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Abstract. Problem of selecting primary parameters has been discussed. Primaries should be defined 
uniquely, as well as, physically. Since no unique definition for semimajor axis exists, it should be 
replaced by the geoidal geopotential value Wo or by the geopotential scale factor R0 = GM/Wo, 
geocentric gravitational constant GM be also primary parameter. Current best estimates of some 
parameters are given numerically. 

1. Introduction 

Defining the system of primary constants is the open problem being discussed 
recently within Special Commission Fundamental Constants (SC-3 IAG). There 
are different opinions, e.g., to keep traditionally adopted the Earth's semimajor 
axis as primary. Some individual contributions by the SC-3 members have been 
published, e.g., the inspiring contribution by Kinoshita (1994). The paper is the 
individual contribution to the topic by the SC-3 Chairman. It describes his personal 
point of view only. The reason for it is, to be able to summarize the published 
contributions to the topic and to reach a consensus to be presented to the IAG 
community. 

The system of parameters of common relevance of astronomy, geodesy, and 
geodynamics should be based on the physically defined quantities. We shalt call 
them "primary parameters". If so, the set of the primary parameters will be phys- 
ically well defined and it can serve as a solid base for computing the "derived 
parameters". We shall select the system of primary parameters and give their cur- 
rent best estimates on the basis of the most recent geopotential models, Satellite and 
Lunar Laser Ranging (SLR, LLR), and satellite altimetry. Further, after adopting 
the primaries, some derived parameters will be computed. All the values are to be 
given in SI units. 

2. Primary Parameters 

Primary parameters and/or constants should be physically defined. These, and 
these only, should be part of the system of fundamental constants (Kovalevsky, 
1994). We adopt this statement and suggest, the primary parameters be selected as 
follows: (a) Newtonian gravitational constant; (b) geocentric gravitational constant 
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GM; (e) angular velocity of the Earth's rotation w; (d) geopotential value of 
the geoid Wo; (e) the second zonal Stokes parameter (geopotential coefficient) 

J2(J2 = - j~o)); (f), (g) the second-degree sectorial Stokes parameters j~2) and 

S~ 2) or J2,2 = L,-2r('(2)~2, + (S~2))2]'/2 and A2,2 = ½tan-'(S~2)/«~;));(h)parameter 
H in the prccession constant. 

(a) The current best estimate of G is (Sir A. H. Cook, 1991) 

G = (6 672.59 -4- 0.30) × 10 -14  m 3 s -2 kg -1. (1) 

(b) The geocentric gravitational constant as detennined by SLR and LLR (Satel- 
lite and Lunar Laser Ranging) contains the mass of the atmosphere; its current best 
estimates is (Ries, 1992) 

G M  = (398 600 441.8 + 1.0) × 106 m 3 s -2. (2) 

Note that if expressed in TDB units (Fukushima, 1994), it comes out as 

G M  = (398 600 435.9) x 10 6 m 3 s - 2 .  

(e) The angular velocity of the Earth's rotation (rounded value) is 

=- 7.292 115 × 10 -5 s -1. (3) 

(d) Geopotential value Wo determined on the basis of the GEOSAT satellite 
altimetry is (Nesvorn~, 1993), (Nesvom3~ and Sfma, 1994) 

1410 = (62 636 857.5 ± 1.0) m 2 S - 2  . (4) 

It is independent of the tidal distortions due to the Moon and the Sun, but it depends 
on G M ,  ~, as well as, on the volume defined by surface W = Wo. It should be 
redetermined recently on the basis of the ERS- 1 altimeter data. 

(e) However, the second zonal Stokes parameter, the function of the principal 
moments C > B > A of the Earth's inertia 

B0/ ½(A + B ) -  c 
= Ma2 , (5) 

is sensitive to the permanent tide effect due to the zero frequency term 5V2 (°) in the 

zonal tidal potential V (°). The term (5V (°) was derived and investigated by Zadro 
and Marussi (1973). After solving the first (Dirichlet's) boundary-value problem, 

the effect (5J~ °) on 4o) due to (~V (°) can be derived. In the terms used in Zadro 
and Marussi (1973) it reads as follows: 
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Notations: ks is the secular Love number; G;~/B and GM.~ the selenocentric and 
heliocentric gravitational constant, respectively; a0 = 6 378 137 m is the length 
factor used in Equation (4) rendering j~0) to be dimensionless; aß is the semi- 
major axis of the Moon's orbit; eß = 0.0549 and e® = 0.0167 the eccentricities; « 
the obliquity of the ecliptic; iß = 5°08 ' the inclination of the Moon orbital plane 
to the ecliptic. Numerically 

