O is the minimal decomposition of Oc " 

If [ is finite, g will be called the balanced substitution associated with 0. 

Remark. g does not satisfy strictly our definition of "substitution", since 0"~'can 
be of length one for some f~f. 

1.2. Coincidence Density 

In this paragraph, we shall assume that 0 is a substitution over I = { 0 ,  1} such 
that O0 and 01 begin with 0 and 1 respectively, and also t h a t / i s  non-empty and 
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finite. If ~'oefis the first balanced block of the minimal decomposition of w ~ and 
w 1 (as described in Definition 4), then it is obvious that Oi" o begins with i" 0. 

Thus 0 ~ i'o=v)=u~0 k z ... exists, where ~ , E / f o r  each neW. For any [e/, we 
set 

card{nEN: n < N  and ~ , = / }  
d(/}) = lim 

N ~ o o  N 

A simple application of the Perron-Frobenius theorem (see e.g. [18]) shows that 
this limit exists for each i ) [  and that the convergence rate is exponential. 
Obviously d(/~ > 0  and ~_. d(/~ = 1. 

i~I 

In order to formulate our next theorem, we shall need the following notation. 

L e t { ' e [ w i t h [ - ( ~ )  a n d b = b o . . . b l _ l , C = C o . . . c l _  I. W e t h e n s e t l ( ~ = / a n d  

c( i~=card{n:O<n<I and b,=c,} .  

Theorem7. Let 0 be a substitution over I={0 ,  1} such that O0 begins with 0 and 
01 begins with l. I f  [ is non-empty and finite, then the coincidence density d(O) 
exists and is given by the formula: 

2e(0d(  
d(O) i~I 

ieI 

Proof Let (nt) be the sequence of Definition 4. 
bounded, and thus 

W n =Wn}  d(0)=l im card{nEN:n<n~ and 0 1 
t ~  ~ n t 

if the right-hand limit exists. Now 

card {neN: n<n  t and w , ~  _ w,1 } 

= ~c ( / ) ca rd{meN:  m < t  and u~m =/} 

and 

Since [ is finite, nt+ i -n~  is 

nt= ~l(i ' )card{mEN: m < t  and ~m= f}. 

Thus 

card {neW: n < n  t and w,~ =%}1 

~c({) card{meN: m < t  and ~m=[} 

F t(;) card{meN: m < t  and ~m=[} 
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and the latter expression tends to 

2 cr 
rd  

21(8d(i3 

as t tends to infinity. 

Theorem8.  Let 0 be a substitution over I = { 0 ,  1} such that O0 begins with 0 and 
( 0 ) ~  

01 begins with 1. I f  [ is non empty, finite, and if 0 = 0 eI, then d(O) = 1. 

Proof. Suppose O appears at place s o in ~. The block in ~, beginning at place 
So l~ ) and of length l~ ) is the block 0k(0), and thus: 

0 card {neN:  so l~ ) < n < (so + 1) l~ ) and w n 
l~ ) = l (k~N).  

But: 

ca rd{n~N:  sol~)<=n<(so+l)l~ ) and w,~ = wl} 

l(~ ) 

w n - w n } = ( s o + l ) c a r d { n e N :  n<(so+l)l(~ ) and o _  1 

(s o + 1) l~ ) 

0 =wl}  c a r d { n e N :  n<So l(~ ) and w, 
-So So 

and the latter expression tends to 

(s o + 1) d(O) - So d(O) = d(O) 

as k tends to infinity and thus d(O)= 1. 

Remark. We have O~[  iff "I ~ L 

1.3. Examples and Counterexamples 

In this section we shall determine [ and d(O) for some cases of substitutions on I 
--{0, 1}, In general, this seems to be a difficult problem, and it would be 
interesting in view of our  applications in II and III to have a method  for 
determining d(O) for any substi tution 0. 

The first case to be considered is when 0 is of constant  length I. According to 
[1], we separate substitutions into two classes, discrete and continuous.  

If 

0---~ ao a 1 ... al_ 1 
O: 

1---,bob1 ...bz_ l 
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then 0 is continuous iff a k +b k for all 0 < k  < I, and discrete if for some k, a k =b k. 
We recall that only the case ao--0 and b 0 = l  is being considered. (This is not 
really a restriction, since using the normal form of [1] we may always find 
another 0 satisfying this condition with the same orbit closure.) 

Proposit ion9.  I f  0 is of constant length I>=2 and if 00(1)=0 and 01(1)= 1, then 

i) d(O)= 0 if 0 is continuous 

ii) d(O)= 1 if 0 is discrete. 

