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Summary. This paper investigates sequences of asymptotically similar critical 
regions {Sn > 0}, noN, under the assumption that the test-statistic S, admits a 
certain stochastic expansion. It is shown that for such test-sequences, first 
order efficiency implies second order efficiency (i.e. efficiency up to an error 
t e r m  o(n-1/2)). Moreover, the asymptotic power functions of first order 
efficient test-sequences are determined up to an error term o(n ~), and a 
class of critical regions is specified which is minimal essentially complete up 
to o(n- 1). 

The results of this paper rest upon the technique of Edgeworth-expan- 
sions and are, therefore, restricted to "continuous" probability distributions. 

1. Introduction 

Let P0,~, 0 c O c l R ,  z c T c l R  v, be a family of probability measures over a 
measurable space (X,d) .  Let 6cO be fixed. The problem is to test the hy- 
pothesis {(0,z)60 x T: 0=6} against alternatives (O,z) with 0>6  on the basis of 
an i.i.d, sample of size n. We consider contiguous alternatives p(n) _pn *(t,z)--*6+n 1/2t, "C, 
tclR+:= [0, ~),  veT, and investigate the asymptotic behavior of a test-sequence 
cp =((o,,)n~N on the basis of its sequence of power functions 

A test-sequence ~ is "better" than 0 of order o(n -r/2) at (t,'c) (for short: 
_(P~r~ at (t, z)) if 

/ / ,  (~,) (t, z) ~/~n (~//n) (t,  ~) JU O(n--r/2), 

Test-sequences are comparable in this sense if one is better than the other at 
every (t, z)alR + x T. 

A test-sequence (p is as. (asymptotically) of level c~ +o(n -~/z) [resp. as. similar 
of level c~+o(n-~/z)]-for the hypothesis {(t,z)alR + x T: t=0} if locally uniformly 
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for z s T  

r / . ( G ) ( 0 ,  ~) _-< ~ + o(n-'/~) 

[resp. 

/ L  (q~.)(0, r) = ~ + o(n-'/2)]. 

For a given level e and a given hypothesis, let ~ [resp. ~ * ]  denote the 
class of all test-sequences which are as. [similar] of level c~+o(n-'/2). 

We introduce the following definitions for an arbitrary subclass ~ c ~ .  
A test-sequence _pe~/~, is m.p. (most powerful) in ~ at (t,r) if _0~,fl at (t,r) 

for all 0 s ~ .  
A test-sequence ~e~U, is u.m.p. (uniformly most powerful) in ~ at z if it is 

m.p. in ~ at (t, z) for all t >  0. 
A test-sequence ~e~/~, is u.m.p, in ~ if it is m.p. in ~ at (t,~) for all t>0,  zmT. 
Let ~ denote the class of u.m.p, test-sequences in ~//~,. Notice that in general 

u.m.p, test-sequences need not exist. This motivates the introduction of the 
weaker concept of admissibility. 

A test-sequence _(pe~U, is admissible in ~ if for any 0e'//~,, 0 ~ , ~  implies 

If u.m.p, test-sequences in ~ do exist, then a test-sequence is admissible in 
iff it is u.m.p, in ~//~,. 

A class ~,c~U, is essentially complete in ~ if for every ~e~/~, there exists 
(peat/, such that _~,_0. An essentially complete class st/, is minimal if no proper 
subclass of q/, is essentially complete in ~//~,. 

If q/, is minimal then its elements are admissible in ~U,. If ~ is u.m.p, in 
then {_q0} is minimal essentially complete in ~ .  

Keep in mind that all these concepts are asymptotic, valid up to an error 
term o(n-'/2). 

It is well known that u.m.p, test-sequences in J0* exist, and that these test- 
sequences are u.m.p, also in the wider class Y0. A corresponding result holds 
even true for ~ *  and Jll. By an appropriate studentization procedure, Neyman's 
C(~)-test as well as the test based on the m.1. estimator can be modified so as to 
become as. similar o(n-1/2), i.e. a member of .Y~*-and both of these tests are 
u.m.p, in ~ .  

For the C(c0-test this was shown by Chibisov (1937a, p. 38, Theorem 8.1, and p. 40, Theorem 
9.1), for the test based on the m.1. estimator by Pfanzagl (1973, p. 213, Theorem, and p, 261, 
Proposition). 

That both of these tests are u.m.p, not only in Yoo but even in ~-~ is no 
accident. Both tests are based on critical regions {S, >0} with test-statistics S, 
admitting a stochastic expansion. Let ~ denote the class of all such test- 
sequences based on test-statistics admitting a stochastic expansion of length r. 
(For a more precise definition see Section 3.) Corollary 1 asserts that all tests in 
~ * ~  ~ are u.m.p, in ~ ,  if they are u.m.p, in Yo. Briefly put, for tests of 
structure ~ ,  first order efficiency implies second order efficiency. 
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If we refine our analysis further by considering the classes ~22 and ~ * ,  the 
situation becomes less t r an spa ren t - and  more interesting. Preliminary results 
support the following conjectures. U.m.p. tests do not exist in ~ or in ~22" (even 
if further regularity conditions are imposed on the test-sequences). The power 
achievable in ~ *  is up to o(n-1) the same as the power achievable in J22- For 
every test ~ in J22" there exists a test in .Y~z* which is u.m.p, in J00 and the power 
of which is up to o(n-1) not inferior to the power of ~. 

These conjectures provide a justification for restricting ourselves to test- 
sequences in ~*c~ ~oo (where ~oo denotesthe class of all test-sequences which are 
u.m.p, in Y00)- For technical reasons, we have to impose further regularity 
conditions on the test-sequences: Instead of all tests in ~ * ,  we study the tests in 
~*c~5P2 only. The restriction to such test-sequences seems justifiable since 
virtually all test-sequences studied in literature are of this type. 

Our main result, Corollary 2, provides an essentially complete subclass of 
~-~2"~ooc~J2, together with a simple criterion for the admissibility of tests in 
Y2*c~Joc~SP 2. In Section 4 these results are applied to compare the powers of 
certain common test-sequences in ~o- 

It turns out that the test based on the m.1. estimator has the advantage of a 
power directed against alternatives with rejection probability 1 -  c~. 

From the applied point of view, Corollary 1 is by far the more relevant one, 
because it says that in choosing between sufficiently regular test-sequences we 
cannot err much: The number of samples wasted by choosing the "wrong" test 
remains bounded as the sample size increases. Corollary 2 gives us a guide 
which test to choose among first order efficient ones, but numerical com- 
putations suggest that in certain cases power functions are approximated by 
their asymptotic expansions with sufficient accuracy only for large sample sizes. 
This means: In order that our formulas reflect the true deficiencies between first 
order efficient test-sequences sufficiently accurately, the sample sizes have, 
perhaps, to be so large that these deficiencies become comparably irrelevant. 

In Pfanzagl and Wefelmeyer (1978) similar techniques are applied to show 
that, starting from a m.1. estimator 0 (") for a vector parameter, the class of all 
estimators O(")+n-lq(O (")) is asymptotically complete of order o(n -1) if q runs 
through all sufficiently regular functions. As a particular consequence we obtain 
that the m.1. estimator, if made componentwise o(n-1/2)-median unbiased by an 
appropriate choice of q, is in the class of all componentwise o(n-1/Z)-median 
unbiased estimators maximally concentrated up to o(n -~) on all convex sets 
which are symmetric about the true parameter value. 

2. Notations 

Let (X, d )  be a measurable space and P0, ~ ] d ,  (0, r)ef2 = O x T with open O ~ IR, 
T c 1R p, a family of p-measures (probability measures). Let P~ [d "  denote the n- 
fold independent product of identical components P~[d. For notational con- 
venience we shall consider X ~ as a subspace of X ~ with elements x = ( x , ) , ~ ,  and 
s~'" as a sub-a-field of d ~. 
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We shall use the following convention: if in a product  an index occurs at least 
twice, this means summat ion  over this index starting from 0 in case of a Roman  
type index, and from 1 in case of a Greek  type index. 

