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1. Introduction 

Since LeCam in a fundamental paper has established both global as well as local 
asymptotic lower bounds for risk functions of estimates (LeCam, 1953, Theo- 
rems 10 and 14), the usual regularity conditions of estimation theory have been 
weakened considerably. The local result of LeCam has been proved by Hajek 
(1972, Theorem 4.1) under weak regularity conditions. The present paper tries to 
do the same with LeCam's global result. 

There are several previous attempts in order to establish a result similar to 
LeCam's global theorem. In the present context the most important one is an 
immediate consequence of Hajek's convolution theorem (1970, Theorem). (There 
is another approach due to Bahadur, 1964, which has been improved by 
Pfanzagl, 1970.) The main difference (apart from regularity conditions) between 
LeCam's result and Hajek's is that Hajek considers only such sequences of 
estimates whose distributions are asymptotically invariant in some sense, where- 
as LeCam imposes no such restrictions at all. 

One possibility of generalizing LeCam's theorem could be giving weak 
conditions such that a Bernstein-v. Mises result holds. This was the original idea 
of the author. However, as it was pointed out to the author by Prof. L. LeCam, a 
suitable combination of Hajek's convolution theorem and of a general result of 
LeCam on the invariance of limit distributions (LeCam, 1973a, Theorem 1) 
leads to better results. 

This method is used in the present paper. A direct application of Hajek's 
result is not possible since, roughly spoken, the invariance theorem of LeCam 
deals with weak convergence in Lo~ where Hajek's result needs convergence a.e. 
We provide a suitable (and in fact straightforward) generalization of Hajek's 
result in Corollary 1. It is based on a "strong" convolution theorem which does 
not rely on invariance properties at all (Theorem 1). So we obtain global 
asymptotic lower bounds for risk functions of estimates (Proposition 1). 

A second application of the invariance theorem under certain conditions 
yields a more handy version of the convolution theorem (Corollary 2). This 
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version implies a characterization of those sequences of estimates whose risk 
functions attain the lower bound (Proposition 2). This gives also a characteri- 
zation of asymptotic Bayes estimates. 

We assume that the LAN-condition is satisfied in z-measure where z is a p- 
measure on the parameter space. If z is concentrated at a single point then our 
condition reduces to the classical LAN-condition which was introduced by 
LeCam, 1960, and is the Central assumption of Hajek's papers, 1970 and 1972. 

2. Notations and Results 

Let (f2,, ~,), n~N, be a sequence of measurable spaces and let O __.IR k be open. 
Assume that {Ps,,[~',: ~ O } ,  n~N, is a sequence of families of p-measures 
(probability measures) such that O~P~,,(A), Aed , ,  heN, are Borel measurable. 

We use the following notations. If PLd, QLd are p-measures on a measurable 
space (~2, d )  then dP/dQ denotes the RN-derivative of the Q-continuous part of 
P with respect to Q. If X: ~2--, IRk is a measurable function then ~(XIP) denotes 
the image of P induced by X on Mk. cgOo(IRk) denotes the space of continuous 
functions with compact support in IRk and cg o denotes the uniform hull of 
Cgoo. 2kin k denotes the Lebesgue measure, ~t[M k the point measure at teIR ~, and 
Va, A[M k the normal distribution with mean aeIR k and covariance matrix A. 
JCdl(d ) denotes the family of substochastic measures on d .  

The following definition states the central assumption of the present paper. If 
z]2 k is concentrated at a single point then it reduces to the classical LAN- 
condition. The classical LAN-condition is defined e.g. in Hajek, 1972. 

Definition 1. Let z]~ k be a p-measure satisfying z (O)=l .  The sequence 
{P~,,~: 0eO}, heN, satisfies LAN in z-measure if there are 

(1) a sequence of positive numbers ~,, hEN, decreasing to zero, 

(2) a measurable function F mapping O to the set of symmetric k x k-matrices 
satisfying z {F(O) is positive definite} -- 1, 

(3) measurable functions As: O x ~?.~IR~, heN, satisfying 

lim ly f ( ' ,  0) d~(d,(0)IP~,,) - y f ( ' ,  O) dvo,r(~)l = 0 
neN 

m z-measure for all measurable functions f :  IRkxO~IR,  such that 
f ( ' ,  ~9)e C~oo(lRk), ,9~O, 
(4) measurable functions Z,: O x IRk x f2, -*IR, n~N, satisfying limZ~(., t )=0  in 
~P~,,z(dg)-measure for every t~lR k, such that ~ r  

. . . .  =- exp (t'A ~(~9) - �89 t' F(8) t + Z~(g, t)) 
dP~,~ 

for 8~O, t~IR k, n~N. 

