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Abstract. Utilizing topographic models of Saturn's F-fing shepherd satellites Prometheus (S16 
1980S27) and Pandora (S15 1980S26), derived by Stooke (1994), and supposing that their mass 
density is constant, we derived basic geometrical and dynamical characteristics of the moons. They 
include the volume and mass, the mean radii, the tensor of inertia, and Stokes coefficients of the 
harmonic expansions of external gravitational potential. The best fitting ellipsoid approximations of 
the topography were calculated. A simple method of determining the gravitational potential on the 
surface of an irregular satellite is presented. Examples of equipotential surfaces of the satellites are 
shown 
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1. Introduction 

In this work we investigate dynamical and gravitational properties of Saturn's F- 
ring shepherd satellites Prometheus (S16 1980S27) and Pandora (S15 1980S26). 
Because of their influence on the ring structure, the moons are of primary interest 
and are intensively investigated (Yoder et al., 1981). 

Recently, Stooke (1994), using photographic images made by Voyager space- 
crafts, modeled detailed shapes of the satellites. The topographic data are repre- 
sented as sets of spherical cartographic coordinates of points lying on surfaces of 
the moons. The values of topographical radii are given for equally spaced intervals 
(5 ° × 5 °) of latitude and longitude. 

The axes of the ellipsoid which approximates the shape of Pandora (see Figures 
1, 2) are determined by Stooke (1994) to be 114 × 84 × 62 km. Prometheus is a 
much more irregular body (see Figures 3, 4), with overall dimensions 145 × 85 
× 60 km. It is an unusually elongated body - its longest-to-shortest axis ratio is 
greater than 2. 

The mean density of the moons estimated by Stooke (1994) and Yoder et al. 
(1981) is 0.7 + 0.1 g/cm 3. We assume that density distribution of the two bodies is 
constant and uniform. This assumption was made because of the lack of reasonable 
models of the distribution. 

The plan ofthis paper is as follows. In Sections 2, 4, 5 we describe results derived 
by application of the same methodology as in our previous paper on gravitational 
field òf~Jóvian satellite Amalthea (Go~dziewski et al., 1994). Under assumption 
of a constant and uniform density of a moon, explicit relationships between basic 
geometrical and dynamical characteristics, and the hannonic expansion of topog- 
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Fig. 1. The shape of Pandora defined by harmonic expansion of topography of the degree and order 
18. Scale in kilometers, sub-Saturn point on the left. 
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Fig. 2. Radii to the surface of Pandora, defined by the model of Stooke. 
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raphy may be derived (short overview of the theoretical background is given in 
Appendices A, B, C and D, for details see the paper cited). 
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Fig. 3. The shape of Prometheus defined by harmonic expansion of topography of the degree and 
order 25. Scale in kilometers, sub-Satum point on the left. 
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Radii to the surface of Prometheus, defined by the model of Stooke. 
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In Section 3 we propose a simple and efficient algorithm designed for compu- 
tation of parameters of  an ellipsoid which best fits the topography of an irregular 
body. It is an alternative to the method described by Martinec et al. (1989) .  

Stokes expansion could not be applied for a representation o f  gravitational 
potential on the surface of a moon. For this purpose, we worked out an efficient, 
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reliable and simple algorithm of  computing the potential by numerical integration. 
It is described in Section 6. We show also some tests of  the method. 

Section 7 is devoted to definition and evaluation of  equipotential surfaces of the 
moons. In the context of  our results, we discuss applieability of  dynamic heights 
scale, introduced by Thomas (1994), for the case of  Prometheus.  Maps of  selected 
equipotential surfaces of  the moons  are presented. 

2. Harmonie Expansion of Topography 

The models of  the moons '  shapes obtained by Stooke were first transformed to 
the right-handed planetocentric reference frame, and we will treat the sets of  
transformed data as the original ones. 

Sets of  harmonic models of  topography (see Formula (A. 1)) with varying max- 
imal order jmax were defived by linear least squares fit on the basis of  the discrete 
description of  the shapes. For shorter notation we shall call the harmonic expan- 
sion of  topography by HET. Natural limit of  the maximal possible order of  HET 
is determined in out  specific case by the grid 5 ° × 5 ° of  angular coordinates. It is 
equal to 35. For Jmax >_ 36 the matrix of  normal equations becomes singular.* 

Errors of  spectral harmonic coefficients were computed in a purely formal way, 
i.e., for a given moon  we assumed uniform value of  STD error of  radii, equal 10 
km for all of  its control points. 