For  a function f:  X x Y2~IR and co, co'el2, indexed from 0 to p, let 

f l i  ... ik(X ' (.0)= ( ~ k / 8 0 ) i l  . . .  t~coik) f ( x  , co), 

P~(f (', o)')) = i f (x ,  co') Po~(dx), 

f (x ,  co) =n -1/2 ~ (f(xv,co)-P~(f(',co))). 
v = l  

We assume w.l.g, that  unspecified functions f ( . ,  co) are s tandardized sus that  
Po,(f(', co)) = 0  for coEf2. For  typographical  reasons we write f~ instead o f f  ~ etc. f 
is said to be differentiable if for every x e X  the function co~f (x ,  co) is differenti- 
able on f2. 

Let  /~[~r denote  a a-finite measure dominat ing Po~l~r co~f2, and p(.,co) a 
density of Po~ I ~r with respect to #1 ~r Define l = log p. 

Moreover ,  

L i l  . . . .  i l k j  . . . . .  i . . . . .  i . . . .  ( c o )  = PO) 1 i . . . . .  ' v k v ( * ,  ( ~ )  ' 
V 

L = (Li,)i, j = o ..... p, 

L* =(L=,e)=,t~= 1 ..... p, 

A = L- 1, A* = (L*)- 1 

2 i =Air I s, 2* =A~*~ l ~. 

Let h(.,co) denote  the regression residual with respect to Po~ of 
Aoi(co) Aoj(co)(liJ( ", co) -Lij(co)) on l~ ", co),..., lP( ", co). We have 

(2.1) h-=-AoiAoj[liJ-Lij-Lo, k2k]. 

Define 

D(co) =�88 -2 Po~(h(', o~)2). 

We have 

(2.2) 1 - 2 1 D =aA0o aoi AojAokAom (Lij ' kin-- Ar~Lij, rLkm, s)-- a 

Furthermore ,  

l u 2 1  p(u) =(27z)- 1/2 exp [ - 5  a, 

~ ( u ) =  5 ~o(r)dr, 
r<u 

Np = ~ -  l(fi), N=N~. 

q0 z denotes the Lebesgue density of the multivariate normal  distribution with 
mean vector  zero and covariance matr ix 22. 
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(2.3) Definition. Let s  X ~ x O--+IR, n~N, be such that f ,( . ,  co) is d"-measur ,  
able for cosO and neN. We write f ,=l,(r)  if for every veT there exist a 
neighborhood U of (6,z) and a constant a > 0  such that uniformly for coeU and 
Ilco-~o'll <n-1/21ogn 

P2 {IL(', co')[ >(log n) ~} =o(n-~/2). 

The relation f,, = g, + n-~ I, (r) is defined as n s (f, - g,) = l, (r). 

(2,4) Definition. An estimator-sequence z ("),neN, is o(n-~/g)-consistentfor the 
nuisance parameter (given g) if 

~(~")=z~+n-1/21,(r) for ~=1 ... .  ,p. 

(2.5) Definition. A o(n-~/2)-consistent estimator-sequence 4("), heN, for the 
nuisance parameter is as. m.l. (asymptotically maximum likelihood) o(n -~/2) 
(given 6) if 

?(',6,'~("))=n-r/Zl~(r) for a=l , . . . , p .  

The regularity conditions needed inSection 3 are collected in Section 5. 

3. The Main Results 

We consider the class of test-sequences (pn=l{s,>o}, nEN, for the hypothesis 
{(t,T)elR+ • T: t--0} which are based on a sequence of test-statistics Sn, nsN,  
admitting a stochastic expansion of the form 

(3.1) Sn=fo+C+ ~ n J/eQj(fl,...,f~j,.)+n-(r+l)/21,(r ). 
j = l  

(Since ~ remains fixed, f (x , . ) ,  c and Qj(r,.) are considered as functions of 
only.) 

We assume that )Co fulfills Condition M a and D and is differentiable with 
derivatives f~ . . . . .  fg  fulfilling Conditions L 2 and M a, and Pa,~(f0(.,z)2)>0 for 
5~T. 

5Po is the class of all test-sequences of type (3.1) for r = 0  for which the 
function c: T ~ I R  fulfills a local Lipschitz condition. 

is the class of all test-sequences of type (3.1) for r = l  for which the 
following regularity conditions are fulfilled. 

The functions z-~P~,~(fo(.,z);) and c admit partial derivatives fulfilling a 
local Lipschitz condition on T. 

For zeT, the functions f l ( . , z )  . . . . .  fm,(.,z) constitute a base for li(.,?~,z), i 
= 0 . . . . .  p, under P0.,. 

The vector consisting of f l  . . . . .  f~, fulfills Conditions C and Ua; its com- 
ponents fulfill Condition D. 

The functions Q i, Q~~ = (3/•Uo) Q ~ fulfill Condition B (a). 
52 is the class of all test-sequences of type (3.1) for r = 2  for which the 

following regularity conditions are fulfilled, 
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The function c admits second order partial derivatives fulfilling a local 
Lipschitz condit ion on T. 

For  r the functions fx (', ~) . . . . .  f,~,(', r) constitute a base for li( ., 6, ~) and 
lq( �9 , 6, ~) - Li~(6, ~), i,j = 0,.. . ,  p, under P~.,. 

The vector consisting of f l  . . . . .  f,,2 fulfills Condit ions C and U, ;  its com- 
ponents  fulfill Condi t ion D. 

The functions f l  . . . .  ,fro1 admit  partial derivatives fulfilling Condit ions L 2 and 
M 2 . 

Q1 fulfills Condi t ion B. and Q(t ~ Q~OO~, Q2, Q(z ~ fulfill Condi t ion B(a). 
Examples of sequences in ~ are studied in Section 4. 

Proposition. Assume that 1 admits partial derivatives up to the second order 
fulfilling Conditions L 3 and M 3 . Let Conditions (i), (ii), (iii), 11 be fulfilled. Assume, 
furthermore, that there exists a o(n~ estimator-sequence for the nui- 
sance parameter. 

Then the following is true. 

(a) I f  ~_ eYoo then uniformly for 0 < t < l o g n  and locally uniformly for ~ r  

(3.2) fln(q),)(t,~)<ho(t,~)+o(n ~ 

with ho(t, ~) = ~b(N + Aoo(6, ~)- 1/2 t). 

(b) I f  ~sSPo is m.p. in ~oo at (t*,~*) then ~ is u.m.p, in ~oo at ~*. 

More  precisely: If for OeSeo equality holds in (3.2) for some (t*, ~*) with t* > 0  
then uniformly for 0_< t <- log n 

1L(q~.)(t, ~*) = ho(t,'c*) + o(n~ 

Theorem 1. Assume that the family of p-measures fulfills the following regularity 
conditions, l admits partial derivatives up to the third order Julfilling Conditions 
L 4 and M4, and the vector consisting of li, l i;-Li;,  i,j=O, ...,p, fulfills Condition 
C. Conditions (i), (ii), (iii), I 2 hold. Assume, furthermore, that there exists a o(n- 1/2)_ 
consistent estimator-sequence for the nuisance parameter. 

Then the following is true. 

(a) I f  pSJll  then uniformly for 0 < t < l o g n  and locally uniformly for ~eT  

Hn(q~n)(t, z) < Hln(t , "c) + o(n- 1[2) 

with H1, = h  0 + n -  t/2 hi as defined in the Appendix. 

(b) I f  ~_ a ~  is u.m.p, in Joo at every z in a neighborhood of z* and has power 
+o(n -1/2) at (0,z*) then _(p is u.m.p, in ~ at z*. More precisely, we have uniformly 

for 0<_t_<logn 

II.(q~.)(t, z*) = Hl.(t ,  ~*) + o(n-  1/~). 

Corollary 1. Under the assumptions of Theorem 1, if ~e~*c~5~l is u.m.p, in Joo 
then p is u.m.p, in 3-~. More precisely, we have uniformly for 0_<t<-log n and 
locally uniformly for re  T, 

H.(cp,) (t, "r) = Hl , ( t  , "c) + o(n- 1/2). 
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For the smaller class of test-sequences obtained by as. studentization, this result has earlier been 
obtained in Pfanzagl (1976, p. 26, Theorem 7.5). 