Sufficient conditions for LAN in )~k-measure are given in LeCam, 1970. In 
those cases 6, = n-t/z, n~N. 
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Definition 2. Let KIN k be a p-measure satisfying r(O)= 1 and assume that the 
sequence {Ps,,: O~O}, n~N, satisfies LAN in c-measure. A sequence ((P,),E~ of 
estimates satisfies LIK in r-measure if for every e > 0 

"~  ' (.1 o .  [ ) 

The name LIK has been chosen because a sequence satisfying this condition 
behaves similar to logarithms of likelihood ratios. 

Sufficient conditions for the existence of sequences of estimates satisfying 
LIK in T-measure can be obtained combining Doob's martingale method for 
consistency of posterior distributions with conditions of LeCam, 1973b, being 
sufficient for square root consistency of posterior distributions. 

Remark 1. It follows from contiguity (cf. the second step of the proof of Lemma 
2) that LIK in T-measure implies 

lim~,~N p~+~,,,,,{ I~((p,_0)_F_a(O)A.(0)>e}r(dO)=O 

for every s > 0. 

Definition 3. A function W: lRk-~ [0, 1] is called loss function if 1 - WeCgo(lRk). A 
loss function satisfies condition (A) if 

(A) for every centered normal "distribution Vo, A and every p-measure pl~k 

WdVo,A ~ ~ Wd(Vo,A*P). 

A loss function satisfies condition (B) if 
(B) for every centered normal distribution v0, A and every p-measure PI~ k, P:ke o, 

Wdvo,A < Wd(vo, ,P) 

Example 1. It is easy to see that loss functions W = L o  I1.11 satisfy conditions (A) 
and (B) if L is increasing and not identically zero. 

Throughout the following we denote N(O)=Vo,r_,(a), 0~0 .  Proofs of Pro- 
positions 1 and 2 are found in Paragraph 3. 

Proposition 1. Assume that "cl~ k is a p-measure satisfying r(O)= 1, r <)k, and that 
the sequence {P~,,: ~ O } ,  n~N, satisfies LAN in "c-measure. Then for every 
sequence of estimates (O,),sN 

n~iN \ o n !  

if W satisfies (A) and g~L+l(z). 

Remark 2. Let the assumptions of Proposition 1 be satisfied. Assume that (~,),~N 

is a sequence of estimates such that 2,r (~- ( ~ -  0),P~,,) converges vaguely r-a.e. 



38 

Then Proposition 1 implies 

lim S W (l(,9-(p~) t dPo,,> ~ WdN(O) z-a.e. 
n ~ N  \ 0  n / 

If z~  2 k and if the limit distributions are continuous in geO, then 

Remark 3. Let P~IN k, nsN, and p}~k be p-measures. The family ~ of functions 
W: IRk-,IR + such that 

lira I WdPn > f WdP 
h e n  

satisfies the following conditions: 
(1) ~ contains the constants. 

(2) ~- is a positive convex cone. 

(3) If VV~,, n~N, Wn~W, then WeJ~ 

This implies that the class of loss functions W for which Proposition 1 is true 
can be extended considerably. It contains all functions W--LoI[.[I, where L: 
I R §  IR + is nondecreasing and lower semicontinuous. 

Proposition 2. Assume that zl~ k is a p-measure satisfying z(O)= 1, z ~2 k, and that 
the sequence {P~,,: ~eO}, n~N, satisfies LAN in z-measure. Assume in addition 
that there exists a sequence of estimates satisfying LIK in z-measure. Then a 
sequence of estimates (O~),~N satisfies 

for some loss function W satisfying (B) iff ( ~ . ) ~  satisfies LIK in z-measure. 

Remark 4. Let the assumptions of Proposition 2 be satisfied and let W be a(loss 
function satisfying (B). Propositions 1 and 2 imply that every sequence of Bayes 
estimates for the prior distribution z satisfies LIK in z-measure. 