1 for all n, so d(O)=0. If 0 is discrete, then Proof. If 0 is continuous, then w ~ 4= % 

card{n<tk: o 1 w, 4=w,} <(1-- 1# 

and this implies d(O)= 1. (See also [1].) 
In the case of constant length, the relation between O on f and d(O) is not as 

essential as in the case of non-constant length. It is not hard to see that if 0 is of 
constant length I with 00(1)=0 and 01(1)---1, t h e n / ' i s  finite and non-empty iff 
the number of ones in 00 is the same as the number of ones in 01. 

We now investigate the more interesting and difficult case of non-constant 
length. Let 0 be a substitution over the finite alphabet I. 

If i,j~I, we set 

li,~=card{k:O<k<=l i and Oi(k)=j}. 

The matrix M =M(0)=(/~j)i,~i is called the O-matrix. For any s > 1, if 

MS= 

then II~)= card {k: 0_< k_< II ~) and 0 s i(k)=j} where l} ') = Z/}}) denotes the length of 

the block 0 S i. j~x 
If we take I={0,1},  then the matrix M(O) has positive integral entries. 

Therefore its eigenvalues 22 and 22 are real and distinct, and the larger 
eigenvalue 21 is larger than 1. By replacing 0 by 02 if necessary, we may assume 
that 22 >0. (This changes ne i t he r / ' no r  d(O), since w ~ and w 1 remain the same.) 

We distinguish four cases: 

1.21 > i  >22=0 .  This means det(M) =0  and t r (M)=21.  
In this case, we can see that d(O) always exists, is rational, and there is a 

method for calculating d(O). Since we shall only need to calculate d(O) for the 0 
of Section III, we adopt a simpler technique which may not work for the general 
case. Suppose that 

12] 
Then there are three possibilities for 0: 

0-+01 0 ~ 0 1  
01: 02 :1  ---* 1010 1 -~ 1001 

0-+01 
03: l ~  1100. 
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In the case of 01 , we have 

; ) ( ;  01) ' (00) ' 

by Theorem8, d ( 0 0 = l  since 0=  (~)6[. Thus 

In the case of 0 2, [ remain the same and d(02) = 1. For 03, the situation is 
different. We have 

~ {(~ 1 ;)('o ~176 10) ('o ~ ~) 
o ~ o  ~ o  ~o)} 

( ;  1 01)'(01 0 ; ) ' ( ;  1 0 01)'(01 1 0 

A A ^ ^ = {&6, c ,d,e ,~g,~ with {'o=8. 

The calculation of d(03) can be simplified (also in the other cases) by identifying 
the pairs (8, ~), (6, 8), (d,f) and (~, ~). This yields 

~ ~ EEd 

E-~ 8J  

(where we have modified 0 3 and [ according to our identification). The matrix of 
03 is 

0 1 

0 0 

1 1 1 1 

The corresponding frequencies, lengths and coincidences are: 

d(a)=d(~)=d(d) =d(~)=�88 

~(a)  = ~(d)  = 1 t(a) = l (d)  = 3 

46)=0 1(6)=2 
c(~) = 2 l(~) = 4. 

This yields according to Theorem 7, d(03)-• - 3 .  
We note that these examples show that d(O) does not depend only on the 0- 

matrix, but also on the distribution of zeros and ones in 00 and 01. 

2. J~ 1 > 1 > 22 > 0. This means 0 < det (M) < tr (M) - 1. 
In this case, we do not know whether [ is finite, infinite or empty, or whether 

d(O) exists for a general substitution 0. We shall restrict our attention to the case 
where 
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Then the possibilities for 0 are 

O~ O"+l-p lOP 
O: 1-+ 10" O<p<_n. 

where 0 h =0... 0. 
k times 

If p = n, 

/'={& 0,1} with c/=(01 ;)={'o, 

and 
~--,aO"iO" 

O: 0--, 0 i0 ~ 
i--, i0". 

Thus 0el  and d(O) = 1. 
I fp=n-1 ,  

0 
/'={d, 6,0,~} withe/=(01 0 ~)=t'o, 6=(~ 10) 

and 

(): 

a__, aO. 60.- ~ oC'O.- ~ 
6__, aO.- i 60.- i 

O__, O~ i"0,,- ~ 
1"_, iO~ 

This yields again 0el  and d(0)---1. 
Finally, if O < p < n - 2 ,  we have 

-P  1 
t={c/,/~,0,1} with c/= (0"i 1 0,+l_p)=/o, 

oc'=(~ ;) ,  and 8=/0"-P 1 ] ' \  1 0"-P! 