Figures 5 and 6 demonstrate some properties of  the harmonic models of  topog- 
raphy derived for the two moons. Figures 5a and 6a show mean deviations of radii 
calculated on the grid 1 ° x 1 °, by linear interpolation on the basis of  the control 
points, from the radii computed from HET, as the function of  maximal  degree of  
the expansion. Apparently, we achieve very good accuracy. However,  these two 
figures hide the fact that HET may deform the topography of  an object in some 
regions of  its surface. This is illustrated in Figures 5b and 6b where we show the 

* This may need a short explanation. The harmonic mode1 of topography is linear with respect to 
the unknown parameters, i.e., it has the form: 

M 

v(x) = ~ ~ ~ x ~ ( , ) ,  
k=l 

where M denotes a number of spectral coefficients ak, X~ are the basis functions, x denotes 
coordinates of a control point. The design matrix of the fitting problem is: 

X)(xi) 
A~B = 

In a special case one of Xk, k --- 1 , . . ,  M involves a factor sin(j)ti) (see formula A.1). Because 
spacing of the original data is AA = 5 °, we have that ),~ = iAA, i = 0 , . . ,  72. For j = 36 argument 
of the trigonometric factors in the basis functions becomes j • .~i ---- i • 180 °. Thus for jma× _> 36 one 
column of the design matrix A contains zeros. 
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Fig. 5. PANDORA. (a) Mean errors of harmonic expansion of topography (HET). (b) Maximal 
deviations between HET 18 × 18 and linear interpolation of original data (evaluated at the grid 
1 o × 1 °). (c,d) Convergence of the mean radius and volume with maximal degree of HET. 

maximal deviations between the radii, linearly interpolated on the grid of control 
points (r0), and computed from the harmonic expansion (rt0. They are also evalu- 
ated at the grid 1 ° × 1 °. The deviations are 10 times greater in magnitude than the 
mean errors. It can be also seen that the maximal differences have almost stable 
values for Jmax > 22 (Prometheus), and Jmax > 18 (Pandora). Another test of the 
models is presented in Figures 5c, d and 6c, d which show the dependence of the 
mean radii of the moons, as well as their volumes (computed from Formula (B. 1)), 
on the maximal degree of HET. 

For further calculations we selected models with Jmax = 25 for Prometheus and 
Jmax = 18 for Pandora. Figure 7 visualizes residuals of the models as the function 
of planetocentric longitude. In both cases, they are biggest in the equatorial areas 
close to A = 0 ° and 180 °. It is evident that accurate approximation of the shapes 
by HET requests high degrees of the expansion. 

3. Tri-axial Ellipsoid Best Fitting the Topography 

In general, the ellipsoid which best fits the topography ofa  moon has to be described 
by 9 parameters: the length of semi-major axes, the vector of shifi of the center-of- 
ellipsoid from the origin of initial reference frame, and by three angles describing 
the orientation of the semi-major axes. The ellipsoid could be determined if we 
find the minimum of the distance between the surface of a moon and the ellipsoid. 
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Fig. 6. PROMETHEUS. (a) Mean errors of harmonic expansion of topography (HET). (b) Maximal 
deviations between HET 18 × 18 and linear interpolation of original data (evaluated at the grid 
1 o x 1 °). (c,d) Convergence of the mean radius and volume with maximal degree of HET. 
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Fig. 7. Residuals of harmonic models of topography of Pandora (maximal degree 18) and Prometheus 
(maximal degree 25) as function of the planetocentric longitude ),  Residuals evaluated at the control 
points. 
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Formal description of such a method is complicated. An example of the fitting 
procedure is presented in the paper of Martine6 et al. (1989). 

In order to simplify calculations we made the following assumptions: 
- we take into account only finite set, say N points of the moon surface, 
- the relative shift of the center of ellipsoid is small, 
- having a grid of directions to points of the moon surface we will minimize the 

sum of radial distances: 

N 

X 2 =  Z(rt(~i~i)- re(~i, Ai)) 2, 
i=1 

(1) 

where (re) and (re) are radii to the surface of the moon and the ellipsoid, respec- 
tively. 

The equation of ellipsoid in its principal axes z 1, z2, z3 has the form: 

x2 x2 x2 
7 + j + 7 - 1 = 0 .  (2) 

By denoting a 1 = 1/a 2, a 2 = 1/b 2, a 3 = 1/C 2 and A = diag(al, a2, a3), the 
equation of the ellipsoid can be written as (x, Ax) - 1 = 0. The transformation 
from the principal axes to the reference axes is given by a real unitary matrix P and 
a translation d: 

x = Py, ppT = E, y = z ÷ d. 

Finally, denoting 

( Zl/r e ) O~ = (e, E e ) ,  

E = P Y A T ,  z = r ' ~  z2/r~ = % e  and d =  (Ee, d), (3) 
«3/r~ ~ = (ä, E d ) -  1, 

the equation of ellipsoid given by (2) can be written in the form 

~r~ + 2flr~ + 7 = 0. (4) 

Equation (4) has two roots, we choose the positive one for all directions (ó, A). 
As independent parameters of (1) we choose six elements of the symmetric 

matrix E and three components of the relative shift d. 
The function (1) was minimized by application of Marquardt's iterative method 

(Press et al., 1992). As a result we obtain the matrix E and the shift d. Solution of 
the eigenproblem for the matrix E gives the semi-major axes and rotation matrix 
P .  