H. Strasser 

3. The Convolution Theorem and its Consequences 

We begin with a version of the convolution theorem which is independent of 
invariance properties of limit distributions. Assume that zl2 k is a p-measure 
satisfying 4(0)=  1 and that the sequence {P~,,: ,9~0}, neN, satisfies LAN in z- 
measure. Let (tp,),~ be an arbitrary sequence of estimates. 

We introduce some notations: 

R,(~, t)= ~ (t 1 

S.(8, t)=~f (F-l(~)A.(~)-{-(~.-~)JPo+~.t,.), ~9 + 5~t~0. 
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Both R, and S, can trivially be extended to kernels on O x l R k x ~ k .  Let 
D~={tMRk: I[tll <~}, ~>0, and define 

1 
R,,~(0) =~k(-~)~) f R,(O, t) dr, 

D~ 

1 
S~,~(O) = ~k--V@~) ~ S.(O, t) dt. 

D~ 

Recall that N(O) = vo, r- ,~), 9~0 .  

Theorem 1. Assume that z[~ k is a p-measure satisfying r (O)= 1, and that the 
sequence {P~,n: ,9~O}, n~N, satisfies LAN in v-measure. Then for every sequence 
(O.).~N of estimates 

lira lira f JIR.,~(~9)- N(O)*S.,~(O)H r(d~9) =0.  

The proof of Theorem 1 is given in Paragraph 4, 
Let (T, 3-) be a locally compact space with countable base and Borel algebra 

and let (f2, sJ,/~) be a o--finite measure space. Consider (substochastic) kernels 
P: f2-~,///ll(N). Let C~oo be the space of continuous functions on T vanishing 
outside compacts. We define the ,~o0|162 of the set of all kernels P 
to be the coarsest topology such that all functions 

P~--~ff(t) P(co)(dt) g(co)/~(dco), feC~oo, g~Ll(/~), 

are continuous. It is well known that the set of all kernels endowed with this 
topology is metrizable and compact. 

The following result is a generalized version of LeCam's invariance theorem 
for limit distributions (LeCam, 1973a). 

Theorem 2. Assume that O ~ I R  k is a measurable subset and let z]~ k be a p- 
measure satisfying r(O) = 1, r ~ 2 k. Let (F , )~  be a sequence of kernels F,: 0 x 1R k 
--+Jgl(.~ k) being ~oo(iRk)|174 to a kernel F. I f  there is a 
sequence 3, ~ 0 such that 

Fn(O+&,r,t)=Fn(O,r+t), O~O, r,t~]R k, n~N, 

then for z-almost all O ~ 0 

IF(O, t) h(t) dt =~ F(0, t + r) h(t) dt 

for all r~lR k and hcLl(2~). 

Proof. The proof is similar to the proof of Theorem 1 in LeCam, 1973a, 

Throughout the following we assume that t i n  k is a p-measure satisfying z(O) 
= l, r ~ ; t  k. We combine the convolution theorem with the invariance theorem. 

Corollary 1. Let the assumptions of Theorem 1 be satisfied and assume in addition 
that z ~ 2  k. Then for every sequence ( ~ ) ~  of estimates and every subsequence 
N O ~ N such that (R~)n~o and (S~)~Vo are ~oo(1R k) | L 1 (r | 2k)-convergent 
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lim Iim(R,(.,O)-N.S,,~)=O (Cgoo(iRk)| 

Proof. In view of Theorem 1 we have only to show that 

lira (R,(., 0) - R,, ~) = 0 (Cdo ~ (iRk) | L1 (z)) 
nc~qo 

for every a>0 .  Let R be the CdooQLl(z| of (R,),,No. Then Theorem 2 
and Lemma 4 (of paragraph 4) imply that 

S a(8, O) g(8) z(dO)= ~ R(O, t) g(O) z(dO) 

for all g~Ll(z ) and t~iR k. This proves the assertion. 

Corollary 2. Let the assumptions of Theorem 2 be satisfied. Assume that z ~ 2 k and 
that there exists a sequence of estimates satisfying LIK in z-measure. Then for 
every sequence (~,),~N of estimates and every subsequence INo~_N such that 
(R,),~o and (S,),~No are Cdoo(iRk ) | Ll (z | 2k)-convergent 

lim (R,,(., 0) -- N * S,(., 0)) = 0 (ego o (IRk) | L1 (z)). 
.eNo 

Proof. Let (~o,),~ N be a sequence of estimates satisfying LIK in z-measure. Define 

T,(S, t ) = ~  (~o,-~,,)]P,(S, t) , O+6,teO. 