By Corol lary 1, the power of  a first order  efficient test sequence in ~*c~  5~1 is 
up to to o(n-1/2) independent  of the n-1/2-term Q1 of the stochastic expansion 
of its test-statistic. The main content  of  Theorem 2 is that analogously, the power 
of a first order  efficient test-sequence in ~ * c ~  SPa is up to o(n-1)  independent  of 
Q2 and, furthermore,  that  it depends on Q1 in a simple way. 

The proof  of Theorem 2 rests on the following Lemma  1 which is proved in 
Pfanzagl (1976, p. 11, L e m m a  4.10) and formulated below for easier reference. 
The  basic idea is to utilize the fact that  the test-statistic does not  depend on the 
nuisance parameter .  This places a restriction upon the functions Qj occurring in 
the stochastic expansion of the test-statistic: The stochastic expansion as a 
whole must  remain invariant  under  small changes of the nuisance parameter .  

L e m m a  1. Let 

s.  =?o + c +  n-  lj2 Q(?I .... ,L , ' )  + n - '  I.(0), 

where f i(x, .) ,  c and Q(r, .)  are considered as functions of  ~ only. Assume that 
c: T ~ I R  admits partial derivatives fulfilling a local Lipschitz condition. Let  Q 
fulfill Condition B. Assume that fo admits second order and f l , . . . , f ,  f irst  order 
partial derivatives fulfilling Conditions L 2 and M 2. Let  f o , f l , . . .  , f~ , f l  . . . .  ,fo p fulfill 
Condition M 2. 

For 72~ T let g( ' ,  z) denote a vector the components of  which constitute a base of  
P~, ~ - a.e. linearly independent functions for f l (', ~) . . . .  , f , ,( ' ,  z), f ~ (., ~) . . . . .  f g  (', 72) 
under Po,~, and let M(r)  be a matrix such that (f l ,  . . . , fm,f~ . . . . .  fop)'=Mg. 

Then for all (s, u)~lR p x IR "+p and zeT,  

Q ((M U)i = 1 . . . . . . .  72) 

= Q(((Mu), + s~P~, ~ (fi" ( ", v))) i =1 . . . . . . .  72) 

+ s~(M u)m+~ + �89 ~(f~)Z(', r)) + s~c~(72). 

Remark  1. Assume that for all r in an open subset of T the components  of 
f ( ' ,  72) = (f l  ( ' ,  72), �9 �9 �9 ,fro ( ' ,  z))' are P~,~ - a.e. linearly independent  and consti tute a base 
for f~( . ,~) ,  ...,fop(.,~) under  P~,~, say 

(3.3) (fol (., z) . . . .  , fop( . , z ) ) '=K(~) f ( . ,Q.  

If the components  of f fulfill Condi t ion D then by L e m m a  1 we have for 
(s, r)elR p x I ~  m 

(3.4) Q (r, z) = Q (r --s~P~,, (P( ' ,  6, 72)f(', z)), 72) 

+ s' K(z)  r+�89 r)) +s~c~(z). 

If s for ~ = l , . . . , p ,  then we may assume w.l.g, that 
fp+x( . , z ) , . . . , f , , ( . , z )  are P~,~-uncorrelated to P( . ,6 , r )  . . . . .  Iv(.,6,72). Then (3.4), 
applied for s~=A~(b ,z )r~ ,  c~=l . . . . .  p, yields the following "canonical  repre- 
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sentation" of Q: For (v, w)elR p x IR ~-v ,  

(3.5) Q(v ,w,r )=Q(O,w,z )+R(v ,w,z )  

where 

(3.6)  R(v ,w,r )=v 'A*(3 ,z )K(r) (v ,w) '  

1 * T 

+c~(r) A~p(6,'c)vr 

Because of (3.3), the function R(/a, . . . , iP,fp+l,. . . ,fm,') does not depend on S, 
except through the derivatives off0 and c. 

Remark 2. The formulation of the following Theorem 2 requires some prepara- 
tions. For  notational convenience we omit 3 and z. The leading term of the 
stochastic expansion of a test-statistic S, is of the form fo +c. If ~ e ~  is m.p. in 

at -c and has power c~+o(n -~) at (0,~) for all -c in an open subset V of T, then 
by Lemma 2 (Section 6) for zeV there exists d(z) such that fo=d20 P-a.e. and c 
=NdA~/o z. The function 2o may be contained in the space spanned under P by 
the arguments f~,.. .  ,f,,j of Qj. It is convenient to separate 2 o from f~, . . .  ,fmj and 
to choose the remaining functions as P-uncorrelated not only to l ~ .. . .  , I v but 
also to 20. (Observe that l I . . . .  , I p, too, are P-uncorrelated to 20. ) More specifi- 
cally, we write the terms Qj(f~, . . . , fmj , . )  of the stochastic expansion of S, for 
j = l , 2  as 

(3.7) dQj(.~o + NA~o/o 2, r ~ . . . . .  l ,f~ . . . . .  f~,.), 

and we assume that fa , . . . , f~ are P-uncorrelated to l~ I p. 
Let J(r) be a matrix such that 

/7 ! t (3.8) ( ; 4 , . . . , & )  = J ( & ,  l . . . . .  l ' ,A,  . . . ,L ) .  

If d-=l on V then we obtain the following canonical representation: For 
(u, v, w)~lR x IRP x IR", 

1/2 0 )+RI(u ,v ,w, ' ) ,  (3.9) Ql(u+NA~/o2, V , w , ' ) = Q l ( u + N A o o ,  ,w, 

where 

(3.10) R I ( u , v , w , ' ) = v ' A * J ( u , v , w  )' 
1 , :t: c~fl 1 - 1 / 2  cr :t: +gA=oA~oP(2o )voG +sNAoo  AooA~vt j .  

Because of (3.8), the function R(,~o, P, ..., •,fl . . . . .  f,,,-) does not depend on the 
test-sequence. 

Let F(O, r) denote the covariance matrix off ( . ,  r) -- (fx (', z) . . . . .  fro(', z))' under 
P0,~. Define 

C(N, .  ) = 1 (1 - N 2) Ao I Ao~AojAokL,, j,k 

- ~ dv dw ~oL,(v) q~r(w) R l ( -  N A~/o2, V, w, " ). 
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Let  a('c) be the (unique) vector such that  h(.,  6 , r )=  a(z)'f(. ,  z) P~, ~-a.e., where h 
is defined in (2.1). 

Theorem 2. Assume that 1 admits partial derivatives up to the third order fulfilling 
Conditions L<~ and M 4. Let Conditions (i), (ii), (iii), 13 be fulfilled. Assume, 

furthermore, that there exists a o(n-1)-consistent estimator-sequence for the nui- 
sance parameter. 

Assume that ~_ ESP2 is m.p. in Yoo at ~ and has power c~+o(n - I )  at (0, r ) f o r  all T 
in an open subset V of T. 

Then, with the conventions and notations of Remark 2, the following holds true. 
Uniformly for 0 < t <- log n and locally uniformly in z ~ V 

H,(~o,)(t, z)= H2,(t , v) 

- n-~ (p (N + tAoo 1/2) �89 3/2 ~ dw Or(W) [Q1 (0, O, w, ") - C(N,.)  
1 - 1  , 2 + o ( n -  -gtAoo a w] [(a,~) 1), 

where Ha. = h o + n-  1/2 h 1 + n-  X h z depends on the family of p-measures only, and 
not on the test-sequence. The explicit form of He, is given in the Appendix. 

For the special case of test-sequences obtained by as. studentization of test-statistics admitting a 
stochastic expansion for which the terms of order n -~/z are polynomials of degree j+  1 this result 
was obtained by Bender (1976, p. 78, Theorem 1). His method of proof requires the explicit 
computation of H2,, 

Remark 3. A convenient  way to construct  test-sequences in Jz*C~oo~SP2 with 
prescribed power  functions is the desensitization and as. s tudentizat ion procedure  
described in Section 4. Let  (~(w, r) be an arbi t rary (sufficiently regular) function. 
Observe the conventions of Remark  2. Then the test-sequence obtained from 

go + n-  1/. 0 ( f l  . . . . .  L , ' )  

by desensitization and as. s tudentizat ion o(n -1) with an as. ml. estimator- 
sequence o(n-1) is in -Y-~z* C~Yo~52, and the stochastic expansion of the pert inent  
test-statistic, written as in (3.7), fulfills 

Q 1 (0, 0, w, r) - c (N, 6, z) = (j(w, ~) - C (N, 6, ~), 

where C is uniquely determined by (~. 