Applying this procedure on input data describing the shapes of Pandora and 
Prometheus, we get results given in Tables II, III. In both cases the shifts of ellipsoid 
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centers with respect to the frame of the data is in the range of 1 km. Volumes of 
fitted ellipsoids are almost the same as volumes of the harmonic models, with 
accuracy better than 0.05%. Figures 8 and 9 show radial differences between the 
surfaces of the moons and their best-fitting ellipsoids. 

4. Inertia Tensor and Principal Axes 

Components of the inertia tensor per unit mass may be computed from Formula 
(C.1). Let us observe that their estimations converge very fast with the maximal 
degree of HET. Solving the eigenproblem for the inertia tensor matrix one can easily 
evaluate principal moments of inertia (A, B, C) and orientation of the principal 
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axes with respect to the original, planetocentric mference frame. Dependence of 
the quantities on the maximal degree of HET is shown in Figures 10 and 11. 
The principal moments of inertia are scaled by the factor Mrd. For comparison we 
computed components (A~,/3~, C~) of the inertia tensor of the best fitting ellipsoids 
(see Tables II, lII). Differences are generally small in the case of Pandora (the 
greatest is 1.5% for the moment B, other two less than 0.5%). Data for Prometheus 
show discrepancy of few percent (moments C differ by 5%). 

Generalized moments of inertia of the first order and components of the inertia 
tensor (together with their formal uncertainties) are given in Table I. 
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TABLE I 

Moments of inertia of the first order I:~, Iy, I~ (in 
units of M r0) and components of the inertia tensor 
Ix~, Iyy, I~~, Ixy, I~~, Iy~ (in units of Mr~) 

Prometheus Pandora 

[~ 0.0163 ± 0.0048 0.0086 zt: 0.0048 

Iy 0.0001 ± 0.0700 0.0014 :k 0.0700 

Iz 0.0076 ± 0.0700 0.0016 ± 0.0700 

I~~ 0.3132 ± 0.0079 0.3256 ± 0.0081 

Iy v 0.6510 ± 0.0100 0.4904 :k 0.0093 

Iz~ 0.7642 -4- 0.0110 0.5708 :k 0.0099 

[~~ 0.0424 ± 0.0140 -0 .0074 :k 0.0130 

[xz 0.0050 ± 0.0125 -0 .0027 ± 0.0167 

]~z 0.0049 ± 0.0125 0.0017 ± 0.0167 

TABLE II 

Basic geometrical and dynamical characteristics of Pandora 

Geometrical characteristics 

- Mean radius r0 (km) 41.154 ±0.218 

- Maximal radius (km) 57.7 at ), = 0 °, 

- Mean equatorial radius (km) 41.248 ±0.218 

- Volume (× 105 kFfl 3) 3.105 ±0.062 

Inertial characteristics 

- M e a n  density pc (× 103 kg/m 3) 0.7 ± 0.1 

- Total mass M (× 1017 kg) 2.174 ±0.054 

- Shift of mass' center x, y, z (km) 0.35 0.05 

-Pr incipal  moments of inertia A, B, C ( x m r  2) 0.325 0.491 

- Orient. of principal axes (3-2-1 Euler angles) (deg) 2.57 -0.61 

Gravitational characteristics 
- Mean potential W0 (m2/s 2) 

- Second harmonic C20 

Best fitting ellipsoid 

- Semi major axes (a, b, c) (km) 5 5 . 7 ± 3 . 4  41.3 ± 2.2 
- Volume (x  105 km 3) 3.105 ±0.273 

- Main moments of inertia A~, B~, C~ (× Mr~) 0.324 0.489 

- Orientation of axes (3-2-1 Euler angles) (deg) 2.67 - 0.41 

- Shift of the center (km) - 0 . 2  ± 0.5 0.2 ± 0.4 

-360 .0  
-7 .28  × 10 -2 B9.0 x 10  - 4  

~ = 0  ° 

0.06 

0.570 

-1 .31 

32.3 ± 1.1 

0.567 
--2.04 

--0.4 ± 0.2 
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TABLE III 

Basic geometrical and dynamical characteristics of Prometheus 

Geometrical characteristics 
- Mean radius r0 (km) 
- Maximal radius (km) 

- Mean equatorial radius (km) 
- Volume (× 105 km 3) 

Inertial characteristics 
- Mean density Pc (× 103 kg/m 3) 
- Total mass M (× 1017 kg) 

- Shift of mass' center z, y, z (km) 
- Principal moments of inertia A, B, C (x mr~) 

- Orient. of principal axes (3-2-1 Euler angles) (deg) 

Gravitational characteristics 
- Mean potential Wo (m2/s 2) 

- Second harmonic C20 

Best fitting ellipsoid 
- Semi major axes (a, b, c) (km) 
- Volume (x 10 » km 3) 

- Main moments of inertia A~, Be, C~ (x M r~) 
- Ofientation of axes (3-2-1 Euler angles) (deg) 
- Shift of the center (km) 