O: e--, a(O"6)"-,- i O~ eO~ 
0_, 0.+~-,t0~ 

Here again, Oe/" and d(O)--1. Thus we conclude for any 0 with matrix M that 
d(O)  = 1. 
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If M is any matrix with positive integral entries and det(M)-- 1, then we can 
find at least one substitution 0 such that M(O)=M and d(0)= 1. We omit the 
proof since we shall not use this fact. 

3. 21 >22 = 1. This means det(M)= t r ( M ) -  1. 
In this case, we conjecture that I is empty or infinite. A calculation due to M. 

Dekking shows that if 

0---~ O0 1 
0 1 : 1 ~ 1 1 0 0 1  

and 

0 - ~ 0 1 0  
0z: 1 ~ 1 1 0 1 0 ,  

then d(01)= �89 and d(02) does not exist. Note that M(O1)=M(02). We also 
conjecture in this case that d(O) cannot be equal to 1. 

4. 21 > 22 > 1. This means det(M) > tr(M) - 1. 
We conjecture here that d(O) does not exist. The only thing we can prove is 

that if 

/oo=>/o1+2 

and 

/11 => 11o-t-2, 

then f is empty or infinite. We have not succeeded in calculating d(O) for any 0 
satisfying this condition. 

II. A Class of Substitutions with Discrete Spectrum 

In this paragraph, we consider the substitutions 

O----~on+l-PlO p 
Or: 1 ~ 1 0  ~ 

for O<p<n. As we have seen in 1.3, d(0p)= 1. This will enable us to prove that Op 
has discrete spectrum. 

In general, if 0 is a substitution over I={0 ,  1} and if 00 and 01 both contain 
0 and 1, then the subset 

X(O)={x~Ie: for all p<q, XpXp+ 1 . , .  Xp+qappears in some OsO} 

of I e is compact, invariant under the shift T (defined by (Tx)k=Xk+I), and for 
each x~X(O), the orbit Orb(x)= {TSx: se~,} is dense in X(O) (see e.g. [5])' 

By [17, 18], there is a unique probability measure #0 such that #o(X(O))= 1 
and T#o =#0. The spectrum of 0 is the spectrum of the unitary operator (which 
we shall also denote by T) induced by T on the space IL2(X(O),#o). The 
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substitution 0 has discrete spectrum iff IL2(X(0), Po) is spanned by the eigenfunc- 
tions of T. We shall prove the following result: 

Theorem 10. For any O < p <=n, Op has discrete spectrum. 

The proof is rather long and we shall separate it into several parts. 

IL l .  The Sturmian Case 

If p = n, that is, 

0 ~ 0 1 0 "  
0.:  1 ~ 1 0 "  ' 

it is not hard to see that the substitution 

0 ~ 0  "+1 1 

7: 1-* O" 1 

satisfies X(O,)=X(q) and #0 =# , .  (In general, if the two blocks 00 and 01 of a 
substitution end with the same symbol, we may "transfer" this symbol to the 
beginning of the blocks without changing X(O) or P0.) 

Let 

Then the characteristic polynomial 2 2 - (n + 2) 2 + 1 of M admits roots 
21 > 1 > 2 2 > 0, with 21 , 2 2 irrational and 

1 - ( n + l ) 2  k 
(,) 2 k -  (k = 1, 2). 

1 - 2k  

We consider now the compact space Y=IR/2g, provided with normalized Haar  
measure v. The transformation 

S: Y - + Y  

defined by 

S y = y +  22(mod l), 

satisfies Sv = v, and the spectrum of the dynamical system (Y, v, S) is discrete with 
eigenvalues exp(2 ~z i k 2z), k ~  ([8]). 

Proposition II .  There is a continuous map ~o: X(tl)--~ Y such that p o T = S o p  and 
such that (p p ,=  v. Moreover, {yEY:card~o- l (y)>l}  is countable, and 
card q0 1 (y) < 2 for each y E Y. 

Proof Let w~X(tl) be the point for which Wo=0, w 1 =1, and w= q w.  A simple 
calculation using (,) for k = 2  shows that wt=0 if St (0)e[0 , (1-22)[and wt= 1 if 
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St(0)e[ 1-2~2, 1 [. Since the orbit of w is dense in X(t/), for any x~X(~l), we may 
find a sequence of integers t k such that x = lira T tk w. 

k ~ o o  

Then lim tk22(mod 1) exists, and if we set (p(x) -- lim tk22(mod 1), then ~o has 
k ~ c o  k--+ oo 

the desired properties. 

