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Abstract. The theory of collisional systems is generalized for an arbitrary geometry and forces acting 
in the system, mixtures of different particle types, friction, small deviations from the ideal spherical 
form, axial rotation, finite size of particles and gravitational interactions. Terms for the formation of 
new particles and destruction of old ones are also included, and other unspecified parameters can be 
introduced. Although some approximations are made to simplify the basic equations and to avoid 
excessive numerical integrations, a comparison with computer simulations shows a good agreement. 
The tests were continued up to the optical thickness -r = 5. 

1. Introduction 

The mechanics of planetary rings and other similar systems is a natural extension 
of statistical mechanics, but it differs from the theory of gaseous matter in some 
characteristic features: the finite size of particles, partially elastic collisions and 
gravitational interactions cannot be neglected for macroscopic bodies, whereas 
molecules are usually treated as perfectly elastic, non-gravitating point masses. 
The free paths of the particles as compared with the dimensions of the system can 
also be much larger in an astronomical context than for molecules. 

Due to these differences, the statistical theory of macroscopic bodies is an 
almost independent area of reseach. Its basic equations can be derived from 
several starting points. One is standard-type gas mechanics corrected for the 
inelasticity of impacts. This method was used by Goldreich and Tremaine (1978) 
for Saturn's rings, and the work was later continued by Borderies et al. (1982, 
1983) along the same lines. Shu and Stewart (1985) used the Krook model of 
transitions in the phase space as their starting point. This eliminates the collisional 
integral and leads to an elegant mathematical theory. Araki and Tremaine (1986) 
and Araki (1988, 1991) introduced another modification which is based on En- 
skog's (1922) theory of hard-sphere gases. The finite size of particles then becomes 
a natural part of equations which also include the axial rotation. The results agree 
very precisely with computer simulations. 

An entirely different approach is provided by the use of Keplerian orbital 
elements as variables (Hameen-Anttila, 1978). This theory was more extensive 
than other early attempts, since the axial rotation of particles was also taken into 
account. The generalization of this work (H~imeen-Anttila, 1983, 1984, hereafter 
referred as Papers I and II), included more freely defined variables, an arbitrary 
geometry for the system instead of a disc shape, finite particles having a size 
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a size distribution, gravitational interactions, and formation or destruction of 
particles, but axial rotation was only discussed later, by Salo (1987a, 1987b). 
Gravitational interactions have also been studied in an independent fashion (Hor- 
nung et al., 1985; Barge and Pellat, 1990, 1991), using a Fokker-Planck operator 
in Landau's form. 

Collisional systems have also been studied by means of computer methods which 
in the first phase were direct simulations (Trulsen, 1972a, 1972b; Brahic, 1977; 
H~imeen-Anttila and Lukkari, 1980; Salo, 1987b). Since the modest number of 
particles is a serious restriction, Trulsen and Wikan (1980) introduced the Monte 
Carlo method for studying the Poynting-Robertson effect. An even more powerful 
procedure was developed by Wisdom and Tremaine (1988), who used a small co- 
moving cell for which the calculations were carried out. Salo (1991) employed the 
same method with a larger number of particles, and also included the size distribu- 
tion and spin. 

The following sections are a continuation and improved version of Paper II. 
Friction, surface irregularities and axial rotation are taken into account without 
neglecting the other phenomena discussed in Paper II. The finite size of particles, 
for which the latter only provided a semi-qualitative model, is treated in terms of 
Taylor expansions. The unconventional variables of Papers I and II are used here 
in a milder form, all the equations being valid for the position and velocity 
coordinates of the phase space, although the possibility for applying curvilinear 
systems or orbital elements is retained, since these can occasionally reduce the 
computational work, as seen in Section 11. 

An improvement is also introduced for the calculation of certain integrals which 
appear in mean values and are a most inconvenient feature of collisional theories. 
Numerical integrations provide a straightforward solution to the problem (Gold- 
reich and Tremaine, 1978; Araki and Tremaine, 1986; Araki, 1988; 1991), but 
they are time-consuming if the evolution of the system is to be calculated and 
each step implies multi-dimensional integrations. The method of Papers I-II  and 
their predecessor (H~imeen-Anttila, 1978) was to use analytical functions as ap- 
proximations. This was of limited accuracy, however, although it was later con- 
siderably improved by Verronen (1989). Analytical approximations are now used 
as well, but the error is less than 0.6% for Keplerian systems. 