43.037 -t-0.218 

75.0 at A = 0 °, 
43.134 -t-0.218 

3.894 ±0.073 

0.7-t-0.1 

2.727 -t-0.065 

0.70 0.01 

0.308 0.656 
-7 .04  0.54 

-419 .0  
-1.261 x 10 -1 -t-l.4 × 10 -~ 

Ó = 0  ° 

0.33 

0.766 
-2 .88  

70.2 :k 4.0 42.7 -t- 2.2 31.0 -I- 1.0 

3.892 -t-0.324 

0.301 0.635 0.728 

-7 .63  0.997 -5 .04  
-0 .80  + 0.4 0.18 -I- 0.4 -0 .69  • 0.21 

TABLE IV 

Mean orbital elements of Prometheus and Pandora (adopted from Lang (1991)) 

Satellite ro ro/Rmanet Orbital Period Eccentricity Inclination 
( x 103 km) (days) (deg) (deg) 

S 16 Prometheus 139,4 2.310 0.613 0.004 0.0 
S15 Pandora 141.7 2.349 0.629 0.004 0.1 

- Symbols description: r0 - orbital radius, • P l a n e t  - -  radius of the primary. 
- Inclinations are relative to the planet's orbital plane. 

W e  a l so  d e t e r m i n e d  the  o r i e n t a t i o n  o f  the  p r i n c i p a l  axes  r e f e r e n c e  f r ame ,  

d e s c r i b e d  b y  E u l e r  a n g l e s  o f  the  t y p e  3-2-1  (Ó, O, 4). T h e  p r i n c i p a l  f r a m e  o f  

P a n d o r a  a l m o s t  c o i n c i d e s  w i t h  the  g e o m e t r i c a l  f r a m e  ( a n g l e s  q5 a n d  ~ a re  o f  o r d e r  
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2°), in the case of Prometheus, the biggest angle is ~ó ~ - 7  °. The orientations 
coincide very well with those of the best-fitting ellipsoids. 

Concluding, the best fitting tri-axial ellipsoid approximation of the moons' 
topography seems to be quite satisfactory for dynamical studies. It very accurately 
preserves volumes and inertial characteristics of the moons. 

5. Stokes Harmonic Coefficients 

Harmonic expansions of extemal gravitational potential were evaluated by appli- 
cation of Formula (D.2) which establishes direct connection between spectral 
coefficients of HET and Stokes coefficients of the potential expansion. 

In Figures 12 and 13 we show the dependence of some low degree Stokes 
coefficients of Pandora and Prometheus on the maximal degree of HET. As in the 
case of inertial characteristics, their convergence is very fast. It should be mention 
that the application of HET for evaluation of Stokes coefficients causes a rapid 
increase of computation time with growing maximal degree of the expansion. In 
this context, it is necessary to select an optimal maximal degree of the HET - it 
should be high enough to achieve convergence of the Stokes coefficients, but it is 
limited by CPU time; for example, computations of the set of Stokes harmonics 
up to the maximal degree 18, performed on SunSparc 10/30, took few hours of the 
CPU time. 

For final evaluations we utilized the previously selected harmonic models of 
topography. On their basis, the harmonic model of gravitational potential of the 
degree and order 18 was constructed for Pandora. In the case of Prometheus, we 
derived a model with maximal degree 25. Formal STD errors of low order Stokes 
coefficients are in the range of few percent. However, the errors are growing fast, 
and for degrees >18 they are greater than 100%. 

The models may be received via e-mail or on a DOS-diskette upon request, 
from the first author.* 

6. Direct Evaluation of the Gravitational Potential 

For investigations of possible connections between gravity and surface features 
of a moon we have to know the gravitational potential and forces on the surface. 
The harmonic expansion is valid for the points lying in the exterior of the small 
est sphere wholly covering the body. Thus, it cannot be used for the purposes 
mentioned. 

Let us mention the works by Antonov and Kholshevnikov (1980), Petrovskaja 
(1979), Chujkova (1978; 1984). In these papers the authors tried to extend the 

* E-mail address is chris@astri.uni.torun.pl 
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Fig. 12. Dependence of St0kes coefficients of Pandora on the maximal degree of HET. 

va l id i ty  o f  the h a r m o n i c  expans ion•  The i r  conclus ion ,  s u m m a r i z e d  shortly,  is that  
the ex tens ion  is genera l ly  poss ib le ,  however ,  under  s ignif icant  restr ict ions:  

- in order  to obta in  rel iable  resul ts  it is necessa ry  to m o d i f y  in a nont r iv ia l  w a y  
Stokes  coeff icients ,  accoun t ing  for  local  inf luence o f  the topography ,  

- the con t inua t ion  is app l i cab le  in prac t ice  on ly  in the case  o f  Ear th- l ike  planets ,  

i.e., those  hav ing  smal l  f lat tening.  