Corollary 12. I f  p = n, then 0 v has discrete spectrum. 

This result is essentially contained in the results of Hedlund and Morse on 
Sturmian sequences (see [221). 

See also [7, 8]. 

11.2. Martin's Result 

In the case O<=p<n, we shall need a result given in [16]. Let Y=IR/~ ,  let 2=2~2 
be the smaller root of , ~ 2 - ( n + 2 ) 2 +  1 =0, and denote by S the rotation 

S y = y + 2 m o d  1 (y~Y).  

Theorem 13 (Martin [16]). There exists a continuous map h from X(Ov) to Y such 
that 

h(Tx) = S h (x) (x ~ X (Op)). 

Our procedure in the following will be to show that h is one-to-one on a set 
of measure one, so that h actually represents an (almost-continuous) isomor- 
phism between (X(0p), T) and (KS). It then follows immediately that 0p has 
discrete spectrum. 

We define w=w~176 by setting 

w = (  . . . .  w_l,Wo,Wl,...) 

with 

(Wo,Wl,W 2 . . . .  )=  lim 0~(0) = 0  ~+I-p 1 0v... 
s ~ c o  

and 

(..., w_ 2, w_ ~) = " l im" 0p(0) . . . .  0 n+ t-P 1 0 p. 
s ~ c o  

By composition of h with a rotation of IR/Z, we may obviously assume that the 
h of Theorem 13 satisfies 

h (w) -- 0 ~ IR/Z. 

We remark that the result of Martin applies to a much more general situation, 
but that his methods yield little information concerning non-continuous 
eigenvalues. 
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II.3. Continued Fraction Expansion 

In this section we define a symbolic system (O, ~) and relate this system to the 
rotation (Y,, S), where S y = y + 2  and 2 is the smaller root of 2 2 - ( n + 2 ) 2 +  1 =0. 

Details of the proofs can be found in [13]. Since 

1 
2 -  

n + 2 - 2 '  

we have the following continued fraction expansion for: 

1 
2 -  

1 
n + 2  

1 
n + 2  

n + 2 - - .  

Consider a sequence 

(col,co2, ..., cok)~ { 0, 1, ..., n+  lff. 

Such a sequence will be called admissible if it contains no block of the form 
n + l  nJn+ l = n +  l , n , n , . . . , n , n +  l , j>O. 

jtimes 
We set 

~={co=(coi,co2 ... .  ): 0 < c o k < n + l ,  

((oi,..., co O admissible for all k > 1} 

Obviously, O is a compact subset of {0, 1,..., n+  1} N. 
A map T: g?--+ f2 is defined by setting 

v(co) = ( o l  + 1,092, co3' "' ") 

if (COl + 1, C02,CO3, " ' )  is admissible, and by setting -c(co) be the first admissible 
element of f2 following co in the lexicographical ordering otherwise. This defines 
the pair (f2,z). We remark that z is injective, z (O)=O\(0 ,0 ,0 , . . . ) ,  and z is 
continuous except at c5 =(n, n, n,...) (see [13]). 

Now define ~: O-+ lR/2g by 

~(co)= ~ % 2 ~. 
k=l  

Theorem 14 [13]. a) 7c is continuous, onto, and rcoz=Sorc, 

b) ~ is one-to-one on ~- l(1R/2g-292), 

c) I f  [~1 . . . .  ,c~]={co~(2: coi=~i for l<i<_k},  

then ~z([cq . . . .  , %]) is an interval in lR/2g and 

v(~([cq,..., ~kS)) 

takes one of the two values 2 k or 2k(1 -2).  
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Next  we consider the orbit  of  the point  05=(0,0 ,0  . . . .  ). By the definition of 
z, zk05 (k>O) are points  of the form (co,,co 2 . . . .  , coj, 0, 0, 0, ...), and all points  of 
this nature  belong to the forward orbit  of  05. In part icular,  the point  

050)=(9,0,0, ..., 0 &  0, 0, . . .)  
(j-- 1)times 

corresponds  to an integer which we shall call Cj. That  is, rcj 05 = 05(j). It  is easy 
to see that  

C 1 ~ 1  ~ 

C 2 = n + 2  

and 

Cj+l=(n+2) C j -C j_  1 (]>= 1). 

L e m m a  15. The sequence Cj 2 j is bounded. 

�9 1 
Proof. Obviously,  Cj = a 2 J + b ~  for some constants  a and b. 