In particular, admissible test-sequences in ~*C~ooC~5P z are obtained from 
Q(w,r)=q(r)a('c)'w, where q is a sufficiently smooth  function of the nuisance 
parameter  (see Corol lary  2(c) below). 

More  specifically, let !~ denote  the class of  all functions q: T--+ IR + fulfilling a 
local Lipschitz condition. For  qe!~, let ~( . ,  q) denote  the test-sequence obtained 
from 

)'o(', 6 + n- 1/Zq(r) Aoo(6, Q, za + n-  1/2 q(r) Aol (6, r) . . . . .  rp 

-~ n -  1/2 q(27)Aop(6 , "c)) 
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by desensitization and as. studentization o(n -1) with an as. m.1. estimator- 
sequence o(n-1) for the nuisance parameter. 

Corollary 2. Assume that the family of p-measures fulfills the following regularity 
conditions, l admits partial derivatives up to the fourth order fulfilling Conditions 
L s and Ms,  and the vector consisting of l ~, I i ; -  Lit, I iJk- Li;k, i,j, k = 0 ....  ,p, fulfills 
Condition C. Conditions (i), (ii), (ii), 13 hold. 

Assume, furthermore, that there exists a o(n-1)-consistent estimator-sequence 
for the nuisance parameter. 

Then the following holds true. 

(a) For every qe~ ,  the test-sequence ~( . ,q)  belongs to ~ * c ~ J o c ~ ,  and 
Q 1 (0, 0, w, z) -- q (z) a (z)' w + C (N, 3, z). 

In case D(6,z)>0 for z ~ r  (for definition see (2.2)), the following assertions 
hold. 

(b) The class of test-sequences p_(., q), q ~ ,  is minimal essentially complete in 

(c) A test-sequence _(p~*C~JooC~ ~ is admissible in ~*C~JooC~ ~ iff there 
exists q ~  such that 

Q 1 (0, O, w, z) = q (z) a(z)' w + C (g,  3, z). 

In this case, uniformly for 0 <_ t <_ log n and locally uniformly for ~ E T, 

H,((p,)(t, "c) = H2,(t , z) 

- n -1 q)(N + tAo)/2) �89 3/2 D(2Aoo q - t)2l(~, ~)+ o(n- 1). 

Remark 4. The deficiency of admissible test-sequences in f2"~ooC~$2 is pro- 
portional to D. We remark that D, as it ought to, remains unchanged under all 
(sufficiently smooth) transformations of the nuisance parameter. 

D is proportional to the variance of the regression residual of AoiAo;(l ~i 
-Li; ) on l ~ .... ,1 p. Hence D vanishes for (p + 1)-dimensional exponential families. 
In a certain sense, D indicates how far a given family deviates from an 
exponential family. Notice that D is not a function of the "curvature" of a 
multivariate curved exponential family defined by Reeds in the discussion of 
Efron (1975, p. 1237). Hence the expectation of Efron (1975, p. 1241) that in 
hypothesis testing this curvature plays the same role as in the one-dimensional 
case, does not seem to materialize. 

Remark 5. If D(b, z)=0 for all z~T then every admissible test-sequence is u.m.p. 
in J2"C~oC~2 and hence constitutes in itself a minimal essentially complete 
class. 

Remark 6. The essentially complete class presented in Corollary 2 is still rather 
large, because it allows the value of t against which the power is maximized to 
vary arbitrarily with the nuisance parameter: For any function z~t(z) ,  the 
essentially complete class contains a test-sequence (namely ~(' , �89 
which maximizes the power at (t(z),z), simultaneously for all -ceT. 

It suggests itself to restrict considerations to a suitable subclass of functions 
z-~ t(z). One reasonable criterion is to choose test-sequences in such a way that 



A n  A s y m p t o t i c a l l y  C o m p l e t e  Class  o f  Tests  59 

a given power fl is reached as soon as possible (i.e. for values (t, ~) as close as 
possible to (0,z)). This is achieved for t(z)=Aoo(6,@/2(N~-N,). Hence ~( ' ,q)  
with q(r)=�89 is a reasonable choice out of the essentially 
complete class. 

Remark 7. For the case without nuisance parameter, the class ~(.,q), qe~;, 
reduces to the class of critical regions of level e+o(n -~) based on the class of 
test-statistics [o(., c~ + n-  1/2 t), t ~ 0. This class is essentially complete in _~2", not in 
~ * c ~ o n 5 2  only. Without nuisance parameters, the restriction to ~oo becomes 
meaningless, and the technical reasons enforcing the restriction to 5~ vanish 
because of a different method of proof available in the case without nuisance 
parameters. (See Pfanzagl (1975, p. 5, Theorem 2).) 

Strasser (1977, p. 25, Theorem 3) computes the power functions for a class of 
critical regions based on quantiles of posterior distributions with respect to a 
particular prior. By Pfanzagl (1975, p. 5, Tiaeorem 2, and p. 14, Theorem 3) this 
class is essentially complete in ~* .  

4. Applications 

In this section we shall apply our results to discuss third order properties of 
some test-sequences considered in the literature. 

Let V,:X"~ IR, n~N, be a sequence of functions and z("~, n eN, an estimator- 
sequence for the parameter z in the family Pa, ~, ze T, both admitting a stochastic 
expansion up to n -(~+~/2 l,(r). Then we can use the following as. studentization 
procedure o(n -~/2) to obtain a test-sequence in JT~*: First we determine c~~ 
such that 

pg)~) ~o~ ~ +o(nO). {Vo-c.  ( )>0}=~ 

Since 6 remains fixed, the dependence of c},~ on 6 is suppressed. 
Let S(, ~ = V, -  c~~ We have 

p((.~ ~v(o~--m =~+o(nO). 
0, v) tUn f v j  

Under suitable regularity conditions there exists c~ 1) such that 

0, z) t ~ n  '~ 

Now we define (~) co) -1/2 S, =S,  - n  c(~l)(z(")). Proceeding in this way we obtain a 
sequence of "studentized" test-statistics S(, ~), heN, such that 

p(~.~ ~(~>0} =~+o(n-~/2). 0, 1:) t ~ n  

Regularity conditions under which the pertinent test-sequence is in ~ * n  ~ can 
be obtained for r = l  from Pfanzagl (1976, p. 17, Theorem 5.8). An analogous 
studentization procedure, based on an estimator-sequence for (0,'c) instead of ~, 
is described in Pfanzagl (1973, p. 254, Lemma 9). 

A natural choice for V, is n~/2(0~")-6), where 0 ~") is any estimator for 0. 
Another possibility is the following: If for every zeT  the statistic U,(.,z) is 
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reasonable for testing the hypothesis 0_<_ ~ if r is known, then one might try the 
desensitized statistic V, = (U,(', z(")). 

Let c5 (") ---(0 "~"), ~(")) denote the m.1. estimator for co =(0, v) and "~(')(., c5) the m.1. 
estimator for r in the family P~,~, z e T. 

Remark 8. If an estimator-sequence z("), n~N, with stochastic expansion 

~(")--_ zc~ + n - 1 / 2 ~ + n - l  ln(2) 

is used for as. studentization, then ~ appears in the stochastic expansion of the 
critical bound and hence of the test-statistic through the term 

= - (a/0 + U2) .  

By Theorem 2 the power function of the pertinent test-sequence depends up 
to o(n-1) on QI(0, 0, w,-) only. Since w represents regression residuals on l~ 1 v, 
the power function is the same for all studentizing estimators for which g is a 
linear combination of 1 ~, i=  0, ..., p. This holds in particular true for ~(")(., 5), ~("), 
and cfi ("). 

In the following we shall discuss the power of certain test-sequences obtained 
from statistics V, by as. studentization o(n-1) with i(")( ., 6), ~("), or cb (n). Accord- 
ing to Remark 8, in order to evaluate Ql(0,0,w,.) it suffices to compute the 
stochastic expansion of V,. Observe that Q1 has to be written in the form (3.7). 