~j~o~ = - (3 .o8  × lO-S)<.  (9) 

The values of j~o), Equation (5), in the recent geopotential models as listed in Table 
I, are tide-free. It means, they do not contain the zero-frequency tidal effect given 

by Equation (6). However, the tide-free values of j~0) were derived from the values 
observed in the zero-frequency tide system. The tidal effect given by Equation (6) 
was subtracted, with k2 = 0.3 (Pavlis, personal communication, 1994). However, 
the question is, whether k2 = 0.3 is the appropriate Lore number for the permanent 

tidal Earth's mass deformation. That is why we prefer to deal primarily with j~0) 

values in the zero-frequency tide system. Value j~0) in the zero-frequency tide 
system is the primary parameter and that tide-free is the derived parameter. 

(f), (g) The second sectorial Stokes parameters j~2) and S~ 2) or J2,2 and :\2,2 
are free of any tides. The numerical values in the recent geopotential models are 
given in Table II. 
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TABLE I 

The Stokes second-degree zonal parameter; marked with a bar: fully nor- 
malized; k = 0.3 adopted for the tide-free system 

Geopotential Zero frequency tide system Tide-free 
model _ ]~o) _ ,/2(o) _ j}o) _ j~0) 

(10 -6 ) (10 -6 ) (10 -6 ) (10 -6 ) 

GEM-T1 484.16909 1082.6350 484.16491 1082.6258 
GEM-T2 484.16958 1082.6361 484.16547 1082.6269 
GEM-T3 484.16922 1082.6353 484.16510 1082.6261 
JGM-1 484.16958 1082.6361 484.16549 1082.6269 
JGM-2 484.16958 1082.6361 484.16548 1082.6269 
JGM-3 484.16951 1082.6359 484.16537 1082.6267 

TABLE II 

The Stokes second-degree sectorial parameters; marked with a bar: fully normalized 

Geopotential .]2(2) ~~2) j~2) ~2~(2) ,/22, A22, 
model (10 -6 ) (10 -6 ) (10 -6 ) (10 -6 ) (10 -6 ) (aeg) 

GEM-T1 2,43893 -1.39984 1.57432 -0.90359 1.81520 165.073;345.073 
GEM-T2 2.43900 -1.40010 1.57440 -0.90380 1.81538 165.072;345.072 
GEM-T3 2.43907 -1.40009 1.57441 -0.90375 1.81536 165.072; 345.072 
JGM-1 2.43907 - 1.40005 1.57441 -0.90373 1.81535 165.072;345.072 
JGM-2 2.43908 -1.40011 1.57442 -0.90377 1.81538 165.071;345.071 
JGM-3 2.43926 -1.40027 1.57454 -0.90387 1.81553 165.071;345.071 

(h) Parameter  H in the p recess ion  constant  

H =  C -  ½(A + Æ) = -J(2°) ' (10) 

is the on ly  parameter  which  enables  to der ive  the principal  m o m e n t  o f  inertia C.  

The  current  best  es t imate  (in the ze ro- f requency  tide sys tem)  is as 

H = (3 273 763 -4- 20) × 10 -9 ,  (11) 

(Will iams,  1994). 
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3. Derived Parameters 

3.1. PARAMETERS OF THE BEST-FITTING TRI-AXIAL EARTH'S ELLIPSOID 

The Earth's ellipsoid should represent the geoid surface 

w = Wo, (12) 

best. The best-fitting ellipsoid is the level ellipsoid E the potential on the boundary 
surface of which is just equal Wo. If tri-axial, however, a priori geocentric and a 
priori given direction of its polar axis, it is defined by four parameters as follows: 
a the longest semi-axis, a' the flattening of the meridional section by the plane con- 
taining semi-axis a; c~1 the equatorial flattening; A~ the longitude of the meridian 
above. Six primary parameters define the surface 

E = E ( a ,  oz, Œ1, Ac~), (13) 

as follows: G M ,  Wo, ~, j~0), J22, A~. Instead of Wo the geopotential scale factor, 
defined by Equation (8) 