Thus  CjRJ=a.~2J +b<[al+lbl. 
It  follows also f rom the construct ion in 1-13] that  C j 2 = 2 J m o d l .  Hence  

Cj 2 ~ 0 m o d  1 and 

7~((D)= ~ O9j2J= ~ ogjCj.~. 
j = l  j = l  

For  o9 of the form (o91,.-. ,o9j,0,0,0 . . . .  ) this just  means  

k ~ %Cj 
~(~o) = Y~ ogj c j ,~  = s J: ,  (0)7 

j=l 

which also follows f rom the definition of the Cjs. We shall need also the 
following notat ion.  Let  f i e lR /Z -Z  2. By T h e o r e m  14b), there exists a unique o9 
=(o91,o92, . . . )eO such tha t  7t(og)-=fl. We set 

m--1 
~m = Y~ ~j cj  (m >__ 1). 

j= l  

Then tim is a non-negat ive  integer and 

lira S~(0)  = ft. 
rn~oo 

11.4. A Null Set in f2 

In  this section we shall p rove  a technical l e m m a  necessary for the p roof  of 
T h e o r e m  10. 

Let  N = {c~ef2: {k: co k =Ok+ 1 = 0} is finite}. 
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Lemma 16. v ( ~ ( N ) )  = O. 

Proof If we set 

No={coef2:00 does not appear in co}, 

then by the definition of z,N~_ U zS(No) �9 
s>O 

Thus it suffices to show that v(n(No))= 0. 
Consider now a cylinder set 

[~1 .. . .  ,ak] = {CO~f2: coi=c h for 1 <_iNk}. 

Let N k denote the union of all such cylinders of length k with the property that 
no two successive zeros occur in el,  ..-,C~k and cq, ...,~k is admissible. Then for 
each k, 

No ~_ Nk, 

and hence 

v(n(No)) ~ infv(~(Nk)). 
k 

We shall calculate the number of cylinders in Nk. Let pk,qk,rk,Sk denote 
respectively the number of cylinders [e l , . . . ,  C~k] in N k such that c~ k is 0, i, n, n + 1 
(where i denotes any symbol with 1 _< i < n - 1). Then 

p l = l ,  q l = n - 1 ,  r1=1, s l = l  

and 

p 2 = n + l ,  q2= (n+ 2) (n -1 ) ,  r 2=n+2 ,  s 2 = n + l .  

Moreover, for k > 1, 

[i nl q k + l / :  n 1 - 1  n i l  

r k + l |  1 1 
sk+~J 1 0 

n -  1 qk 
1 r k " 

1 Sk 

The first three lines of this matrix are obvious; the fourth line is obtained by 
noting that 

k--i 

Sk+ l = p k + q k + r k -  ~ Sj, 
j = l  

and by the corresponding matrix for k - 1 ,  one gets 

rk=pk_ l +qk_ l +rk_ ~ +Sk_ l, 

Sk = P k -  1 + q k -  1 + S k -  1 

and 

rk - -  Sk = rk_  1 �9 
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Hence 

k--1 

r k - -  2 S j = S k  
j = l  

by induction. 
If we now calculate the characteristic polynomial of the above matrix, we get 

p(~) = ~(~3 - ( n  + 1) 4 2 - n  ~ + 1). 

I f ~  is the larger root of 2 2 -  (n + 2)2 + 1 = 0, then one finds that P =~  > 0; 

since P(0)>0  and P(1)<0,  this implies that the largest root ~o of P(~)=0 
1 

(positive by the Perron-Frobenius theorem) satisfies Go <~. 

By Theorem 14c, each cylinder [-~1,..., C~k] of Nk satisfies 

v(~ (E~  . . . .  ,~k]))--<;A 

Since there are asymptotically K. ~k such cylinders, we obtain 

v(~(N~)) <__ K .  ~o " ;~ , o. 
I; ~ oo 

11.5. Subsets of N Related to Op, tl and 0 

We recall that t/is the substitution defined by 

0 ~ 0  n + l  1 

t/: 1--* 0n 1. 

If we consider t/~176 ~f(t/~176 o v 1 v2..., then we see that t/~176 is made 
up of a sequence of blocks of the form r/s(0) and r/s(1), for any fixed integer s >  1. 
Suppose that 0=ko  <k l  <k2 < k 3  < . . .  is the sequence of integers such that for 
each j, 

~)kj Idkj + 1 " �9 " l)kj + 1 - 1 

is either ~s(o) or ~s(1). We then set 

Yis - {ko, kl, k2,...}. 