(i) By Pfanzagl (1973, p. 253, Lemma 8), the statistic V,=nl/a(O~")-3) 
admits a stochastic expansion of the form 

t j ~ ~ ~ ,  rn ~-- ~0 -~ n -  1/2 [Aoo 1 Ao i Ao j ~ 2o + Ao i I 2~ 

+ �89 Li k j L ]  + 1 1.(2) 

Hence the test-sequence obtained from V. fulfills 

QI(0,0, w , ' )=  - A o o  1/2 N a ' w +  C, 

According to Remark 6, this test-sequence reaches the power 1 - a  as soon as 
possible and is therefore a reasonable option. 

For the case without nuisance parameter this result has been obtained earlier by Chibisov 
(1973b, p. 66, Theorem 8) and Pfanzagl (1974, p. 28, Theorem 4). By Strasser (1977, p. 25, Theorem 3) 
the same result holds true for the test based on the posterior median with respect to a particular 
prior. 

An explicit formula for the test-sequence based on as. studentization with 
o3 (") is given in Pfanzagl (1973, p. 213, Theorem, and p. 264). 

(ii) Starting from U,(x,z)=ai(z ) ~(x, 6,'c) with sufficiently smooth functions 
% desensitization with ~(")(., 6) leads to the efficient version of Neyman's C(c 0- 
test. We have 

Un(" , +(n>(', 3)) = Aoo 1 a o.~o + n- x/2 [�89 Aoo 1 ao Ao,L,: p ~. ~ + Aool a~o ) .  fc ~ 
1 - i ~c~ ~* -- 1 +sAoo aoAo~l 2~]+n  /,(2). 
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Hence  

Ql(O,O,w,')=C. 

According to Remark  6, this test-sequence wastes its power  at rejection proba-  
bilities near  ~. It is therefore less recommendable  than the test-sequence based 
on the m.1. est imator discussed in (i). 

For the case without nuisance parameter a corresponding result has been obtained by Chibisov 
(1973b, p. 57) and Pfanzagl (1974, p. 27, Theorem 3). 

(iii) The test-sequences obtained from 

(I P(X"'6+n-1/2t'z) 
v = 1 p(x~, 3, ~) 

by desensitization with ~(")(., 8) or ~c,) are inadmissible, since Q1 (0, 0,f, .) depends 
on the second order  derivatives l ~j of  1 not  only through the function h defined in 
(2.2). An admissible test-sequence is obtained from the test-statistic 

i p(x,,6+n-1/2 t,,~(")(.,6+n-1/2t)) 
~= 1 p(x~, 3, ~(")(., 3)) 

or if U, is desensitized with ~(n)(',6+n-1/2�89 Both test-sequences are m.p. 
against (t, v) for all r e  T. These results are obtained as in (i) and (ii) by computing 
the stochastic expansions of the test-statistics. For  example, 

log U,(', ~(")(', 3)) = t Aoo 1 2o 
+ n -  1/2 [�89 2/oo _ 1 2 ~. 1 - 1 ~* ~* ~-t Loo,~2 ~ +gtAoo AoiLi~2 ~ )~ 
+�89 2 ~ ] + n -  1,(2). 

The test-sequence is inadmissible because of the term �89 2/oo. 

5. Regularity Conditions and Definitions 

In this section we collect the assumptions and definitions which are needed in 
Section 3. 

(i) P~ ld ,  co~(2, are mutual ly  absolutely continuous. 

(ii) L i (6 ,~)=0  for i = 0  . . . . .  p and zeT.  

(iii) L(6, z) is positive definite for r~T. 

Condit ions M,, L,, D refer to a function f :  X x sQ-~ IR such that  f ( . ,  co) is sr 
measurable  for co~O. 

Condition M r. For  every v e t  there exists a ne ighborhood U of (6, ~) such that  

sup P~([f(', co')[') < oe. 
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Condition L r. For every r s T  there exist a neighborhood U of (6,~) and an d -  
measurable function k: X---, IR such that 

(a) [f (x, co)- f(x,  co')[ < Ll~o-~o'll k(x) 

for xEX and co, co'eU, 

(b) k fullfills Condition M r. 

Condition D. For  p(.,co)f(., co), the order of integration with respect to # J d  and 
differentiation with respect to co is interchangeable at co = (6, z), for every z s T. 

If f depends only on the nuisance parameter z then differentiation is 
understood to refer only to ~. 

Condition I,. The function 1 admits partial derivatives to the order r + 1, and the 
products Iil "" ikl ... l~km+, ... ~s fulfill Condition D for 1 <m<s<r .  

Conditions C, C, U r refer to a vector-valued function g: X x f2 ~ lRq such 
that g(.,  co) is d-measurable  for co~Q. 

Condition C. For  every z e T t h e r e  exists a neighborhood U of (6, z) such that 

lira sup sup IP~dexp [ir' g(., co)I] < 1. 
IlrH+oo ,o+v 

Condition C implies that the components of g(., co) are linearly independent 
under Po, for coeU. 

Condition C. There exists a subvector g of g such that for coco the components 
of ~(', co) constitute a base for the components of g(-, co) under P,o, and ~ fulfills 
Condition C. 

Condition C is a uniform version of Cramer's condition. The following useful 
sufficient condition is given by Bhattacharya and Ghosh (1978, p. 446, Lemma 
2.3): 

If P is a p-measure on the Borel algebra of IR" the Lebesgue density of which 
is positive on an open set V, if g~: IR"--.IR are continuously differentiable and 
1,  g l  . . . .  , gq are linearly independent on V, then the induced measure P , g  fulfills 
Cram6r's condition. A uniform version can be proven similarly. 

Assume that I admits partial derivatives l ~ such that co--+Po,(l/~(.,co)l) are 
locally bounded on f2. If g fulfills Condition C then for every z~T there exists a 
neighborhood U of (6,z) such that 

(5.1) l imsup sup IP, o(exp[ir'g(',co')])]<l. 

(For the proof of (5.1), use 

1 

p(.,  co) = p(.,  co') + (co-  co')~ ~ p'(.,  co' + t ( co-  co')) dr.) 
0 

Condition U,. For every ~ s T there exists a neighborhood U of (6, z) such that 

lim sup Po(llg(.,co')[I ~ l{Hg(.,~o,)Ll>,})=0. 
tl  ~ cto co, r ~ U 
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Condition B. A function Q: IR q • f2 ~ IR fulfills Condition B if for every z~ T 
there exist a neighborhood U of (& r) and constants a, b > 0 such that 

(a) for r,r'~lR q with [[r'l[ < I[r[[ 

IQ(r, 6, z)-Q(r' ,  ~, z)l_-< IIr-r'll (a + [[rllb), 

(b) for r~lR q and co, co'~U 

tQ(r, co) -Q(r,  co')] _-_< l]co -co'l] (a + II r/] b). 

Let Nq denote the Borel algebra of ]R q and cg the class of all convex sets in 

(5.2) Definition. A sequence ~o~t)(")l~q,~-, o)~f2, n~N, of families of probability 
measures admits an Edgeworth-expansion o(n -~/2) with Lebesgue-density 

02( 1 +j~=ln-J/2aj) 

[locally uniformly in coe~2] if uniformly for CeCg [and locally uniformly in o)e~2] 

Q~o (C)-fcP,(o,)(r) 1+ Gj(r, co) dr+o(n-"/2). 
C j = l  

6. Lemmas  and Proofs 

Remark 9. In order to explain why the remainder terms of the stochastic 
expansions derived in the proofs are of the form n -s/2 l,(r), it seems sufficient to 
treat a typical example, say f(- ,  6, ~(n)), where r is as. m.1. o(n -1/2) for the 
nuisance parameter. By a Taylor expansion there exists ~ between ~(")(x) and z, 
depending on n,_x, z, such that 

f(x, ~, r =f(x,  ~, z) + (~(")(x) - %) n-  1/2 ~ ff(x~, 6, z-). 

Write 

n -1/2 ~ f f (x~ ,cS ,~=n -1/2 (ff(x~,g),~-ff(x~,(~,r)) 
v = l  v ~ l  

+f~(x, 6, z) + n 1/2 P<,(ff (., 6, ~)). 