38 K. GOBDZIEWSKI AND A. J. MACIEJEWSKI 

-1.220 
-1.225 
-1.230 
-1.235 
-1.240 
-1.245 
-1.250 
-1.255 
-1.260 
-1.265 

7.6 
7.5 
7.4 
7,3 
7.2 
7.1 
7.0 
6.9 
6.8 
6.7 
6.6 
6.5 

-4 .0  

-4 .5  

-5 .0  

-5 .5  

-6 .0  

-6 .5  

-7 .0  

1.55 

1.50 

I I I I 

~20 
• xlO-1 

B "k "~" ~k "H-k ~ .k..#.k .k.A..k ax ox~4e 4~ .A " 

I I l I 

10 15 20 25 

~.,.~,,~~***,~**,~~*~* 

1.45 

1.40 

1.35 

1.30 

1.25 
5 

~40 
xlO-2 

I I I I 

5 10 15 20 25 

I 

. .~ 'k  

I I I 

~60 
x 10 -2 

-k-4r 

")e4~ ~ ~  .k .k 4e-k ~ .k..A.-k 4~ .A.4cA. ~ ,/e. k 
r I I I 

10 15 20 25 

I I t I 
~ - k  . k , k ~  ~~ . -H  "k 'k  4 e ~  "k &'A"k "k 

-ff 

.~ x l 0  -~ 

30 

30 

30 

1.31 

1.30 

1.29 

1.28 

1.27 

1.26 

1.25 

1.4 

1.3 

1.2 

1.1 

1.0 

0.9 

0.8 

-3.14 
-3.16 
-3.18 
-3.20 
-3.22 
-3.24 
-3.26 
-3.28 
-3.30 

2.3 
2.2 

:ii 
"-k 

-! 
J 

- .  

i 
5 

2.1 
2.0 
1.9 
1.8 
1.7 «" 
1.6 : 
1.5 . 
1.4 • 
1.3 
1.2 

~22 
x 10-1 

I I 1 I 

10 15 20 25 

~ -14~  ~ I I I 

: )¢" ~'~~~~,~-k~~~~k~~~ 

~52 
X 10 -2 

I t I I 

10 15 20 25 

~, I I I 

~22 
xlO-2 

4r 

i i i I 

10 15 20 25 

t 
4~ 

ù 
ù k ~  

4r 

30 

t I I 

~55 
x 10 -2 

30 

30 

I I I I I I I r 

10 15 20 25 30 5 10 15 20 25 30 

Fig. 13. Dependence of Stokes coefficients of Prometheus on the maximal degree of HET. 

Recen t ly ,  W e r n e r  (1994)  d e s c r i b e d  in de ta i l s  h o w  to d e t e r m i n e  the ex te r io r  

g r a v i t a t i ona l  po t en t i a l  and  a c c e l e r a t i o n  c o m p o n e n t s ,  s u p p o s i n g  that  a b o d y  h a v i n g  

a cons t an t  dens i t y  is r e p r e s e n t e d  as a p o l y h e d r a l  shape .  H o w e v e r ,  in p r i n c i p l e  this  

m e t h o d  a lso  fa i ls  on the  su r face  o f  the  body .  

Thus ,  in the  r eg ions  c l o s e  to the  sur face  w e  n e e d  a no the r  m e t h o d  o f  the  g rav i ty  

d e t e r m i n a t i o n .  A s  one  o f  the  p o s s i b i l i t i e s  w e  can  c h o o s e  d i rec t  n u m e r i c a l  in tegra -  

t ion.  
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Reference frames for evaluation of the gravitational potential. 

Gravitational potential of a body is defined by the formula 

r 2 
B dr de  dA, 

COS ¢ 
v~(p) = a«c ~/»2 + ~ - G r c o s ~  

where (r, ¢, A) are the coordinates of the mass element, ~ - (~~r), and let us 
assume that the spherical coordinates of pa re  (p, ~, A). It is valid in every point 
P(p) of the space. The integral should be computed numerically, assuming that a 
model of shape of the body is known. This seems to be trivial, however, a practical 
problem arises here. If the point P(p) lies on the surface or in the interior of the 
body then the integrated function is singular at this point. This singularity vanishes 
after shifting the center of the coordinate system to the point P (Fitzpatrick, 1960). 
For practical reasons this is not satisfactory, because in the new frame it is difficult 
to describe the shape (thus determine the limits of integration). 

To solve the problem mentioned above, we propose the following approach. 
Let us assume that we compute a value of the potential at the point 79(p). First we 
rotate the reference frame in such a way that the point 79 lies on the Z-axis in the 
new frame (see Figure 14). 

After that the angle ~ is equivalent to the latitude ¢ in the new frame. Thus, the 
most inner integral over variable r may be written as 

f ? ̀2 COS ~ß 

I ( & , p )  = d / k/B2 +r2--_--~rp sin ¢ d r  
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/ r = /9 2 X 2 COS O dx = p2j(Ó, x), x = - .  
e X  2 -- 2x sin ¢ + 1 p 

It allows to express it in the finite form: 

J( ,ó,x) = cos¢ [(3sin¢+ ~x) D(x) 
3 ~)  log(2x - 2 s in~  + 2D(x))  1 

where D (x) = ~/x2 _ 2x sin Ó + 1. It is crucial that the function J has well defined 
limits when we approach the point 79, i.e., in the critical case: 

lim 
+__+90 o J ( o ,  x)  = 0 

Thus the computation of Vg is reduced to the evaluation of surface integral over 
variables (4), A). The reduction is very important because it significantly decreases 
the amount of computational time. 