In the same fashion we define ~ for s > l  and for the substitution 
Ov(O<p <n), by decomposing Op(O) into its blocks 0~(0) and 0~(1). 

Our purpose in this paragraph is to relate the sets ~ff and ~*  with the sets 5~ 
defined by 

5~={k~N:  k =  j=s+l ~ cojCj, co=(coj)~2,{j:co~=gO}finite}(s>=O). 
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c P Lemma 17. For any s > 2, we have ~ _  Ns-1. 

Proof 1. ~s ~- ~*. 
We recall that l~ ) denotes the length of the block rfl(0), and l] s) the length of 

t/~(1). Since 

~]s(o ) =~s - -1 (0 )  ~]s-- 1(on 1) = ~ff- 1(0)t/s(1) 

and 

~]s+ 1(0 ) = [~s(O)]n+ 1 ~f(1), 

we have 

l~?= l~ + 1~ + llS~, 

l~+ 1) =(n § 1)l~)+l~ s). 

This yields the recurrence relation 

% 

with 

1(o~ = 1, l(~)=n+2. 

Thus we see that for each s>0 ,  1~)= Cs+l, where C~+ 1 is the number Defined in 
II.3 (by the same recurrence relation). 

Any element in ~ is of the form 

k = i coj Cs. 
j = s + l  

If t = s + l ,  that is if k=cos+ 1 Cs+l, then since Cs+l=l~) and c o s + l < n + l ,  and 
since ~fl~ begins with n + 1 blocks tfl(0) followed by one block t/s0) we see that 
k ~ * .  

Moreover, k e ~ *  corresponds to the beginning of a block ~/s(1) if and only if 
c o s + l = n + l .  Now suppose that t = s + 2 ,  that is, k=cos+ 1 Cs+l+cos+2Cs+2 

' * and is the beginning of a block ~/s+l(0) or =cos+l Cs+l+k'. Then k e ~ s +  1 
~7s+1(1) in r/~176 the latter occurring only if cos+2=n+ 1. 

Now 

~fl+ ~(0) = ~s(o) ~ ( 0 )  . . .  ~f(O) ~/s(1), 
(n+ 1) times 

so that if k' is the beginning of a block t/s+ 1(0), then k is the beginning of a block 
~/s(O) or tf(1) (the latter only if cos+l=n + 1) and k~N*. If on the other hand k' is 
the beginning of a block ~s+l(1) then cos+l <n  (since co must be admissible) and 

tf + ~(1) =,~f(O)...~s(O) uS(l). 
ntihaes 
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Therefore k=k '+cos+ 1 C,+, is the beginning of a block t/s(0) or rf(1) (the latter 
only if cox+, = n+  1), and keN*. 

Continuing in this fashion, we have ~_c  ~*.  

g~ c P 2. N , + , _ N ~ .  

We use here a method similar to that of I) to compare the sequences t/~176 
and 0~~ As in I), we defined a balanced substitution t/* associated with ~/and 
Op by setting 

( ~(o) ~ = [o"+* 1 ) 
a=\op(o)] \0 "+*-p 1 0 p '  

b=ff/(0) )=(01"+1 1 ) 
\Op(1) 0 0 "+1 ' 

C = /0 n+l 1 ), 
( t / ( O )  O) D_ \ On-p 0 p + I  
\ -  0g0) 1 

\-  Op(O)! 1 OP)" 

(Note that a, b, c and d consist of pairs of equivalent blocks of the same length, 

but for this purpose we have not decomposed \0~(0)1 into minimal balanced 

blocks.) Now set I * =  {a, b, c, d} and define q* on I* by 

a__+ an+ l - p  b cO- l d 

b-+ b c" d 
r/*: c ---~ a"- P b cP d 

d ~ a " - e b c  p-1 d. 

 hen fo. each ,* - -  we hav.  

t/*(i*) = (q(A) 
\O~(B) l" 

Therefore 

[ ~ ( o ) \  
~* ~ = tO;(O))--(XoXlX2..,) = x  

with 

x~= (Y~t, x~eI*. 
\zi/ 

Since for any s > 1, we have 

n*S(x) = x = \OS(zo) I \ O ; ( z O l " "  
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and since Yi is either t/(0) or t/(1), we see that this decomposition of q*S(x) 
corresponds to the set * Ns+l. On the other hand, the elements zl are finite 
sequences of zeros and ones, so that O~p(zi) is a sequence of blocks of the form 
0~(0) or 0~(1). Thus the same decomposition corresponds also to a subset of the 
set Nv, and hence * a p Y~s+l - N s .  