Condition LIK implies that 

l im(S , -  T,) = 0 (~oo| | 2k)). 
h e n  

Since T,, neN,  satisfy the functional equation of Theorem 2 the ~oo | Lt(z @ 2k) - 
limit of (S,),~o is invariant in the sense of Theorem 2. Now the proof is finished 
similar to the proof of Corollary 1. 

Proof of Proposition 1. We may assume g = 1. It is sufficient to prove 

lim .[I WdR.(O, O) z(dO)> ~ WdN(O) z(dO) 
n~INo 

for every subsequence No~_N such that (R,),~o and (S,),~o are Cdoo| 
L~(~| For such a sequence No condition (A) and Corollary 1 
imply 

~ WdN(O) z(dO) <= lim lira S~ Wd(N *S,,3(O) z(dO) 
r ~ o~ nE~qo 

= lira $~ WdR,(O, O) z(dO). 
ne~qo 

Proof of Proposition 2. The assertion is proved if we show that lira S,(., 0) = % in 
n6~'q 

z-measure. It is sufficient to prove it for every subsequence No~_N such that 
(R,).~o and (S,),~No are Cgoo|174 Define D~={ZEIRk: 
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Ilzll ~ } ,  ~ 0 ,  and 

M~(0)= inf ~ W(y+z)g(O)(dy), 0~0 ,  
zCD~ 

A,,,={O~O: Sn(&O)(D'~)>e}, e>0 ,  neN.  

It follows from condition (B) that r{M~>Mo} = 1 if 7>0.  For every n~N, e>0,  
> 0, we have 

~ Wd(U(O)*S.(O, 0)) r(dO) 

= S~S W(y + ~) N(O)(dy) s.(o, O)(dz) r(dO) 

> ~ [S.(O,O)(D'~)M~(O)+S.(O,O)(D~)Mo(O)]r(dO)+ ~ Mo(O)v(dO) 
A,,, ~ A;~, ~ 

> ~ [eM~(O)+(1-e)Mo(O)]~(dO)+ ~ Mo(O)z(d,9) 
A~,~ A~,,~ 

=~Mo(0 ) z(dO) +e ~ (M~(O)-Mo(O)) z(dO). 
An, 

Then 

l i ra  ~ W d R n ( O  , O) "c(dO) = ~ m 0 d r  
n~N 

and Corollary 2 imply 

lira ~ ( M ~ -  Mo) dr = O. 
n~No An, 

Since r { M ~ - M  o >0} = 1, we obtain lim r(A,,~)=0 and therefore 
neNo 

lira ~ S,(O, 0) (D~,) r(d0) = 0 
neNo 

which proves the assertion. 

4. The Proof of the Convolution Theorem 

Assume that t i n  k is a p-measure satisfying r ( O ) = l  and that the sequence 
{Po,,: 0eO}, n~N, satisfies LAN in r-measure. 

The convolution theorem is known for the particular case when r is 
concentrated at a single point. Our proof of the general version follows the 
pattern of Hajek's proof. In order to increase the readibility the main steps are 
isolated. 

Lemma 2. Assume that r[~ ~ is a p-measure satisfying z ( O ) = l  and that the 
sequence {P~,,: 0~O}, n~N, satisfies LAN in z-measure. Then there exist 
(1) a sequence k,'[ ~,  
(2) measurable functions C,(., t): O--+IR such that 

lim~ sup [C,(O,t)-lIr(dO)=O for every a>O, 
n~N I]tll <a 
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such that the measures Q,,(O, Old,.  Q.(g, t)~ Pa,., '9~0, defined by 

dQ.(,9, 0 
- Co('9, t )  exp[t'A*(,9)-�89 

de~,, 

and A*----A.I{IIA.I I __<k.}, 'gEO, t ~  k, are p-measures and satisfy 

lim~ lIPa+o.t,o-Q.(,9, t)H v(d,9)=O 
n~N 

for every tslR ~. 

Proof. For convenience we introduce the following notations: 

=dPo+~.t_ ....... 
f~,t(co., `9) dP~,. (co")' co.sf2., ,9~0 , 

dQ.(,9, t) 
g.,,(co.,,9)= (co.), c o . ~ . ,  ,9~O, 

dPa,. 