R0 = (6 303 672.4 + 0.1) m, (14) 

can be used, and instead of ~ the dimensionless parameter in the potential of 
centrifugal forces, defined by Equation (7) 

q = (3 461 390 • 2) × 10 -9. (15) 

However, the surface defined by Equation (12), to be represented by the ellip- 
soid, should be specified as regards the permanent tidal distortion. It seems to be 
reasonable, the indirect, as well as, the direct permanent tidal distortion be includ- 
ed. In that case, the primary Stokes parameter directly observed can be used in 
the solution, and there is no problem as regards the appropriate Love number. The 
basic Equation (12) defines the s.c. mean geoid and the parameters in Equation 
(13) define the mean tri-axial ellipsoid. 

Numerical values of the ellipsoidal parameters based on different Geopotential 
Models, are given in Table III. The corresponding parameters for the mean Earth's 
rotational ellipsoid are in Table IV. They are closed to values derived by Rapp et 
al. (1994). 

If necessary, the parameters defining the ellipsoid representing the tide-free 
geoid can be computed as 

a(tide-free) = a ( m e a n ) +  | ~Ro(1 + k,) 6~zO) L( 
k, L 

- - ,  (16) 
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TABLEIII 
Parametersofthemeantri-axialEarth'sellipsoid 

Geopotential a 1/~ l/er A~ 
model (m) (deg) 

GEM-T1 6378 171.55 297.7663 91043 14.9270W 
GEM-T2 6378 171.55 297.7661 91034 14.9281W 
GEM-T3 6378 171.55 297.7662 91035 14.9285W 
JGM-1 6378 171.55 297.7661 91035 14.9281W 
JGM-2 6378 171.55 297.7661 91034 14.9286W 
JGM-3 6378 171.55 297.7661 91026 14.9291W 

TABLE IV 
Parameters of the mean Earth's rotational 
ellipsoid 

Geopotential ä 1 / o~ 
model (m) 

GEM-T 1 6378 136.52 298.2524 
GEM-T2 6378 136.52 298.2523 
GEM-T3 6378 136.52 298.2524 
JGM-1 6378 136.52 298.2523 
JGM-2 6378 136.52 298.2523 
JGM-3 6378 136.52 298.2523 

3(1 + k~)~J~ °) oz(tide-free) = ct(mean) + ~ hs 

The value of (5J~°)is ~ negative; it is given by Equation (9). In Table V the numer- 
ical values are given for the tide-free system defined by the Love number k2. 
Analogously, in the zero-frequency tide system 

~_2 (°) a(zero-frequency) = a(mean) + ~R0 ~ , 
8 

3 ~j~o) 
c~(zero-frequency) = c~(mean) + ~ k--~-- 

(17) 

The same relations hold for ä and ~, however, the tide-free solution needs the 
numerical value of  the Love number responsible for the permanent tidal distortion. 
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TABLE V 

Parameters of the rotational Earth's ellipsoid 
in the tide-free system 

Geopotential g l/ce 

model (m) 

GEM-T1 6378 136.39 298.2578 
GEM-T2 6378 136.39 298.2576 

GEM-T3 6378 136.39 298.2577 
JGM-1 6378 136.39 298.2576 
JGM-2 6378 136.39 298.2576 

JGM-3 6378 136.39 298.2576 

Only the solution in the zero-frequency tide system and in the mean system are 

free of the problem above. However, the priraary j~0) should be used as observed, 
it means, including the zero-frequency tidal distortion. 

In the level ellipsoid system the mean equatorial gravity g~ can be computed as 
function 

g~ = g~(c~~r, ~, j~o), q). (18) 

Omitting ter,ns of order (j~o))4, q4 of magnitude and sraaller, it is in the tide-free 
system 

[ 9 2 9 27 (0))2 GM ~ « ~ o ) _ q _  _ _ j ~ O ) q + _ ~ ( « ~  , _ 
g~ = ä2- 1 - 2  ~ q  14 

1 qB+ 83 J(°)q2 1351«(°)'3 1~-~-~ ] 
588  7 ~  2 - - - i " 6 V  2 ) -}- ( j~0 ) )2q  

= 978 032.716 × 10 -5 m s -z. (19) 

It can be coraputed directy from Geopotential Models, adopting value (4). E.g., 
from JGM-2 it came out as 

g« = 978 032.759 × 10 -5 ra s -z.  