II.6. A Null  Set in Y 

The last preparation for the proof of Theorem 10 is a technical result. We recall 
that w ~ and w 1 were defined in I) for 0; as 

w o = 0~~ 

w 1 = 0;~ 

It was proved there that the coincidence density d(0v)=l for each of the 
substitutions Op, 0 < p < n, and that the convergence to d(Ov) is exponentially fast. 

Let f leY=IR/2g and consider the sequence of positive integers /~,, cor- 
responding to fl as defined in II.3. For each m, let k,, be chosen with I kml 
minimal such that 

wO ~ W  1 #m+km § #~+k~" 

Now set 

Yo = {/?~ Y: lim inf [k~ I < oo }. 
m ~ o o  

Lemma 18. v(Yo)=0. 

Pro@ By II.3 and [13], the points 0, )., 22 .. . .  , ( C ~ - 1 ) 2  divide Y into C~ 
intervals Ij of measures 2 m or 2 " ( 1 -  2). Let r be a positive integer. Then 

Yo= 0 {/~eY: l iminflk~l=r}.  
r=O m~oo 

If we consider now for fixed r and m the set 

{ p e Y :  IkmI__<r}, 

by the definition of k m and because tim is constant on each interval I j, we obtain 

f s:O<-<_s<Cm, w~ 
ca rd ( fo r  some ON[t INs  ( + r  

v({/~e Y: Ik.,I _-<r)_-<~. m" 
C~ 

card{s: O~___s<Cm, o 1 Ws #ws}+r ~ ft m" r. 
- -  Cm 

Since Cm-+ oo exponentially and since 

card{s: 0_<s< C~, W~ =l=w 1} 
- C m  * 1 - d ( O v )  = 0 

exponentially (by I.), we conclude that v(Yo)=0. 
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11.7. Proof of Theorem 10 

We first show that if fieY is such that fiCYo (see II.6), fiCrc(N) (see II.4), fiCZ2 
(rood 1), and if limnk2=fl, then lira T"~w exists, where w =w  ~176 as in II.2. Let r 

k ~ o o  k--+ oo 

and s be fixed integers > 2. Then lim n k 2 = fl implies that for sufficiently large k, 
k ~ e o  

nk- L e ~ .  By Lemma 17, we have n k - L e N s  e_ a. If we write nk = (nk-/}~) +/~, we 
see that the symbol wa~ occupies a place in the sequence w which is /}s to the 
right of the place n~-fl~, and, in w, the place nk--fis is the beginning of a block 
of the form 0~-1(0) or 0~-1(1) (since nk-fi~eNse_ 1). Since flq~7Z 2 mod 1, we have 
/~ ~ oo as s---, oo. Moreover, if s is such that co s_ 2 cos- 1 = 00, then 

s - - I  s - - 3  

L:  E E 
i = 0  i = 0  

and it follows easily that 

l ( l S - 1 ) - / ~ m  and l~-l)-/~s--+oo as s-+oo. 

Now choose a subsequence su-~ oo such that cosu_ 2 0 ~ ) s u - - 1  = 00. This is possible 

because /3= ~, co~2sC~z(N). Then choose u such the number ks, defined in II.6 
S = 0  

corresponding to /~ satisfies Iks,]>r. This is possible because f/CYo. Finally, 
choose K=K(u,s) such that if k>K, then n k - ~ s e ~ .  It follows now for u 
and k > K that the blocks 

Wnk-r, Wn k r+l~...~Wnk+r--l~Wnk+r 

do not depend on k. Therefore any two accumulation points of the sequence 
T"kw agree in the coordinates - r , . . . ,  + r. Since r was arbitrary, lira T"kw exists. 

k ~ o o  

Now let h: X(Op)-~ Ybe the homomorphism of II.2, with h(w)=0, and set 

Y= Y \(Yow~(N)w2~ 2). 

Then by Lemmas 16 and 18, v(Y)=l .  If fleY and if xeh-l(fl), then there 
exists a sequence nk such that T"kw--~x (because X(Op) is minimal) and the 
corresponding sequence nkAeY tends to /~ (because h is a homomorphism). If 
now/~e Y,, then h-1(/~) must consist of a single point, since any sequence nk such 
that nk2-~/~ will make T"kw converge. Therefore h is one-to-one on a set h- 1(~) 
of measure 1, and hence 0, has discrete spectrum. 