With Conditions L 2 and M 3 fo r f f  the first and second righthand terms are l,(1) 
by Pfanzagl (1973, p. 248, Lemma 4) and Nagaev (1965, p. 215, Corollary 2). By 
Pfanzagl (1973, p. 254, Lemma 9) the as. m.1. estimator admits a stochastic 
expansion 

-~(") -~- 4 - , -  1/2 ~',(. 6, z) + n -  1/,~(1). 

Hence 

6 f ( . ,  c5, s 6, "c) +P6, ~(f (', ,-c)) 2"(-, 6, z) 

+n -1/2 l,,(1). 



64 J. Pfanzagl and W. Wefelmeyer 

Remark 10. "Good"  test-sequences in ~ are obtained from appropriate statistics 
by desensitization and as. studentization o(n -r/2) with an as. m.1. estimator- 
sequence o(n-'/2). In order to ensure the existence of as. m.1. estimator-sequences 
we make use of an inductive improvement procedure which is defined as follows: 

T((n)--T(n) -J-- la-  1/2 ~* (o 6, T(n) 
k) --  ~(k- 1)-- ' "  (k- 1)I' 

If z ("), heN, is a o(n-'/2)-consistent estimator-sequence for the nuisance 
parameter then T((,~)( ., 6, z (")) is as. m.1. o(n -'/2) and admits a stochastic expansion 
about z up to n -('+t)/2 l,(r). See Pfanzagl (1973, p. 249, Lemma 6, and p. 253, 
Lemma 8). For r=0,1,2 ,  this holds true under the assumptions of the Pro- 
position, Theorem 1, and Corollary 2, respectively. 

Lemma 2. Let the assumptions of the Proposition be fulfilled. Assume that ~eSP o. 
Then 

~, ~(f~(., ~))= - ~ ,  ~(l'(., 6, ~)fo (', ~))=o. 

Moreover, if ~e~o is u.m.p, in ~ at z* and has power o~+o(n ~ at (O,z*) then 
there exists d(z*) such that 

fo(',z*)=d(z*)~o(',6, z*) P~, ~.-  a,e. 

This implies 

c(z*) = Nd(z*) Aoo(6, z*) 1/2. 

Proof of the Proposition and of Lemma 2. In order to simplify our notations we 
omit the parameter (6, z*) whenever convenient. Part (a) of the assertion of the 
Proposition is straightforward. For the proof of (b), observe first that there exists 
a test-sequence ~O~Joo*~Seo with H,(q),)=ho+o(n~ Such a test-sequence is 
obtained by desensitization and as. studentization of the test-statistic 2o(', 6, z) 
with a o(n~ estimator-sequence for the nuisance parameter. 

If cpe~o we have S, =fo + c + n-1/2 l,(0). By a uniform version of the Central 
Limit Theorem (apply Corollary 18.3 in Bhattacharya and Rao (1976, p. 184) for 
k,=n, s=2,  8=n -1/4) we have uniformly for 0 < t < l o g n  

(6.1) H,(~o,)(t,~*~-P(") {fo > - c}  +o(n ~ I -- "(t, ~*) 

-~- ~)((C -~ t P ( l ~  fo))  P(f02) - 1/2) _~. o(nO). 

If ~ has power ~+o(n ~ at (0,z*) we have c(z*)=NP6,~.(fo(',z*)z) 1/2. For 
every selRP, 

S n =  fo ( . , ' c  + n-1 /Z  s) + e('c q - n -  l/Z s) + n -1/2 ln(O ) 

=fo +s~P(fg)+c +n -1/2 l,(O). 

Hence P (l~fo)= -P ( fg )  =0  for e =  1, ..., p, and therefore P(l~ 1 P(2ofo). 
If ~ is m.p. in Yoo at (t*, ~*), i.e. 

H,(qo,) (t*, z*) = ~(N + t* Aoo(6 , z*)- 1/2) + o(nO), 
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we obtain by comparison with (6.1) for t = t* 

p (2ofo) p( fo  2)- 1/2 = A1/02 _~_ p(,~2) 1/2. 

By H61der's inequality, this implies 

fo( ' ,z*)=d('c*);to( ' ,z*) Pa,**- a.e. 

Proof  o f  Theorem 2. Fix z*eV and let U denote a sufficiently small generic 
neighborhood of z*. 

Since the test-statistic S, does not depend on the nuisance parameter, its 
stochastic expansion is invariant under small changes of ~. We may therefore 
consider it as depending on t , ,  through s z+n-1 /2 t# (6 , z ) )  with # 
=(#~)~=1 ..... p and # ~ = - A o o  ~ Ao~. The technical convenience of this choice will 
become clear later. 

We denote the alternative by co,( t , r )=(6+n-1/2t ,  ~). Observe that a3,(t, ~) is 
an as. least favorable hypothesis for co.(t,r) in the sense that the power of a 
Neyman-Pearson test for (b, ~') against co,(t, z) is minimal up to o(n-1/2) for z' =z  
+ n-  1/2 t~(b, z). 

Whenever convenient, we suppress fi and the argument (t, ~) of a3, and co,. 
If the test-sequence is m.p. in ~oo at ~ and has power a+o(n  ~ at (0, z) for veV 

then fo ( ' ,~ )=d(z)2o( ' , r )  Pa,~-a.e. for zeV by Lemma 2. Assume first that d=-I 
on V. With the notations of Remark 2, let 

g = (go,..., gp + m)' = (2o, P, ..., lP,fl, ... ,f,,)', 

e o =(1, 0 . . . . .  0)', the unit vector in/R 1 +p+m 

Since the vector g fulfills Conditions C and U 4, we obtain from (5.1) and 
Pfanzagl (1973, p. 242, Lemma 2) that the sequence of p-measures induced by 
P~. and 

x__ ~ ~(x, (5.) + NAoo(~. )  1/2 e o 

/~ - 1/2 ~ (g(xv, ('On) -- Po.),~(g ( ' ,  (Dn))) 
v=l  

+ n 1/2 P~.(g(', c5,)) + NAoo (c5,) 1/2 e o 

admits uniformly for Itf <logn  and zEU an Edgeworth-expansion o(n -1) with 
Lebesgue density Y, defined for r e x  x 1RP • IW" by 

(6.2) z,(r)=cp~( . . . . .  )(r-ni/ZPo,.(g(. , ~ , ) ) -NAoo(~ , ) l /Zeo)  

1 + ~ n-J/ZGj(r-nl/2Pon(g(. ,c~,))-gAoo(C~,)a/2eo, c%,~n ) , 
j = l  

where Z(co, co') denotes the (positive definite) covariance matrix of g(., m') under 
P~o-Define 

A = (ai)/,i= o ..... p+,n=Z- 1 
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Let a~jk(co, co') denote the third centered moments of g(-, co') under Po). Then we 
have 

G 1 (r, �9 �9 _ 1 , ) - -  ~ O'ij  k a i. r. (a jr rp akq rq -- 3 ajk ). 

By Pfanzagl (1973, p. 243, Corollary; notice that this corollary is easily 
extended to cover functions Qj such that Q1, Q(1 ~ Q]OO), ~2,c~ ~zt3(~ fulfill Condition 
B(a)) the sequence of measures 

p. . (7 , .~TAi/2 ~ n-J/zQj(~+NAlo/o2 ) ~. ks . . . . .  oo eo+ eo,')eo 
j = l  o3 

admits uniformly for ]t[__<logn and reU an Edgeworth-expansion o(n -1) with 
Lebesgue-density 

(6.3) z .-n-1/2(Qi( . ,05.)z . )  (~ 

+ n-1 [�89 (', G)  ~ z.) ~~176 (Q~(', 05.) z.)~~ �9 

Since Q~(u, v,w,05.) k z . (u ,v ,w)~O for u ~  ~ and j, k=1,2 we obtain from (6.3) 
uniformly for It] < log n and re  U 

(6.4) P~.{S.>0}= ~ dudvdwz. (u ,v ,w)  
u > 0  

+n-1/2 I dvdw Ql(O,v, w, 05.) z.(O,v, w) 

+ n -1 f dvdw[-Ql (O,v ,w ,  05.) Q(l~ v, w, 05 .) z.(O, v, w) 

- �89 (o, ~, w, 05.)2 z~o~(0, ~, w) + G (0, ~, w, G)  z.(0, ~, w)] 

+o(n-1). 