P. = ~ Po,.r(d'9), 

/4 = ~ S (exp  Iv_ ~ c r (o) t, c r (o)t) r (dO), 

for t6lR k, neN.  

pt step: We show that  the truncation can be chosen in such a way that for every 
a > 0  

lim~ sup 1C.(,9, t ) -  1]z(d,9)=0. 
n ~  Iltll=<a 

Note that  the family of functions 

.,fexp(t's-�89 t) if [IsLI < i ,  
Sk--+ f i ( S  , t, '9)=[exp(-�89 t) if f(s[[ > i, 

'9~O, Iltlj<i, is uniformly bounded and equicontinuous on {)]s])<i} for every 
i~N. This implies that  

lim ~ sup I f f~(s, t, `9) ~(A.(,9)1P~ .)(ds) - f N(s, t, ,9) Vo,r(~)(ds)[ "c(d,9) = 0 
n~N Ntll =<i 

for every i~N. A standard argument  yields a sequence (k.) .~,  k.~oo, such that  

lira 5 sup ISL (s, t, `9) s P~,.)(ds) - [. L . ( s ,  t, `9) Vo,,-r ~(d,9) = O. 
nEN I I t ] l < k .  " 

Defining A*--=A.I{IIA.I I __<k.} we obtain 

lim~ sup [~ exp(t'A* - �89  dP.,.-vr-~t.r{[Is[I <k.}l d ~ = 0  
hen Ittll <a  

for every a >0. Obviously, this implies 

lim~ sup [~exp(t'A* - � 8 9  . -  l [dT=0.  
n~N Iltlj ~a " '  

H. Strasser 
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Since 

C.(O, t )=  1/~ exp (t 'A*(O)- �89 t'F(O) t) dP~,., 

the assertion is proved. 

2 "~ step: We prove that  

lim j IIPo + ~.~,. - Q~(O. t)) I .(dO) < �89 j If.,, -g., ,} dP.. 
n~N n~IN 

To this end we have only to show that  

limjPo+~.,, .(A.)z(dO)=O if lira P.(A.) = 0. 
n~N n~N 

Standard reasoning yields for every a < 

Ps+o.~,.(A.)<e~P~,.(A.)+ 1 - ~ sS~(s Po,.)(ds) 
Isl<a 

which implies 

lira yP~+~.,,.(A.)r(dO)< l -  ~ s#t(ds). 
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Let d(e, 0) = exp (G [It I{ II F ~/2(.9)IL - �89 t'F(O) t). Then 

=<{f,,~- exp(t d .  -~ t 'F t ) l  + - g.,,I I f . , , -  g.,,I ' *  ~ exp( t 'd~- �89  

< exp (t'A. - �89 t 'Ft)lexp Z.(t, .) - exp(t'A* - t'A.)l 

+ exp ( t %  - �89 t'/'t)I c . ( t ,  .) - 11 

implies 

P. { f f . , t -  g..tf > s} < P. {exp( t 'A. -  �89 t ' r t )  > d(e, .)} 

+ P.{ fexp Z.(t, .) - exp(t'A* - t'A.)] > s/2d(e, .)} 

+ P,,(I c,(t, . ) -  1I> s/2d(s, .)}. 

This proves the assertion in view of r{d(s, . )<  co} =1. 

4 th step: We prove that (fs is uniformly (P.)-integrable for every t ~ N  k. To 
this end we show that  

lira 2,r t P~) = Pt vaguely 
n~lN" 

lira I s~ ( f . , t  [P,,)(ds) = I s kq(ds), 
h e n  

n~N [sI<a 

Since S s&(ds)= 1 the assertion is proved. 

3 rd step: We prove that  iim I f . , t - g . , t [ = 0  (P.) for every tMR k. Note that for every 
n~IN 

e > 0 there exists c~ < ~ such that  

lira P,,,{ JJA, JJ > G ]JF1/211} _<s. 
nffN 
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The first equation is obvious. Moreover we know that ~s#t(ds)= 1. Then the 
second assertion follows from 

lim ~ sS~(L ,tlP~)(ds) = lim 5~ d ~  t'" dPa,, r(dO) 
neN h e n  a / g ,  n 

for reasons of contiguity. 

5 th step: We prove that (g,,,),~r~ is uniformly (P,)-integrable for every t e n  k. We 
do it in same way as in the 4 th step. In the present case this is almost immediate. 