The results are compared with numerical simulations of discs performed with 
the local code (Salo, 1991). The agreement is excellent if the system is thicker 
than a few times the diameter of particles or if its optical thickness z is less than 
unity. Some compromises between the simplicity and accuracy influence the results 
for fully flattened systems having z > 1, but even then the error remains tolerable 
as far as the simulations are carried out, or up to z = 5. More general systems 
than discs were not tested. 

Sections 2-9 contain the derivation of basic equations. Section 10 summarizes 
all the necessary relations in a concise form, and Section 11 contains the corre- 
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sponding equations for discs as a special case of the general theory. The compari- 
son with numerical simulations is given in Section 12. 

2. Coordinates 

Let the Cartesian coordinates of the generalized phase space be X 1, X 2 . . . .  These 
include the components of the radius vector R, velocity vector il, and a set of 
unspecified parameters qi which may represent the rotational state or other internal 
properties of particles. Hence,  with matrix notations, 

X : {R, 11, q}. (1) 

We also introduce a set of classification parameters p = {pl, p 2 . . . }  such as the 
mass, radius or chemical composition of particles, but they are assumed to be 
constants and are therefore not included as coordinates of the phase space. 

The time-variations of X consist of a smooth evolution having the total derivative 
= dX/dt (t denotes time) along the particle orbit and of random jumps from X 

to another state X1 as a consequence of collisions, gravitational encounters or 
other similar processes. The dot above the symbol and the subscript 1 are also 
used for other quantities in the same manner.  The primed and unprimed symbols 
distinguish the interacting particles. The differences Xa - X and X' - X are treated 
as first-order small quantities. 

The curvilinear coordinates {r, C} are generated by the transformations r = 
r(X, t) and C = C(X,t), which must be independent  of p. The first of these para- 
meters, r, represents the radius vector along a freely chosen reference orbit which 
approximates the true motion, i.e. Ir - R] ~ [R I, I/" - 111 ~ II~I. The components of 
0(R - r ) /0r  must also be small quantities. The choice of C is free. Since r(X, t) 
and C(X, t) are assumed to be regular functions, r~ - r, r '  - r, C~ - C, and C' - C 
can be treated as first-order small quantities if X l -  X and X ' - X  have this 
property. 

The elements of matrix r are used as Cartesian components of the radius vector 
in a j-dimensional space (0 ~< j ~< 3). For  instance, the orbital semi-major axis and 
mean longitude can be adopted as polar components of r for a thin Keplerian disc 
(Hfimeen-Anttila, 1978). It is also possible to define r = R, C = {R, q} or to 
identify r with j components of R, in which case C contains R, q, and 3 - j spatial 
coordinates. 

If j < 3, the vector space R is split into a j-dimensional subspace Rj and its 
( 3 - j ) -d imens iona l  co-space s. The former contains the r vectors while s 
(= R - R/) is perpendicular to them. The matrix 

x = {s, l~, q} (2) 

represents the Cartesian counterpart  of C. For a thin disc, Rj is the 2-dimensional 
radius vector on the equatorial plane and s degenerates to a scalar which measures 
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the vertical distance from it (the coordinate z). If j = 3, then Rj = R and s = 0. 
Both r - Rj and s are treated as first-order small quantities. 

3. Generalized Boltzmann's Equation 

The mean value of a quantity ~: for the fixed r and p is defined by the relations 

( 
f t ~  | N~D dC,  

2 

D = 10(R, 1~, q)/0(r,  C)l ,  
(3) 

n and N standing for the particle densities in the vector spaces r and X; respec- 
tively. Equations (3) also determine n, since ~-- 1 must yield ~ = 1. If r is 0- 
dimensional, n represents the total number  of particles in the system. 

The generalized Boltzmann's equation for curvilinear coordinates is (cf. Papers 
I and II) 

O(ND)/Ot + V. (NfD) + ~] O(NC'~D)/OC~]/D = eN + (dN/dt)R , 
] 

(4) 

where V stands for the operator  0/0r and aN for the rate of creation of new 
particles per unit volume of the phase space. The last term is a generalization of 
the collisional integral for arbitrary random jumps. 