For performing computations we used Gauss-Legendre quadrature of 60th 
order. A simple test of the method was to integrate gravitational potential of a 
three-axial ellipsoid and to compare it with the result computed from an analytical 
formula (Danby, 1962). It showed that potential derived by numerical integration 
(with double precision) is precise up to 10 .6 : 10 - 7  in relative scale. 

6.1. NUMERICAL INTEGRATION VS HARMONIC EXPANSION OF THE POTENTIAL 

Having the independent method of determining the gravitational potential we per- 
formed some tests of the harmonic model of Prometheus gravity (expansion of 
maximal degree and order 25). 

For direct numerical integration two models of the topography were used - the 
HET of the degree and order 25 (model I) and the original model of Stooke, with 
linear interpolation (model Il). The potential was evaluated on a sphere with radius 
76 km. Maximal radius of Prometheus predicted by model I is 74.7 km at Ó = 2 °, 
), = 1 °, model II sets it to 75 km at the sub-Saturn point. 

Numerical integration was performed with relative accuracy 5.0 × 10 -6. It 
was determined by the relative difference between integrals obtained after two 
successive divisions of integration intervals. 

Figure 15 illustrates the comparison of results derived by application of the 
Stokes expansion and obtained by numerical integration over the shape defined by 
model II. Relative differences are up to 0.5%. The same test pefformed on model I 
showed that they do not exceed 2.5 × 10 - 4 .  In both cases, we observed the worst 
agreement in small equatorial areas close to the longitudes 0 ° and 180 °. In the case 
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Fig. 15. Relative, absolutedifferencesbetweengravitat ionalpotentialofPrometheuscomputedby 
numerical integration and derived from harmonic model of the degree and order 25, on the sphere of 
radius 76 km. 

of model II, outside these regions differences are very small - they are in the range 
10 .5 • 10 -6. This may be explained by the fact that computations were performed 
on the basis of the same shape, i.e., determined by HET. 

The loss of accuracy near the critical longitudes we explain twofold 
- in their vicinity the test sphere passes close to the surface, thus the convergence 

of the Stokes expansion is slower than in more distant areas of the sphere, 
- the Stokes coefficients are determined on the basis of HET, which changes 

significantly the shape just in the critical areas. 
Another test was to evaluate by the two methods the equipotential surface 

passing through the sub-Saturnian point having Cartesian coordinates (95, 0, 0) 
km, i.e., 20 km over the surface of Prometheus. For numerical integration model 
II was used. In this test we took into account Prometheus gravity only. 

At first, in order to make the comparison more transparent, we approximated the 
equipotential surface derived by numerical integration by the best-fitting ellipsoid 
with semi-axes 93.86, 83.14, 79.63 km, oriented with respect to the geometrical 
frame by 3-2-1 Euler angles ~) = - 7 . 2  °, 0 = 0.7 °, ~ = - 3 . 3  °. Figure 16 shows 
radial separation of both of the equipotential surfaces from the best-fitting ellipsoid. 
We observe that discrepancies between the surfaces are very small. 

7. Equipotential Surface 

Prometheus and Pandora have very similar orbital properties. Table (6.1) describes 
their orbital elements. Both are in synchronous rotation with Satum, they have 
negligible orbital eccentricities, and small inclination to the equator plane of the 
primary. This fact suggests an application of an unified model of the force field. For 



42 K. GOZDZIEWSKI AND A. J. MACIEJEWSKI 

90 

-90 

1.8 

1.2 

0.6 

0 

-0.6 

-1.2 

- 180  -100  0 100 180 

Fig. 16. Equipotential surfaces of Prometheus' gravitation relative to an ellipsoid with semi-major 
axes 93.86, 83.14, 79.63 km, the orientation with respect to original reference frame described by 
3-2-1 Euler angles ~ = - 0 . 7  °, Õ = 0.7 °, ~ = - 3 . 3  °. Rotation and gravity of Satum effects were 
omitted. Shaded contours limited by thin lines correspond to the equipotential surface derived by 
numerical integration over the shape described by the model of Stooke. Thick contours represent the 
equipotential surface computed from harmonic expansion of the degree and order 25. Overall scale 
is the same for both of the surfaces, contours interval is 0.2 km. 

its determination let us assume the following coordinate frame with the origin at 
the center of mass of a synchronously rotating satellite: X-axis is directed toward 
the primary (thus crossing the surface of the moon at 0 = 00, A = 0°), Z-axis 
has direction of rotation axis, Y-axis complements the system to the orthonormal, 
right-handed frame. We fix with this system spherical coordinates: radius vector p, 
latitude A measured from XY-plane, longitude ~ measured counterclockwise from 
X-axis. In such a uniformly rotating frame the potential function of force field at 
an arbitrary point may be written as (Kutshik, 1990) 

W O ,  0, A) = V~(p, 0, A) + VcO, ~, A) + V~(p, ~, A), (5) 

where Vg denotes pure gravitational potential of the satellite, V~ represents cen- 
trifugal potential, and V~ is tidal potential of Saturn. We are interested in static force 
field, so Coriolis forces are excluded. Additional effects contributing to the poten- 
tial such as librations, orbit's eccentricity and inclination, nonuniform gravitational 
field of the primary are also neglected. 