The Lebesgue-density Z. defined in (6.2) depends on t, z through 05. and co.. 
We consider A(co., 05.)=S-l(co., 05.) and P~o.(g (., 05.)) as functions of co., expand 
them about 05.(t,z) and replace co. by co.(t,z). Then we obtain uniformly for 
[tJ_<_logn and z e U  

(6.5) P~.(g (., 05.)) = (P(g) + n-  1/2 tAoo 1 p(2og ) 

+ n- 1 t2 [�89 Ao~Aoj p((l~j + 1 ~ p) g) 

+ AoJ Ao~(Aoo ~ Aoi) ~ P(l'g)])la. 

+o(n-1), 

(6.6) alj(co ., 05.) = (aij(.,') - n- a/2 tAoo i p(2ogpgq) alp(. ,.) ajq(','))14. 
+o(n-1/2). 

Since g l (', z), ..., gp +m(', Z) are P6, c unc~ to go(', z)= 2o(., 6, z), the expan- 
sion of P~.(g(',05.)) starts with n-1/ateo. This is the motive for expanding about 
05. and not about (6, z). 

We may write S(05., 05.) as a diagonal block matrix with Aoo(05.), L*(05.) and 
F(05.) (see Remark 2) in the diagonal. For pairs (05., &.) as arguments we have 
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(6.7) Gl( r - t eo , . , , )=Gl ( r , . , .  ) 

- �89  tAo 1 ~i~ o aip(rp - t6op ) ajq (rq - t30q) 

- � 8 9  2 Aoo 2 awo aiv(rp- t6o; ) 

+ �89 Oi~o al j-  ~t3Aoo~oo0, 

where 61j is Kronecker's symbol. 
Applying (6.5), (6.6), (6.7) to (6.2) and inserting the result into (6.4), we obtain 

uniformly for ) l < l o g n  and ~ U ,  

(6.8) P•, {S n > 0) = P~, {)~o (', oSn) + NAoo (o3n)1/; > 0} 

+ Aoo*/2 (p (N + t Aoo*/2 ) (n- 1/2 ~ dv dw q)L* (V)0r(W) Q1 (0, v, w,-) 

+ n - I  I dv d w  ~OL,(V ) ~0r(w ) [(G 1 ( -NAlo /2 ,  v, w, ", ") 

+t2b'v+�89 ) 

- �89 + tAoo*) 0_1 (0, v, w,.)2 
-Ql(O,v,  w,.)Q]~ w, .) 

+ Q~(0, v, w, ")])l~~ + o(n- 1). 

Let d=Ao~Aoj(t~i-Lij). By (2.1) we have 

h = a ' f  = d I(/~ . . . . .  I p) = d - Aoi AojLij, k 2k. 

Hence 

P (dgi) aia = P (d2o) A oo z 6o~ + P (d P) A* B 3ej + a~ 3~, j_ p_ ,. 

Furthermore, 

(Ago* Aoi) ~ p(li gj) ajk =(Ao0 a Aoe)~ cSpk. 

Hence the functions b: T--,IR p and k: T x IR~IR do not depend on the test- 
sequence, b is locally bounded on T, and k is a polynomial in t, the coefficients of 
which are locally bounded functions of z. 

We shall now make use of the assumption that for r~V 

(6.9) p(n) ~r >0}=c~+o(n-1) .  ~(0, ~) t~ 

By Pfanzagl (1973, p. 242, Lemma 2) there exist C z (z) and Cz(z ) (not depending 
on the test-sequence) such that 

(6.10) P((~) ){f~o(.,~5, z)+ NAoo(3,z)a/2>O} 

=qS(N) + q~(N)[n -1/2 Cl (r) + n -1 Cz(v)J + o(n-1). 

Inserting (6.9) and (6.10) into (6.8) for t = 0  we obtain the following relations for 

(6.11) Cl + Aol/2 ~dvdwq)c,(V)~Or(W)Q~(O,v,w,.)=O, 
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C2 + Aoo ~/2 ~ dv dw ~o.(v) ~oAw) 

�9 [GI(-NAlo/o2V, W,., .)QI(O,v,w, .) 

- � 8 9  ~/2 QI(O, ~, w, .)~ 

-Q1  (0, v, w, .)O~~ v, w,-) 

+Q2(0,v,w,.)] =0. 

Aplying these relations to (6.8) we obtain uniformly for ]tl < log n and z �9 U 

(6.13) P~. {S, > 0} = P~" {-~o (', eS,) + N A  o o (05,) 1/2 > 0} 

+ qo(N + t Aoot/Z) ( - n -lIe C 1 

+ n-  1 [ _  C2 _ tk( ' ,  t) C 1 + ~ dv dw (pL.(V) (pr(W)(t 2 Ao~/2 b'vQ1 (0, v, w,') 

+�89 ' wQl(O, v, w,') 

-�89 v, w, ")2)])1~ + o(n-1). 

By Lemma 2 (see also Remark 2) the function Q1 may be decomposed into 
two summands 

(6.14) Ql(u , v ,w , . )=Ql (u ,O ,w , . )+Rl (u -NAUoZ,  V,W,.), 

where R 1 (%o, rl . . . . .  ? , f l , . . .  ,fro, ") is defined in (3.10) and depends on the family of 
p-measures only and not on the test-sequence. Hence 

S dv dw (PL* (V) r V 01(0, V, W,') 

= ~ dv dw (pL,(V) q~r(W) vR 1 (-NAlo/o 2, v, w, ") 

and does, therefore, not depend on Q1. The two remaining terms in '(6.13) which 
depend on Q1 may be rewritten, omitting the factor -! tA-3/22 0o , as 

(6.15) S dv dw qOL. (V) Or(W) [Q 1 (0, v, w,')2 _ tAo~ a' w Q 1 (0, v, w,')] 

= ~ dv dw CpL.(V) Cpr(W ) [Q~ (0, 0, w , ' ) -  C - � 8 9  aoJ  a' w] 2 

+~dvdwpL,(V)Cpr(w)[Rl(  1/2 - N A o o , V , W , ' ) - 2 C  

- t A o ~  a' w +2Q1 (0, 0, w, ")] R 1 ( -NA~/o  2, v, w, ") 

- 2A~/o 2 CC 1 - t Z D _  C 2. 

It is convenient to introduce 

C=~dwqor(w) Ql(O,O,w,'). 

Using the canonical representation (6.14) and relation (6.11) we obtain 

C =  --~00A1/2 Cl_~dvdw(PL,(V)Cpr(W ) R l ( _ N A o o , V  w,'). 

According to (3.8) and (3.10), the function Rl(~. o, •, ..., IV,f1 . . . . .  f~, .) consists 
of summands which either do not depend on fl,.--,fm or contain one of the 
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functions r 1 .... , r p as a linear factor. Together with relation (6.11) this implies 
that the second integral on the right side of (6.15) does not depend on Q1. 
Straightforward, if tedious, computations show that the terms in (6.13) which 
do not depend on Q1 add up to H2,. 

The general case fo =d2o reduces to the case d - 1  as follows. Let r ("),neN, 
be a o(n-1)-consistent estimator-sequence for the nuisance parameter. By Re- 
mark 10, the improved estimator-sequence T, (")r 6,z("l), n~N, is as. m.1. o(n -~) (2) t , 
and admits a stochastic expansion about r up to n -3/2 l,(2) which depends only 

i) on I i and t -L~j, i,j=O,...,p, and hence on g. Hence we may apply the above 
proof to the modified sequence of test-statistics dtT,(")t. 6,~(")))-1S,, neN,  the (2) *- , 
stochastic expansion of which starts with 

2o + NA~/o 2 + n - 1/2 [ d  - 1  dC t ~  (~0 + NA~/o 2) 

+ Q1 (~0 + NA1/o2, rl . . . . .  lP,ffl . . . . .  fro,* )3" 

The term d-ida2 * (2o + NAUo 2) cancels out (see (6.15)). 

Proof of Theorem i. (a) See Pfanzagl (1973, p. 260, Proposition). 

