Neue Methode zur Analyse der $i(s)_{exp}$ -Kurve einatomiger Metallschmelzen

Die Intensitätskurve bzw. die $i(s)_{exp}$ -Kurve einatomiger Metallschmelzen kommt nach RICHTER und BREITLING¹) vornehmlich durch die Überlagerung der beiden Interferenzfunktionen der Kugelmodell-Struktur $i(s)_{Kug} = i_1(s) = a_1 \cdot e^{-c_1s^2}$. $\sin sr_1/sr_1$ und der Flächengitter-Struktur $i(s)_{Flg} = i_2(s) =$ $a_2 \cdot e^{-c_2s^3} \cdot \sin sr'_1/sr'_1$ zustande. Die kürzesten Atomabstände r_1 und r'_1 werden nach der r_1 -Methode von RICHTER und BREIT-LING¹) erhalten. Bei geeigneter Wahl der Amplitudenwerte a_1 und a_2 und der Dämpfungsfaktoren c_1 und c_2 können die Interferenzfunktionen $i(s)_{Kug}$ und $i(s)_{Flg}$ berechnet und von der $(i)_{exp}$ -Kurve in Abzug gebracht werden. Damit ist es möglich, eine sukzessive Analyse der $i(s)_{exp}$ -Kurve einatomiger Metallschmelzen durchzuführen. Die Brauchbarkeit dieser Methode, wird am geschmolzenen Sn gezeigt.

In Fig. 1a ist die $i(s)_{exp}$ -Kurve von aufgeschmolzenem Sn bei 750°C gezeichnet. Die r_{I} -Methode liefert lediglich den kürzesten Atomabstand $r'_{1} = 3,04$ Å der Flächengitter-Struk-tur; sie erlaubt damit die Berechnung der Interferenzfunktion $i(s)_{Flg}$. Fig. 1b gibt die Differenzkurve $i(s)_{exp} - i(s)_{Flg} = D_1$ wieder. Man berechnet jetzt die Interferenzfunktion der Kugelmodell-Struktur $i(s)_{Kug}$ und bringt sie von der D_1 -Kurve in Abzug. Die günstigste Anpassung ergab sich für $r_1 = 3,18$ Å als kürzestem Atomabstand der dichtesten Kugelpackung. Man kann nach diesem Verfahren den kürzesten Atomabstand r_1 oder r'_1 bestimmen, falls er sich in der r_1 -Kurve nicht abzeichnet. Die Differenzkurve $D_1 - i(s)_{\text{Kug}} = D_2$ ist in Fig. 1 c dargestellt. Bei alleiniger Streuung nach DEBYE²) müßte die Restkurve D_2 gleich Null sein, vorausgesetzt, daß weiteren Atomabstände im Spiele sind. In der keine D_2 -Kurve treten aber deutliche Maxima bei $\sin \vartheta / \lambda = 0,173$; $\approx 0,245$ und 0,343 auf; sie sind als Laue-Interferenzen (100), (110) und (200) eines Flächengitters*) mit quadratischer Gitter-zelle und mit $a_{Flg} = r'_1 = 3,04$ Å als Kantenlänge zu deuten. Aus den Lagen der Flächengitter-Interferenzen (hko) gegenüber denen der Raumgitter-Reflexe (hk0) läßt sich nach WARREN³) die Größe der Flächengitter-Bereiche abschätzen.

Die Methode der sukzessiven Analyse der $i(s)_{exp}$ -Kurve beweist, daß selbst bei Temperaturen von 750°C größere Flächengitter-Bereiche in der Sn-Schmelze vorliegen, die nach v. LAUE⁴) streuen. Flächengitter-Bereiche mit extrem kleinen Abmessungen oder mit sehr starken Störungen sind ebenfalls vorhanden, sie streuen jedoch wie die Kugelmodell-Struktur nach DEBYE²) und liefern die Interferenzfunktion $i(s)_{Flg}$. Diese Flächengitter-Bereiche zeichnen sich nach BRÖZEL, HANDTMANN und RICHTER⁵) besonders bei höheren Temperaturen in der r_{I} -Kurve ab. Die $r_{\rm I}$ -Kurve einer Sn-Schmelze von 250° C liefert lediglich den kürzesten Atomabstand $r_{\rm I} = 3,15$ Å der Kugelmodell-Struktur [vgl. BRÖZEL, HANDTMANN und RICHTER⁵)]; sie erlaubt damit, wiederum das Verfahren der sukzessiven Analyse der $i(s)_{\rm exp}$ -Kurve anzuwenden, allerdings bei umgekehrter Reihenfolge. In diesem Falle sind die Flächengitter-Interferenzen (h k 0) in der D_2 -Kurve sehr deutlich ausgeprägt.