III. A Substitution of Non-Constant Length with Partly Continuous Spectrum 

We have seen in the preceding section that a class 0p of substitutions of non- 
constant length have discrete spectrum. It is natural to ask whether any 
substitution of non-constant length has discrete spectrum. In this paragraph, we 
give an example of a substitution with partly continuous spectrum. 
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We consider the matrix 

and its corresponding substitutions. Among them, only three do not yield 
periodic orbits. They are: 

0---,0 1 
01: 1 ~ 1 0 0 1 ,  

0---~0 1 
02: 1 ~ 1 0 1 0 ,  

0---,0 1 
03: 1--* 1 1 00. 

The coincidence densities of these substitutions have been obtained in 1.3; they 
are respectively d(O1)=d(02)= 1 and d(03)= 1. 

Again a result in [16] yields the continuous eigenfunctions for 01, 02 and 03, 
and gives the equicontinuous factor ;g2 x2g(3), ~2 being the cyclic group of 
order two and 2g(3) the 3-adic integers. It is easy to see why this is so: the 7/2- 
part is obtained because 0s0 and 0 s 1 always appear in w = w 1~ at even places, so 
that one can "recognize" by looking at a finite number of successive symbols of 
a point x~X(O) whether it is a limit of even or odd translates of w. The 2g(3)-part 
arises from the fact that for s>2 ,  the lengths l~ ) and l~ s) of 0s0 and 0~1 are 
multiples of 3 s- i, which allows the "recognition" of a point x as a limit of 
translates n k of w with nk mod 3 s- i fixed. 

The proof of the following theorem is simple in comparison to Theorem 10 
of II. 

Theorem 19. 01 and 02 have discrete spectrum. 

Proof. Let a = 01 and b = 10. Then 

Oaa=O1 lO01=aba ,  

0 1 b = l O O l O l = b a a ,  

02a=O1 lO lO=abb ,  

0 2 b = l O l O O l = b b a .  

The substitutions 

a---~aba 
th : b-~ b aa 

and 

a-~abb  
t/2: b--*bba 
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obtained in this manner have discrete spectrum (see [1]) with equicontinuous 
factor Z(3), and the homomorphism X(Oi)~ X(th) , i=  1, 2, yields the additional 
factor Z z in an obvious manner. 

We turn now to the substitution 03. As above, let a = 0 1, b = 1 1 and c = 0 0. 
Then 

0 3 a = 0 1  1 1 0 0 = a b c ,  

03b=l 1001 lO0=bcbc,  

03c=Ol01=aa.  

This leads us to consider the substitution of constant length 

a ~ a b c  
~13: b--~bcb 

c - - ~ c a a .  

Lemma 20. There exists a continuous map 

~z: x(o3)-, x(~3) 

such that 7r T 2 = T~. 

Proof. If x = (  .... x_l,Xo, Xj-, ...)~X(03), the block 1 10 occurs at least once in x 
at a place k. According to whether k is even or odd, we group symbols of x as 

�9 . . ,  ( X  2 X_ J-), (X 0 X J-), (X 2 X3) . . . .  

o r  

. . . .  (X_j_X0) , (X 1 X2) , (X 3 X 4 ) , . . .  , 

and replace each group by its corresponding symbol a, b or c. 
(Note that in this "canonical decomposition" of any point of X(03), the 

block b = 1 1 is always followed by c = 0 0.) 
This yields a well-defined continuous map zc from X(03) to X(r/3 ) and it 

follows immediately that rt T 2 =  Tg. 

Lemma 21. The substitution r13 has partly continuous spectrum. 

Proof. The structure group of t/3 is 2g(3) (see [15]). 
Let a: X(t/a)--~2g(3 ) be the corresponding projection. Then the subspace H 

= {fo a: f~IL2(2~(3))} of IL2(X(t/3)) is the subspace spanned by the continuous 
eigenfunctions of T. Moreover, since o- is almost everywhere 3 to 1, H l is not 
{0}. 

Let O=t=heH' and suppose that for some complex ~ with 141=1 we have Th 
={h.  By ergodicity of (X(t/3), T), ]hi is a non-zero constant, and it follows that 
h3sH and Th3 =~3h 3. 

Thus 43 is a 3k-root of unity for some k, and so is {. Therefore there exists 
another eigenfunction hoeH with eigenvalue 4, and this contradicts the ergo- 

d ic i ty  Of T. 
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Theorem 22. The substitutiotz O~ has partly continuous spectrum. 

Proof. If not, then by Lemma20, J13 would have discrete spectrum, and this 
contradicts Lemma 21. 

We remark that the article [2] of M. Dekking contains a systematic 
development of substitutions of the type considered in this last paragraph. 
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