Equation (4) gives 

O(N~D)/Ot + V. (Nf~D) + ~ a(NC'~D) /OC i = 
i 

= [N@ + e o + ~(dN/dt)n]D, (5) 

and if N~ vanishes rapidly enough for IC] --+ % Equations (3) and (5) yield 

O(n~)/Ot + V. (nl:~-) = n(e--~ + ~) + f ~(dN/dt)RD dC.  
(6) 

If w(r, C, Ar, AC) d2xr dAC dC represents the probability of a particle jumping 
from {r, C} to {r + Ar, C + 2XC}, the last term of Equation (6) contailas a negative 
contribution - f f f  N£wD dAr dAC dC for jumps away from {r, C} and a positive 
one for the transitions {r - Ar, C - AC} -+ {r, C}. The latter is calculated from a 
similar integral, but ~ and w are replaced by ~1 and w(r - Ar, C - AC, At, AC). 
The integration for C suppresses the difference between C -  AC and C, while 
r - Ar is treated in terms of power expansions (Paper II). Hence,  
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NAr  &r~lwD d/.Xr dAC dC + • • • 

+ f f f dAr 
This is the equa t ion  of  cont inui ty  for  ~:. 

(7) 

4. Binary  Interact ions  

I f  the jumps  {Ar, AC} follow f rom binary  interact ions ,  w is p ropor t iona l  to the 
part icie density.  Changing  the var iables ,  we have  for  an arb i t ra ry  funct ion ~" the 

re la t ion 

fffUCw dArd, CdC= 
/ j r  + r - -  _ =f f f fN(r,...)N(r',...)~\ 2 ,r '  r . . . .  ) ×  

× ( d ( r '  - r)  dC d e '  d p ' ,  (8) 

in which 0 deno tes  the probabi l i ty  of  in teract ion.  The  dots s tand for  C, C ' ,  p,  p '  
and t. The  Jacob ian  de t e rminan t s  D and D '  are included in 0. The  var iables  
(r  + r ' ) / 2  and r '  - r facil i tate the use of  p o w e r  expans ions ,  since ~ var ies  smoo th ly  

with (r  + r ' ) / 2  but  can diminish abrup t ly  with r '  - r. T h e  collisions are an ex t r eme  
case in which ¢+ is d iscont inuous  with respec t  to the mutua l  distances be tween  
particles.  

Le t  r0 = ( r  + r ' ) / 2 .  Trea t ing  it as an i n d e p e n d e n t  var iable ,  we expand  N ( r ' , . . . )  

and ~ (  according to the powers  of  r '  - r and r0 - r ,  respect ively.  Since ro - r = 
( r ' - r ) / 2 ,  the in tegrand  in Equa t i on  (8) formal ly  becomes  a Tay lo r  expans ion  

according to the powers  of  r '  - r ,  a l though this d i f ference also appea r s  as an 
a rgumen t  of  0 (  in the coefficients.  The  ma in  t e r m  is used to define the m e a n  value 
(~) for  r a n d o m  jumps:  i .e. ,  

/ / r + r '  nvk([~,r ' -r , . . . ) )= f f f NN'O(r,r'-r .... ) 
x ~'(r, r '  - r . . . .  ) d ( r '  - r)  dC d C ' .  (9) 

The  no ta t ion  N '  represen t s  N ( r ' ,  C '  p ' ,  t) at r ' =  r. The  f r equency  of  jumps ,  

v(r, p,  p ' ,  t), follows f rom the condi t ion (1) = 1. The  next  t e rms  of  the expans ion  
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also contribute to Equation (8) and are obtained from Paper II, in which ( )r 
corresponds to our ( ). Hence 

f ;fN(wDdArdACdC=fnv(([l+(r'-r).VlogVN'/N)dp'+ 

i f  + - V .  n u ( ( r ' - r ) ~ ) d p ' + . . . .  
2 (10) 

Following the same paper with slightly modified notations we define for arbitrary 
quantities ~ and 97 the abbreviations 

S(~) = I v((~l - s911 + (r' - r ) .  V log @ ] )  d p ' ,  

F 
W(~97) = ) (v/2)[((~1 - ~ ) ( 9 7 1  - 97) q'- ( ~ 1  - ~ )97  + 

J- ~(971 -- 97)) -- <~l -- ~>~7 -- 8971 -- 7~>] dp' (ii) 

and replace Equation (7) by the relation 

O(n~)/Ot + V- {n[~( + S(r)~ + 2W(r~:)] - V. [nW(rr)~l} : 
= n[e--( + ~ + S(~)], (12) 

which is obtained from Equations (7)-(11) if one observes that (r + r ' ) /2  inside 
( ) is equivalent to r outside it and Ar = rl - r. The truncation of expansions 
after the second-order terms implies 

- - < (13) 

unless ~ is itself a small quantity. 
The expressions for S and W depend on the approximative distribution function 

and interaction mechanism of the particles. The former is introduced in Section 5 
and the latter in Sections 6-8. 