Lemma 3. Assume that rim k is a p-measure satisfying r ( O ) = l  and that the 
sequence {Pg,,: geO}, neN, satisfies LAN in r-measure. Then 

lim ~ ]s Po + a.t,.) - v/'(g)t, r(g)[ z(dS) = 0 
?tEN 

vaguely for every tMR k. 

Proof The proof is completely analogous to the case when r is concentrated at a 
single point. 

Lemma 4. Assume that t in  k is a p-measure satisfying z ( O) = l  and that the 
sequence {Pg,,: O~O}, n~N, satisfies LAN in r-measure. Then .for every t~lR k, 
8>0, there exists tl(8, 0 > 0  such that 

lim 5 IIPg+a . . . .  -P~+~. , , . t l ' c (dg)<8 if ][s-tll ~rl(e, t). 
n e N  

Proof. Lemma 2 and Lemma 3 imply that 

lim 5 s s)) dr = ~ vrs, rdz vaguely 
n e~',l 

for every seF, k. Fix teIR k, 8>0. Since 

lira ~ Vr,,r(D;) dr =0  
b~oo 

there exists some b > 0 such that 

8 
S vrt, r(O;) dr < g  

Since 

s~j'v~,,AD;)d'c, s~IR ~, 

is continuous there exists a > 0 such that 

~vrs, r(D~)dr< 3 if I[s-t[I <a. 

It follows that for ILs-tl] < a  
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lira ~ IIQ,( O, s)-Q,(O, t)l I z(dO) <lira ~ sup IQ,(,9, s)(A c~ { A*( O)CDb} ) 
ne~q n~N A ~ ] n  

2e 
- Q,(O, t)(A ~ {A*(0)eDb})[ z(d0)-~ 3" 

Furthermore we have 

sup ]Q,(O, s)(A c~ { A*(O)6Db} ) - Qn(O, t)(A (~ { A*(O)~Db} )] 
A ~ / n  

1 dQ,(O,~ 
< ~ dQ,(O, dQ,(O, t) 

A*(• 

I c.(o, s) 
= ~ 1 -exp[(s-t)'A*(O) -�89 s-t'F(O)t)]ldQ.(O,O 

< c~ s) t'r(~) O] 
1 c.(o,t)  e x p[ - � 89  

+C.(& s) ~ ~ . . . . . .  
exp L - ~ t s ~te) s - t'F(O) t)] 

[1 - exp [(s - t)'u]l LP(A*(O)[Q,(O, t))(du). 
Dr, 

This implies that 

lira S lrQ,(O,s)-Q,(O, t)JI r(dO) < ~ tl -exp[ - �89  s - t ' r ( o )  0]l~(d0) 
n~fi'q 

+ ~ exp [ - �89 (sT(O) s - t'F(O) t)] 

S l1 - exp [-(s - t)' u]] Vr(s)t,r(o)(du) r(dO). 
Db 

Choosing r/(e, t) sufficiently small proves the assertion. 

The following lemmas are the key for proving the convolution theorem. 
They provide the technical essence of Hajek's method. 

Lemma 5. Let p[~k be a p-measure and let D~={se]Rk: IIsH <c~}, c~>0. Then 

1 
lira P Et)(D~)dt=O. 

~ o o  

Proof Define E~={s~]Rk: I[sj l<~-l/~}.  Then we have D ~ + E c _ D ~  which 
implies DV~_D~- t  for every t~E~. It follows that 

1 1 > )~(E~) P(D,/~) > 2k(E~) 
2k(D~) J" P(D~ - t) dt ~ ~ ~ P(D~ - t) dt = 2~(D~) w, = 2k(D~) - P(D'~). 

. D ~  

H e n c e  

lira ~ f (P*~t)(D'~) & <  lim P(D'~)+ lira ('l--~].2k(E~) ~ 

This proves the assertion. 
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Before we state Lemma 6 we have to introduce some notations. 

Notations. Let (f2, d ,  #) be a a-f'mite measure space. Let NJ~ k be a p-measure 
with Lebesgue density h. If X: f2---~lR k is a random vector then define a 
stochastic kernel Q: ~ k ~  ~ l ( d  ) by 

Qt(A) = C(t) ~ h ( t -  X tco)) p(do)). 
A 

Let Y: f2~  ]Rk be another random vector and let 

R t-= ~ ( t  - YIQt), t~lRk, 

S t = ~ ( X  - rlQt), telRk. 