Because orbits of the satellites are almost circular, we may write (neglecting 
variability of rotation rate ~ = 27r/T, T - orbital period): 

1~2 2 Vc(p;O) = - ~  P cos2~ß. 

Tidal potential of Satum may be approximated to the lowest order with respect 
to p/ro  by the formula 

G M s p  2 
B(p,  O, A) - 2% 3 (3 COS2 Ó cos2/~ - 1), 
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where r0 is the orbital radius, Ms denotes the mass of Satum. Because GMs/r~ = 
cc 2 the sum of 14 + V« is 

V~ q- Pc = -2cd2p2[  cOS2 ~ß(B -~ cos 2 A ) -  1] or ~ + Vc = -2¢d2 (Bx  2 - z2), 

with (x, y, z) denoting Cartesian coordinates of a point. 
The equipotential surface of a moon is a set of points (p, Ó, A) defined by 

equation 

w(p, ~, a) = Wo, 

whem Wo is taken as an appropriate constant. As the 'geoid' of a moon we may 
take an equipotential surface close to its physical surface. Because the shapes of 
the satellites under investigation are highly irregular, we decide to take value of 
W0 as the mean of the total potential evaluated at points belonging to the grid of 
original topographic data. 

In order to determine the radius of the equipotential surface p~ (0, 3,) one has to 
find a root of a nonlinear equation 

f(p) =- W(p, ¢, A ) -  1470 = 0. 

Function f(p) is monotonic and it has one real positive root in the vicinity of the 
surface. For solving the equation we used the secant method. 

The results derived for Pandora and Prometheus are illustrated in Figures 17- 
22. Figures 17 and 20 show maps of gravitational potential Vg on the surfaces of 
the moons, Figures 18, 21 are maps of  total surface potential W. It is evident that 
the tidal and rotational effects have substantial influence on the potential. They 
change its scale as well as its distribution over the surface. For both of the moons 
we may observe that distribution of the total potential is well correlated with the 
radial separation of the physical surface and the equipotential surface (Figures 19, 
22). 

According to works of Veverka (Veverka et al., 1981), and recent paper of 
Thomas (1994), variations of gravity on the surfaces of Amalthea, Phobos and 
Deimos may explain the appearance of some features observed on them. For 
example, the variations may indicate directions of the downslope movement of 
regolith. For investigating such effects on the surfaces of Phobos and Deimos, 
Thomas (1994) used the scale of dynamic heights, defined as 

w ~ - w 0  
Hd-- 

gT 

where IJV1 and Wo are potential energies per unit mass of the measured and refer- 
ence points, 9r is a reference gravity. According to the paper cited, the dynamic 
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The gravitational potential on the surface of Pandora (m2/s2). 
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Fig. 18. The total potential (including self-gravity, rotation and tidal influence of Satum) on the 
surface of Pandora (m2/s2). 

heights better describe the downslope and upslope directions, than radial differ- 
ences between the physical and equipotential surface. We did a comparison for 
Prometheus. Its dynamic heights were calculated under assumption of constant val- 
ue of the reference gravity (following the paper of Thomas). It was determined as 
the mean of the gravitational acceleration on the surface, namely 9~ = 9.826 × 10 -3 
m/s 2. The comparison is shown in Figure 22 and Figure 23. Apparently, structures 
depicted in these two figures agree very well (the different overall scale of the two 
characteristics is not important). Our explanation of this fact is that, as far as the 
dynamic heights are constructed with a constant value 9~, they do not supply quali- 
tatively new information from this given by the radial separation of the physical and 
equipotential surface. A closer inspection shows that in the case when we assume 
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Gravitational potential on surface of Prometheus 
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The gravitational potential on the surface of Prometheus (m2/s2). 
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a constant gr, we still do not account for the tme distance between the measured 
and referenced point; this is because a direction to the referenced point could not 
be well defined, if the point is chosen on the equipotential surface (defined by the 
reference potential t470). 
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Appendix 

This appendix summarizes the formulae applied in this work. They come from the 
papers of (Martinec et al., 1989) and (GoZdziewski et al., 1994). Because of some 
misprints in the second paper, we decided to write a complete set of formulae. 
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Fig, 23. Dynamic heights on Prometheus (km). 
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A. HARMONIC EXPANSION OF TOPOGRAPHY 

We assume that coordinates of points are given in the body-fixed, planetocentric 
reference frame. 

The radius of topography as the expansion in terms of the real spherical har- 
monics (Bills and Ferrari, 1978) is: 

Jmax m=j 

rt(¢, A) = ~ ~ Pj~~(sinO)[äj~ cos(mA) + bj~ sin(mA)], (A.1) 
j=0  m=0 

where (r~, ~, A) are spherical coordinates of a point of the body's surface. The set 
of coefficients (äj~, bjm ) describes the shape completely. 