We assume 

5. Distribution Function 

N = n exp[ - (C  - C ) .  (CC - CC) -1.  (C - (7;)/2] 
DV(2~r) k Det(CC - CC) ' (14) 

where k stands for the number of elements in C. This expression agrees with 
Equations (3), since ~= 1 gives ~ = 1, and with an appropriate C it also approxi- 
mates the empirical distribution function derived from computer simulations for 
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Keplerian discs (Trulsen, 1972a; Lukkari, 1978) provided that they are not too 
dense (Wisdom and Tremaine, 1988). 

Since the matrix x which is defined by Equation (2) contains the same number 
of elements as C, we can use r and x as free variables instead of r and C. This 
involves the transformation C = C(r, x, t), which is expressed in terms of the 
Taylor expansion 

c : Co + (x - x0).  ( ° c l  + . . . .  (15) 
\ Ox )o 

Substitution of R for Xo gives Co = C and (aC/ax)o = aC/ax. Hence, 

aC 
c -  ( :~  ( x - ~ ) . - - ,  

ax (16) 
t 

c c -  c c  = ( ° c / •  ( x x -  x x ) .  O C.  

\ Ox / Ox 

and if D is decomposed to the product of a(Rj, x)/a(r, x) and 0(r, x)/0(r, C), one 
finds D = [Det(0x/0C)l. Equations (14) and (16) then give the expression 

N =  n e x p [ - ( x -  x) .  ( x x -  xx) -1.  ( x -  x)/2] 
~f(27r) k Det(xx - xx) ' (17) 

which does not depend on the choice of C. This is not only a useful relation, but 
it shows that Equation (14) has the same content for any system of coordinates C 
in the phase space. 

The invariance of N would be lost in the next approximation which implies a 
distribution function depending on the constants of motion according to a definite 
(but unknown) law. Hence, if Equation (14) or (17) is adopted, the expansions 
(7) and (10) must be truncated without trying to calculate new terms for Equation 
(12). The randomness of jumps usually reduces (~:1 - ~:) in S(~:) to a small quantity 
and justifies the simultaneous use of second-order terms. Otherwise these also 
ought to be neglected. 

The lack of an accurate distribution function is a fundamental problem which 
appears in other approximation methods as well, e.g., the Krook equation (Shu 
and Stewart, 1985), which avoids the Taylor expansions (7) and (10), includes the 
counterpart of Equation (17) as a basic assumption. The consequences are the 
same as here. 

6. Impacts 

The particles are assumed to be spherical, although small deviations from this 
ideal shape are permitted later. The matrix p contains the mass m, radius o- and 
elastic properties of particles, while q/o" represents the vectorial angular velocity 
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(=+a, ya~ ca~ 

t 
| 

1 
,t 

Fig. 1. Two impacting particles. 

oJ of their rotational motion. The relative orbital velocity of the particles is v = 
R ' - R .  

To construct Equation (9) for impacts we need the probability of a given particle 
P of type p hitting one of those particles P'  which belong to the type p' and are 
located in the cell dv dq'. Since a slab of area A and thickness dh contains 
N' dv dq' • A dh target particles having the collisional cross-section 7r(0. + 0.,)2, the 
probability of impact, 1-[1, is equal to N'  dv dq' • A dh • ~r(o- + 0.,)2 divided by A if 
P penetrates the slab in the direction of dh. Inserting dh = Iv I dt, we have 

11~ = 7r(o- + 0.')2N'lvl dt dv d q ' .  (18) 

If P and P'  collide (Figure 1), then R' - R = (0. + o-')c, where c denotes the 
unit vector pointing from the centre of P to that of P ' .  The angle between - c  
and v is ~b. The probability 112 of c being inside the solid angle do) is given by the 
ratio of the projected area (0.+ 0-') 2 cos q5 d~o to the collisional cross-section 
7r(0- + 0-,)2: 

II2 = cos 4~ dm/Tr = ( - c ) .  v d~o/~rlv I . (19) 

The total number of impacts for those particles of type p which are located 
in the cell dx( = ds dR dq) would be F[~II2N dx if the particles were statistically 
independent of each other,  but having a finite size, they and the target particles 
occupy some amount of the available volume. If the fraction of free space is 1/g, 
the probability of impacts becomes g-fold. The collisional mean value of a function 

and the impact frequency v are therefore defined by the expressions 
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<#)=f gn,n2Xdx/fgnln2Ndx, 
nv dt = f gIIlII2N dx.  