However, g~ is different for the tide-free, the zero-frequency and the mean systems. 
The correction (Sg~ due to the zero-frequency tidal distortion (only) is, in the linear 
approximation, putting Ro/a = 1, 

(Sg e --  
&) GM (3u(o) 2 7  

a 2 \ 2  "2 q- 

1 G M ~  ~(o) 
2 ä7 oa~ = (1.508 x 10 -7 m S-2)Æs . (20) 
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Note that the direct zero-frequency tidal variation in 9¢ is opposite in sign. It 
amounts 

~d~°) - -3 .016  x 10 -7 m s -2. (21) 
G M  

B2 ]es 

3.2. PRINCIPAL MOMENTS OF INERTIA 

The primaries 4o)  and d2,2 make it possible to derive the relative differences of 
the Earth's principal moments of inertia (C > B > A). In the zero-frequency tide 
system, with 

ù12 = _j~0) = (1082.6362 ± 0.0006) × 10 -6 ,  (22) 

J2,2 = (1.8154 + 0.0009) × 10 -6 ,  (23) 

they come out as follows: 

C - A  
MB 2 - J2 + 2J2,2 = (1086.267 ± 0.001) x 10 -6, 

C - B  
M ä  2 - J2 + 2J2,2 = (1079.005 ± 0.001) x 10 -6, 

B - A  
M ä  2 - 4J2,2 = (7.262 ± 0.004) x 10 -6. (24) 

Adopting 

ä = 6 378 136.4 m, 

G M ä  2 (243.012 ± 0.00005) × 1038 k g m  2, M ä 2  - G = 

the differences between the principal moments are as follows: 

C -  A = (2.6398 ± 0.0001) x 1035 k g m  2, 

C - / 3  = (2.6221 ± 0.0001) x 1035 k g m  2, 

t9 - A = (1.765 ± 0.0001) x 1033 kg m 2. (25) 

Adopting the coefficient H in the precession constant, Equation (11), the relative 
values of the principal moments of inertia are numerically 

c -/2 
- - (330 701 ± 2) x 10 - 6 ,  

M ä  2 H 
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- (329 615 + 2) X 10 -6 , 

- (329 622 -4- 2) X 10 -6. (26) 

The coefficients in the Euler's dynamical equations come out as 

C - B  _ ( 3 2 7 3 5 3 : i : 6 ) ×  10 -8 , 
o~--  A 

. 3 -  C - A _ ( 3 2 9 5 4 9 ~ 6 ) ×  10 -8 , 
B 

B - A  
7 -  - (2  1 9 6 ± 6 )  x 10 -s.  

C 

The principal moments of inertia themselves are as follows 

A = 8.0101 ± 0.0002 x 1037 kg m 2, 

B = 8.0103 + 0.0002 x 1037 kg m 2, 

C = 8.0365 ± 0.0002 x 1037 kg m 2. 

(27) 

(28) 

4. D i s c u s s i o n  

The system of primaries suggested is formed by quantities which are physically 
defined. However, instead of Wo the mean equatorial gravity 9~ could be used 
as primary for defining the dimension of the body, as suggested by Rapp (1967). 

He considered the four primary parameters as follows: 9~, GM, j~o), aa. The 
equatorial gravity is a physical quantity and could serve also well as primary 
geodetic parameters. The only reason for preferring 14/Ö is, the accuracy required 
as present, i.e., 10-8-10 -9 order of magnitude. 

The primary parameter Wo enables to define well the length scale of the body, no 
a priori conditions are needed. Moreover, it does not depend on the zero-frequency 
tidal term. It can be proved on the basis of its expression in terms of the ellipsoidal 
parameters 

i4z0 - G~'la < 1 +  ~ ~ +  ~ q + s m a l l e r t e r m s ) .  (29) 

Let ä, c~ be tide-free values. The hypothetic tidal variation ~Wo in Wo due to the 
indirect tidal variations ~ä, 3« in a and c~ respectively, 

1 » ~r(0)  
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66 = -~6J~  °), 

is as follows (again at the linear approximation) 

(30) 

5Wo- 
G M  1 G M  
- -  56 a2 5ä + ~ a 

1 GM,~ ;r(o) 1 G M s r ( o  )o2 O. 2 ä-2 xt0°°2 2 a (31) 

Primary parameter Wo does not depend on the long-term variation in j~o) 
(Eanes, 1991) 

dd~ 0) 

dt 
- - 3 . 6  × 10 - 9  c y  -1  (32 )  