The functions Pjr~~ are normalized associated Legendre functions, i.e., 

i (j - ~)! 
Pj~(~) = xj~P?(z),  xj~ = (2 -  ~~~o)(2j + 1)(j T ~)!' 

where 

Pj'~(x) = (1 -  x2) ~/2 dJ+~(x 2 -  1) 5 
2J j! dxJ+m ' 

are unnormalized associated Legendre functions of degree j and order m. 
The complex form of the topography expansion (Martinec et al., 1989) is defined 

by: 

j=0  m=j 
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Now Ej.~ denote complex harmonic coefficients, and Yj.~ (~b, A) = Pj.~ (sin ~)e i'~x 
are fully normalized complex spherical harmonics. 

The functions P/.~(sin Ó) are fully normalized associated Legendre functions. 
Their normalization is the same as the one widely used in quantum mechanics. 

Relations between different forms of the Legendre functions are as follows: 

P s t ( x ) = ( 1 )  m /(2.~+_l)(j--_rn)!p'~~(z 
- V 4~ ( j  + rn)! J ) 

(A.3) 

l m @ 4  1 - = ( - )  ~r(2- ~.~o) Pj'~(z)" (A.4) 

The complex, fully normalized harmonic coefficients Ej,, have the form: 

(_1)~ / 47r( j+rn) !  1 Ejra 
V (2j + 1 ) ( j -  ra)! ( 2 -  ~~o) (aj'~ - ib id)  (A.5) 

4~r 
= ( -1) '~  ( 2 -  6.~0) (ä»~ - ibid),  m _> 0. (A.6) 

Here {ad.~ , bj.~ } and { äj.~, bj.~ } denote real unnormalized and real fully normal- 
ized spectral harmonic coefficients, respectively. Because rt is real, it follows that 
for rn _< 0 we have the following relations: 

B ,_~  = ( - 1 ) ~ Y j ~ ,  Æj,-,~ = ( - 1 ) ~ E j ~ ,  

where the symbol • denotes the complex conjugation. 
Natural k-th power of the radius of topography can be written as 

mm ~31,Tr~ 1 ~32,~'~%2 31~~Zl 
d l ' t a l  j2,rn2 

j 

( k - l )  where E~~ are e~pansio~ co«~cients of the (k - ~1 power of,~~, E]~  _-- E j ~  
The general form of the coefficient is: 

/(2jl + 1)(2j2 + 1)cJ0 ~j,~ E!~-UE(1) (A.8) 

Jl ,mi  j2,w~2 

where C and Clebsh-Gordan coefficients. 
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B. GEOMETRIC CHARACTERISTICS 

The mean radius r0 of the topography is defined as r0 = ä0o. 
The mean equatorial radius is determined as (Martinec et al., 1989) 

1 / i  2~r 
ae = 27 rt(O, A) d~, 

and in terms of the topography expansion it is expressed by: 

[ oo 4~_" + 1 (2j - -  1)!'] 
a~ = ~0 1 + ~ 2 ( - 1 ) J V  :*7 (2j)~~ l"  

j=l  J 

The mass M and volume V of a body having constant density p(r) = p~, are 
defined by 

2 /-,~(3) pcV, thus V = ~v,,*~oo. (B.1) M = po~vrc~00 - 2 /~~(3) 

Offsets of the center of the body from the origin of the coordinates system are 
expressed by the formulae: 

1 /-3-NEf~ ) 1 /-3-5gE~41 ) V/-JEI~ ) (B.2) 
z =  2V ~ ~0(~) ' 9 =  2V ~ E~ß----]-' ä =  4 E~~)" 

C. TENSOR OF INERTIA 

The inertia tensor (per mass unit) in terms of harmonic expansion of topography is 
detrmined by the following equations: 

IaTx/M = 5 2V/~ 20 - -  

Iyy/M ~-- ~ .~7~~ ) ~- 2Vf~ 20 

2(~~:, , ~,< /~~o a, I=/M= ~ V~ 20j 

2 /~~T.E(5)/E(3) 
[xY/M = 5 V  10 22 / 0o,  

2 f-~-mE (5) / ~ (3) 
[xz/2~/[ ~--" 5 V 10 21 00 '  

2/3¢F(5 )/E(3) 

(C.1) 
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D. STOKES COEFFIC•ENTS 

Denoting by G the gravitational constant, by M the mass of a body, by r0 a 
reference radius, the extemal gravitational potential of the body at a point (p, ¢, A) 
can be written in the complex form (Martinec et al., 1989) as: 

- ~ A s . ~ ~ m ( ¢ ,  A), (D.1) 
/" j=O m = - j  

where the coefficients of expansion are complex and fully normalized in the com- 
plex sense: 

E(J+ 3) 
6x /~  1 j.-~ 

AJ~ : (j + 3)(2j  + 1)rg Eg B) " (D.2) 

Relation between the coefficients and their unnormalized and real representations 
is the same as in the case of topographic coefficients. 
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