(20) 

The integrations are carried out for those combinations of variables which give 
( - c ) .  v/> 0. Coagulations and fragmentations of particles introduce additional 
restrictions, which are included later (Section 10D). Inserting the expressions (18) 
and (19), one finds 

n~,(() = f~. v<o (gNN '(tr + o-')2(-c) • v dw dx dv d q ' .  (21) 

The evaluation of g leads to a complicated problem, since not all the voids of 
arbitrary size and shape can be used freely for the motion of particles. Ignoring 
the details, we assume that 

l /g = 1 - f (4~rn-~RO-'3/3&~ax) d p ' ,  (22) 

where ~max stands for the maximum attainable packing density and n R for the 
number of particles per unit volume in the R space. The mean value nR can be 
used, since g is anyway approximative. 

The quantities 111 - 11 and ql - q (= o-to1 - cro~) are calculated from the conser- 
vation laws and properties of collisions. 

The conservation of momentum gives 

m R 1  + rn'R[  = rnII + m ' t l '  . (23) 

If the particles are homogeneous spheres, the rotational angular momentum is 
2rno~o~/5, and hence, 

mR x [il + rn'R'  x [1~ + 2(rnoR1 + m'o"R~t)/5 

= mR × R + m 'R '  x 11' + 2(moq + m'cr'q')/5. (24) 

The change of the rotational angular momentum,  2mo-(ql - q)/5, follows from 
the influence of torque during the collision. Since the forces acting on both particles 
are identical except in their sign, the ratio of torques is or': o-. This gives 

re(q1 -- q) = m'(q~ - q ' ) .  (25) 

The velocity differences at the impact point before and after the collision are 

v* = v -  (q + q')  × c ,  

v* = Vl - (q~ + q~) x c ,  
(26) 
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and since c, c × (v* × c) and v* × c are perpendicular to each other,  any arbitrary 
vector can be expressed as a linear combination of these. Introducing the scalar 
coefficients - a c -  v*, 1 - / 3 ,  and 3,, we thus find that 

v* = - ace" v* + (1 - / 3 ) c  x (v* x c) + 3,v* x c (27) 

and, accordingly, 

c '  v* = - a c "  v* , (28) 

c x ( v * x c ) = ( 1 - J 3 ) c x ( v *  x c ) +  3 , v * x c .  

Therefore  o~ denotes the coefficient of restitution, and if 3' = 0, 1 - / 3  corresponds 
to the friction. If y =~ 0, v* contains a non-zero component  in the direction perpen- 
dicular to v* and c. The resulting asymmetry can only be avoided if y is a random 
variable having "~ = 0, which represents the influence of surface irregularities. 
Since these also act in the direction of c x (v* x c), a similar random component  
must be included in/3. Two colliding particles always have opposite values of 3,. 
The coefficients a , /3 ,  and 3, may depend on v* and c. 

Equations (23)-(27) with R'  = R + (or + cr')c and [1' = 1 /+  v give 

[11 - R = [ 2 m ' / ( m  + m')][(1 + a)cc /2  + /303  - cc)/7 + 

+ 3,c x I3/7]- [ v -  (q + q') x c] ,  (29) 

q~ - q = 5c × (RI - R)/2 ,  

where 13 stands for the 3-dimensional unit tensor. 
Since the rotational energy of a homogeneous sphere is mq2/5, the change in 

total energy (translatory + rotational) for a colliding pair of particles is 

A E  = - [ m r n ' / ( m  + m')]{(1 - o~2)(c • V*)2/2 + 

+ [1 - (1 - / 3 )  2 - 3 , 2 ] ( c  x v*)2/7}. (30) 

This quantity must be either negative or zero. 

7. Impacts  of  Gravitat ing Particles 

The gravitational attraction between mutually colliding particles enlarges their 
effective cross-sections, increases the impact velocity, reduces the post-collisional 
velocity and modifies the distribution of c. The last-mentioned effect is not taken 
into account, and may produce considerable errors for low-velocity impacts, but 
their t reatment is anyway approximative, since we are using the two-body method 
(for its accuracy, see Wetherill and Cox, 1984, 1985). This approximation is 
obviously invalidated in the case of dense matter. 