Die Methode der sukzessiven Analyse der $i(s)_{exp}$ -Kurve gestattet, den kürzesten Atomabstand r_1 oder r'_1 der Kugelmodell- oder der Flächengitter-Struktur zu bestimmen, wenn er sich in der r_1 -Kurve nicht abzeichnet; sie erlaubt weiter, aus der Dämpfung auf die Streuung**) der Atomlagen sowie aus den Amplitudenwerten auf die Anteile der beiden Strukturen zu schließen. Streuen zusätzlich Flächengitter-Bereiche nach v. LAUE⁴), so bleiben bei Anwendung der sukzessiven Analyse die Flächengitter-Interferenzen (h k 0) übrig. Die Methode der sukzessiven Analyse der $i(s)_{exp}$ -Kurve stellt eine wesentliche Ergänzung der bisher benutzten Verfahren (Fourier-Analyse der Intensitätskurve und r_1 -Methode) zur Struktur-Bestimmung von Metallschmelzen dar.

Röntgeninstitut der Technischen Hochschule, Stuttgart

R. Brözel, D. HANDTMANN und H. RICHTER

Eingegangen am 31. Januar 1962

*) Die Restkurve D_2 müßte sich bei alleinigem Vorhandensein der Flächengitter-Interferenzen (hk0) auf der Parallelen zur Abszissenachse im Abstande i(s) = --1 aufbauen. Ist zusätzlich eine Interferenzfunktion der Form sin x/x mit im Spiele, so verschiebt sie diese Parallele mit wachsendem Anteil an der gesamten Streuintensität nach i(s) = 0.

**) Die Lagestreuungen der Atome der Flächengitter-Struktur gegenüber denen der Atome der Kugelmodell-Struktur sind vernachlässigbar klein.

nachlässigbar klem. ¹) RICHTER, H., u. G. BREITLING: Z. Naturforsch. 16a, 187 (1961). — ²) DEBYE, P.: Ann. Phys. [Lpz.] 46, 809 (1915). — BOERSCH, H.: Z. Physik 119, 154 (1942). — WARREN, B.E.: Z. Kristallogr., Mineral., Petrogr. 86, 349 (1933). — ³) WARREN, B.E.: Physic. Rev. 59, 693 (1941). — ⁴) LAUE, M. V.: Z. Kristallogr., Mineral., Petrogr. 82, 127 (1932). — ⁵) BRÖZEL, R., D. HANDTMANN u. H. RICHTER: Z. Physik (z. Z. im Druck 1962).

Rotationsanalyse eines Bandensystemes von YbH

Zum erstenmal ist ein Bandenspektrum des Ytterbiumhydrids (YbH) photographiert worden. Im Gebiet 5000 bis 8000 Å wurden sowohl Emissions- als auch Absorptionsaufnahmen gemacht. Für die Emissionsaufnahmen wurde als Lichtquelle ein Entladungsrohr aus Quarz, das geschmolzenes Ytterbiummetall unter strömendem Argon und Wasserstoff enthielt, verwendet. In Absorption wurde ein King-Ofen benützt. Die Analyse zeigt, daß das Spektrum einem Übergang ${}^{2}\Pi(a) - {}^{2}\Sigma$ entspricht.

Folgende Bandenkanten wurden gemessen:

${}^{2}\Pi_{c} - {}^{2}\Sigma$	0 - 0	P ₁₂ -Kante 6590.26	
	0 - 1	7130,96	
${}^{2}\Pi_{0} - {}^{2}\Sigma$	0-0	P_2 -Kante 5997, 59	P ₂₁ -Kante 5947.74

Die Rotationsanalyse ergab (die Konstanten in cm^{-1}):

$X^2\Sigma$	$B_0 = 3,948$ $B_1 = 3,844$	$\begin{array}{c} D_0 = 1.62 \cdot 10^{-4} \\ D_1 = 1.58 \cdot 10^{-4} \end{array}$
A ²∏	$B_0 = 4,133$ A = 1460	$D_0 = 1,50 \cdot 10^{-4}$

Eine ausführlichere Arbeit wird im Arkiv för Fysik veröffentlicht werden.

INGVAR KOPP

Physikalisches Institut der Universität, Stockholm

Eingegangen am 27. Februar 1962

Absolutmessung der Ionisierungsausbeute von Kaliumatomen an Metalloberflächen

Die wichtigste Größe bei der Oberflächenionisation von Alkali-Atomen an glühenden Metallen hoher Austrittsarbeit ist sowohl vom praktischen als auch vom theoretischen Standpunkt die Ionisierungsausbeute β ; hierunter versteht man das Verhältnis der Zahl $N_{\rm t}$ der gebildeten Ionen zur Zahl $N_{\rm 0}$ der