If D~= {seek: [ISll =<~}, a>0 ,  define 

1 
R~=-2k(D~)~ Rtdt, ~>0,  

1 
S~ --2k(D~) ~o ~ Silt ,  a > 0 .  

Lemma 6 gives an estimate of I I / ~ - N ,  S~II. The remarkable feature of the result 
is that the estimate is independent of Y 

Lemma 6. Let (~2, ~r p) be a measurable space, N ~,~k a p-measure on ~k and X: 
f2--~ IR k a random variable. Then for every further random variable Y: f2--~ ]R k, 
~>0, 

t 
I / ]~-  N *S~[I ____min { 1, 2 sup[ C(t) - 11} + ~  ~ ( N  ,~(X[Qt))(D'~) dt. 

teD~ 

Proof. Let 0~ld  | ~k be defined by 

1 I O_,(A)dt, A do 
DanB 

Then for every B ~ g  we have 

/~(B) = Q~{(co, t): t -  Y(co)~B} =~ Q~(B + Y(o~)]~r Q~(do)). 

This implies 

I /~(S)  - ~ ( i  �9 ex(~) ) (S + Y(m)) (~(do;)J < ~ I[ (~(. I ~r - (X * ~ x ( J  I] Q~(d r 

Since 

(N * ex(o,))(B + Y(og)) 0~(dog) = ~ N (B + Y(o)) - X (~o)) O~(d~o) = (N * S~)(B), 

it follows that 

[I 1~  - N * S~II -<- $ [I 0~(.  I d) (co)  - (N * ex(,o))I[ O~(da)). 
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Now the problem is reduced to a Bernstein-v. Mises approximation. We use the 
following inequality: For any two p-measures P[d ,  Qld, Q ~ P  and every A e d  
such that Q(A)>0 we have 

[[Q(.[A)-Pl[<=2mintl, sup[ dQ } 1 + 2P(A'). 

The particular form of Qt implies that 

C(t)(N *ex(o~))(dt) 

C ( t ) ( N  , " 

De 

Applying the inequality mentioned just before we obtain 

Pl(~(.Id)(w)- n*ex(~)H < 2 rain {1, sup IC(t)-  1]} +2(n*~x(j(D'~). 
t~D~ 

Now the assertion follows from 

~(N ex(o))(D~) Qt(d~o) = ~ N(D~- X(o)) Qt(dco) = (N ~(X]Q,))(D~). 

Proof of Theorem 1. Let ~j~k be a p-measure satisfying v(O)-- 1. We define: 

U.(O,t)=5~(t-~-~(tp.-O),Q.(O,t)), OEO, t~]R k, 

V.(0, t )=  S (F-1(0)A.(O)-~(~.-O),Q.(O, t)), 0~0, t~lR k. 

The kernels U n and V. correspond to R. and S., the only difference being that 
Po+~.t,. is replaced by Q.(O, t). Similarly we define 

1 
vo, (0) v.(o, t)dr, 

1 
V., ~(0) - 2k(D .) ~. V.(O, t) dt. 

Lemma 2 implies that for every ~ > 0 

lim ~ I[R., ~(0) - U.,.(0)II v(dO) = O, 
n~N 

lim~ HS.,~(O)- V.,.(0)II z(dO) =0. 
n~N 

Hence it is sufficient to show that 

lim lira ~ I[ U.,~(0) -N(O). V.,~(0)N z(dO) =0. 

Let OeM, n~N be fixed and apply Lemma 6 to 
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Qt = Q.(O, t) 
x = r -  1(o) A.(O) 

Y = ~ ( 0 . - 0 )  

N = N(0) = Vo, r-1 (~). 

This yields 

II U., ~(0) - N(O)* V., ~(0)II < min { 1, 2 sup] C.(t, 0) - 1[} 
teD~ 

1 
+ ~ ~(N(O) �9 ~ ( C -  1(0) A.(O)IQ.(O, t))(D'~) dt. 

D. 

F r o m  Lemma  2, (2), and Lemma 3 we obtain 

- -  1 
lim S 11U.,~(O) - N(O)* V~,~(O)]] r(dO) < ~  ~ (N(O).N(O). et)(D'.) dtz(dO). 
hen  k ~! D~ 

Now Lemma 5 proves the assertion. 
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