The phenomenon given by Equation (32) gives rise to variation in semimajor axis 
as 

dä 1 dd~ °) 
dt - ~R0 ~-~ - 0 .009mcy -1, (33) 

and the impact on Wo is zero: 

dWo G M  dä 1 G M  dJ~ °) 
dt = a z dt 2 a dt 0. (34) 

In linear approximation R o /  a = 1. 
The facts above can be proved on the basis of Pizzetti's theory (1913) from 

which the expression for Wo is as follows (Heiskanen and Moritz, 1967) 

Wo = GMatanT ~ lcd2ä2" (35) 
äe ---~ + 3 ' 

~2 = 26 - 62. Then 

5Wo - G M  atan~- 6 3 G M  a - ~ q -  
ä 

+ 
atanl - 6 1 6 ~2 J 

numerically, with tide-free parameters a, c~ 

5t/Vo - GMa_ (0.998 11509 5ä-ä - 0.334 2 2 9 3 4 5 6 ) .  

(36) 
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TABLE VI 

Oeopotential value on the geoid computed in the tide-free, the zero frequeney 
and the mean systems; adopted: G M  = 398 600.4418 × 109 m 3 s -2, co = 
7.292 115 x 10 -» rad s - I ,  k2 = 0.3 

System a 1 / c~ Dó Ro 
(m) (m 2 s -2) (m) 

Tide-free 6 378 136.39 298.25765 62 636 857.5 6 363 672.40 

Zero 6 378 136.42 298.25642 62 636 857.5 6 363 672.40 

Mean 6 378 136.52 298.25231 62 636 857.5 6 363 672.40 

After substituting the zero-frequency tidal corrections, see Equations (16), (17) and 
(9), 

~Sää _ 21 ks~S«~0) , 6~ = - ~ksBor~ 0)., (37) 

one gets 

~~_ ~W0 0.003 7289 m 2 s -2, 

1 ~t/Vo 
- 5.95 × 10-1~; (38) 

/% Wo 
it is zero practically, i.e., as regards the computational accuracy. 

The fact, l/l/0 and/or R0 is independent on the system (tide-free, zero, mean) is 
illustrated numerically in Table VI. 

The facts above are of importance from the point of view of the realization of the 
reference system for the long-term geodynamic studies. Parameter Wo is relatively 
very stable, it depends only on the volume of surface W = Wo, on geocentric 
gravitational constant G M  and on angular velocity of the Earth's rotation. It does 
not depend on any perturbation which does not change the volume of surface 
W = W0, as well as, the mass of the Earth and its angular velocity of rotation. 

The determination of Wo need not the global coverage by the input data. How- 
ever, if accuracy on the dm-level is required, the determination of the semimajor 
axis meets the difficulties as regards the estimates of its actual accuracy. Theo- 
retically, the global coverage by input data is necessary to reach accuracy on the 
dm-level. E.g., the area covered by satellite altimetry is limited and that is why, 
the solution for the semimajor axis based on it only, should be distorted by the 
geoidal features over the areas not covered. As regards Wo, it is free of this major 
disadvantage. Note that Wo is needed for determining the difference between the 
geocentric coordinate time TCG and terrestrial time TT (Fukushima, 1994) 

T C G -  TT = W ° ( t -  to), 
«2 
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as well as for determining the difference between the solar system barycentric coor- 
dinate time TCB and the solar system barycentric dynamical time TDB (Fukushima, 
1994). 

For many reasons, Kinoshita (1994) suggested the Earth's semimajor axis be 
fixed as a defining constant like the Gaussian constant which defines the astro- 
nomical uint AU. In that case, a would not be involved into derived parameters, 
however, the basic system of primaries remains unchanged. 

5. Conclusion 

Primary parameters should be defined physically. Therefore, the semimajor axis a 
of Earth's ellipsoid is to be replaced by the geopotential geoidal value Wo or by 
geopotential scale factor R0 = GM/Wo. Geocentric gravitational constant GM 
be also primary parameter. Disadvantages of a are: (1) It is not defined uniquely, 
(2) global coverage by input data is needed for its derivation, (3) it depends on 
permanent tidal perturbation. However, redetermination of Wo(Ro) using ERS- 
1 satellite altimeter data should be done for reestimating actual accuracy of 
Wo (R0). 
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