(b) The proof is contained in the proof of Theorem 2. All expansions should 
be derived for z* only instead of ~ U. Observe that relation (6.11) is needed only 
for z=~:*, since in the n-1/2-term of (6.8) the parameter o5, may be replaced by 
(6, z*) without changing the power by more than o(n-1/2). 

Proof of Corollary 1. The corollary is an immediate consequence of Theorem 1 
except for the assertion that the expansion of the power of test-sequences in 
3-~1" C~oC~5~ 1 is locally uniform on T. This follows from the proof of Theorem 2. 

Proof of Corollary 2. (a) By assumption, there exists a o(n-~)-consistent estima- 
tor-sequence r ("), nEN, for the nuisance parameter. Hence by Remark 10 there 
exists an as. m.1. estimator-sequence o(n-1) for the nuisance parameter, namely 
T/")t'(2) ~ , 6, z(~)), n~N. The explicit form of its stochastic expansion is .given in 
Pfanzagl (1973, p. 253, Lemma 8). The computation of the stochastic expansion 
of the test-statistic pertinent_ to ~( . ,  q) is straightforward. 

(b) Let ~e~22*c~oc~SP2, and let Qa denote the n-a/Z-term of the stochastic 
expansion of the test-statistic. We have to find q s ~  such that ~ 2 q ~ ( . ,  q). By (a) 
and Theorem 2, this is equivalent to finding q e ~  such that for all t > 0  

(6.16) f dwcpr(W)[qa' w-�89 a' w] 2 

<= ~ dw ~oAw)[Q ~ (O, O, w, . ) -  C- �89  Aoo* a' w] 2. 

It follows easily from H61der's inequality that this holds true for 

(6.17) q := ]~ dw Or(W)a'w(Q 1 (0, O, w, .) - C)l (~ dw (pr(w)(a' w) 2)- 1. 

Since Q, fulfills Condition B, the function defined by (6.17) fulfills a local 
Lipschitz condition on T, so that q ~ .  Hence the class ~(.,q), q e ~ ,  is essen- 
tially complete in ~*C~JooC~.  
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If q l +q2, say ql (z)<q2('C), then by (6.17) we have fl( ' ,  ql)~-2~(.,  qa) at (t, z) 
with t<Aoo(6,'c)(ql(r)+q2(z)) and ~( ' ,qi) '<z~_( ' ,qz)  at (t,z) with 
t >Aoo(6, z)(q ~(z) +qz(z)). Hence the class p( . ,  q), q e ~ ,  is minimal. 

(c) The admissibility criterion follows immediately from the fact that the 
inequality in (6.16) with the q defined in (6.17) is strict unless Q x ( O , 0 , w , . ) - C  
=qa'  w. 

7. Appendix 

This section contains the explicit form of 

H2 =ho+n- i /Ehx  + n - i h 2  . 

We have 

//2, (t, z) = ~ ( N  + A oo 1/~ t) 

+ ~o(N + Aoo 1/~ t)&o ~/~ t[n-~/~A(N, Aod/~t,.) 
+ n-  1B(N, Aoo i/2 t,-)] [(a, o, 

where 

A ( N , s , ' ) = a l o N  +aolS,  

B(N,  s, .) = ~ bi jN i s j. 
i + j = 0 ,  2, 4 

The coefficients a~j and blj are presented in an economic way with the 
following notations. We standardize expressions Li, L~,j,L~,k etc. by multiplying 
them with a power of A10/0 2 according to the number of indices. Examples: 

(i) = A~/0 2 L,, (i,j) = A o o Li, j, (i j, k) = A 3/02 Lij, k. 

If in a bracket an index, say i, is replaced by a dot this means multiplication by 
Ao~Ao~ and summation over i=0,  ...,p. If a pair of indices i,j is replaced by a 
pair of asterisks or plus signs, this means multiplication by AooiAij and 
summation over i,j = 0, . . . ,  p. Examples: 

(0 ", .)=Aoo2AoiAoj(Oi,j)=Ao~/2 Aoi Aoj Lo,, j 

( . - , - ) (* ,0 , ' )  =Aoo ~ Ao(i" ," )(j, O," ) 

= Aod Aii  Aok Aom Aoq Lik, m L j, o, q, 

(*, + , ' ) (*  +, ' )  =Aoo 1A,jAoo 1Akm(i,k, ")Urn, ") 

= A3~ Aij Ak~ Aoq Aor Li, k, q Ljm, r" 

With these notations, 

~ o  = --~(.  ,. , . )  
a o l = - � 8 9 1 8 9 1 8 9  
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=~_~( . , . , .)( . . , .)_�88 2 1 . �9 . . , . )  - ~ ( , - , - , . )  b o  0 1 2 2 1 , . , .)  -~( 
+�89189 , . )  , , , -~( , " ) ( , , " )+ �89  9(,, + ' )  
+ �89189  

-�88 +,.)(,,  +, .)- �89 +,-)(, + , . ) - �88 +,.)( ,  +,-) 

b 2 o = - ~ + ~ 2 ( ' , ' , ' ) 2 + 1 ( ' , ' , ' , ' ) - ~ ( * , ' , ' ) ( * , ' , ' )  

b l  I 1 3 )2 1 = -~+~( ' , ' , "  + ~ s ( ' , ' , ' ) ( " , ' ) - ~ ( ' , ' , ' ) ( o , ' , ' )  
2 -~ ( . , . , . ) (o . , . )+~( . , . , . , . )+ �88  

1 , -�89 .)-~( ,.,. )(,, .,. )-�88 .,. )(,,.. ) 
I , -~(,.,.)(,.,.)+�89 

+ �89 �9 �9 )(, o,. ) 

bo2 =9*-(" " "~2 +_4r. ,,, ~, ,.,.)(.,,.)+(..,-)~-~(-,.,.)(o,.,.) 

- �88 ~ ., -~( . ,  , - ~ ( . ,  . ) ( o . , . )  . . ) ( o . , . )  

+ ~(o,. ,. )~ + }(o, �9 �9 )(o .,. ) + ~(o. ,. )~ 
+ ~(.,. ,.,. )+ �89 .,. )+ 1(... ,. )+_~(.. ,.. ) 

1 0 1 0 , 1 0 -~( , . , . , . ) -~ (  , - . . ) - ( o . , . , . ) - ~ ( . . , . )  
1 0 -~(.,..)+ �88188189 

+(0,0..)+ �89 o 1 , o, . 1 , . ) - ~ ( ,  .)(.,., )-~( ,., )(.,..) 
1 , -(,,-, .)(, .,. )-~,,.. )(,,., )-~( ,.. )(, .,. ) 

1 , .  -~( ,.)(,. -) +(,,.,-)(,, o,-)+�89 o,.) 

+ (, .,. )(,, o,. ) + (,,. ,. )(,, o. ) + �89 �9 �9 )(,, o. ) 

+(,., .)(,, o.)+ (,,., .)(, o, .)+ �89 o,. ) 
1 , +(, .,.)(,o, . ) -~(  ,o, .)( , ,o, .)-( , ,  o,.)(,,o.) 

- ( , ,  o,.)(,o,.)-�89 o.)(,, o . ) - ( , ,  o.)(,o,.) 

-�89 o,-)(, o,.) 

b ,o  = 0  

b 3 1  1 )2 - - ~ - ( "  * * 

b 2  2 = 5 . . ) 2  - ~ ( . ,  , - ,q( . , . , . ) ( - . , - )+,%(. , . , . ) (o , . , . )  

+~(. , . , . )(o. , . )  
b 1 3 = _ ~ ( . , .  ' 2 1 1 . .  , ) 2  �9 ) -~ ( . , . , . ) ( . . , . ) -~ (  , 

+1(. . , . ) (o, . , . )+�88 , -)+~(.,-,.)(o.,.) 

+ �89 ,. )(o.,. )-~(o, .,. )~ -�89 .,. )(o-,. ) 
1 { 0 "  �9 ~2 

b o 4 =  i 1 1 0 - ~ ( ~ ( . , . , . ) + � 8 9  , . , .)-(o., .))~. 
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For the case without nuisance parameter, H2n reduces to the "envelope 
power function" obtained in Pfanzagl (1974, p. 18). See also Pfanzagl (1975, p. 
13). 
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