The velocities v and v 1 are now interpreted as asymptotic velocity differences 
before and after the impact, while Vco~ and (Vco~)l correspond to the instant of 
collision. 
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The standard expression for a gravitationally enlarged collision cross-section is 

[Tr(o- + o-')2]gr.v = (1 + 20)7r(o- + 0-,)2 , (31) 

0 = G(m + m ' ) / v 2 ( o  - + Or') , 

where G stands for Newton's constant of gravitation. This expression is to be 
substituted for 7r(o" + 0'') 2 in Equation (21). 

The energy principle as implied by the two-body problem gives the expressions 
2 v2(1 + 20) and v 2 + 20v 2 for vcol and (vcot)l a, respectively. Hence,  as a rather crude 

approximation, 

(c .  Vco,) 2 ~ (c-v)2(1 + 20),  (32) 

(C"  Vco1) 2 ~-  (C"  Vl )  2 -}- 20(e- v) 2 . 

The error  can be large in individual cases, but on average the results are correct 
for a randomly varying c. 

Since the rotational part of v* does not contribute to the first of Equations 
(28), the true coefficient of restitution, %ol, can also be defined in the form 
- ( c .  Vcol)l/C • Vcot, while the effective coefficient is ~ = - c  • vl/e" v. Using these 
expressions in Equations (32) we find that 

o~ : ' / (1  + 20)a2o, -  20. (33) 

2 o d ( 1 _  2 The imaginary a for 20 > O~coZ) corresponds to the gravitational coagu- 
lation. 

Since any arbitrary vector can be expressed as a linear combination of c, c × (v* 
x c), and v* x e (Section 6), it would also be possible to modify/3 and 3' for the 

mutual gravitational attraction of particles, but this is not done in the present 
paper. 

8. Gravitational Encounters 

A .  G R A V I T A T I O N A L  R A N D O M  WALK 

Slightly modifying the calculations of Papers I and II we derive the influence of 
encounters from the fluctuating force field and dynamical friction. The former 
produces a random-walk process which can be described in terms of Equation (7). 
The mean value (¢3 is thereby generalized for encounters according to the relation 

f f f N~wD dar dAC dC = n f ((©/zXt) dp' , (34) 

in which 2~t denotes the average duration of steps and corresponds to the inverse 
collisional frequency lip. The subscript 1 refers to the change from one step to 
the next, and ~1 is calculated from the Taylor expansion 
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• ] 1  + (35) 
0X 0XOX ' 

in which the double scalar product .  • denotes the operation P .  • Q = { P  .ij Q~i..} 
for arbitrary tensors P and Q. 

The mean value of X1 - X is assumed to vanish at each point separately. Since 
the expansion is truncated after the second-order term, 02~/OXOX can be replaced 
by ~ / 0 X 0 X .  Thereafter (~1-  ~3 is reduced to the calculation of 
((X1 - X)(X1 - X)). The expressions ((rl - r)~l) and ((rl - r)(rl  - r)~l) are con- 
structed in the same manner, and if we define 

S(~:) = I f  ( ( X l -  X ) ( X l -  X ) ) d p , l . .  ~@- 
22xt 0XOX ' 

(36) 

W(~r/) = (0-0~] t .  I f  ( ( X 1 -  X ) ( X 1 -  X ) ) d p '  1 F-~ 
\ 0 X /  22xt "0-X ' 

Equation (7) becomes identical to Equation (12). Using the same expansions, one 
can also express S and W in the form (11). 

The gravitational field G(R, t) acting at R is 

G(R, t) : ~] Gmi(Ri - R ) / I R i -  RI 3 , (37) 
i 

where i numerates the particles. Since GAt represents the change of velocity during 
At, W(l~li) can be calculated from f (GG)At dp'/2. The averaging refers to those 
statistically equivalent distributions of particles which differ only in the random 
choice of vectors R~ - R. The mean values of terms -(R~ - R)(R] - R) therefore 
vanish if i =~ ], while those having i = j yield the tensor (Ri - R)213/3. Since the 
summing and averaging correspond to an integration, one finds 

(GG) = f (G2m'213n'R/BIR ' - RI 4) d(R' - R ) .  (3S) 

- -  ¢ 

If n )  is substituted for nR, the integration from an unspecified lower bound 
JR'  - Rlmin = p to c¢ gives 

W(I~I~) = f (GG)At dp' /2 = f (27rG2m'2~13At/3p) dp ' . (39) 

The same method also provides (G2) if G is first calculated from Equation (37), 
and we have 

(0a)/(G z) = 2(v2)/3p 2 . (40) 

Another  expression for this ratio follows from the Fourier integral of 
G, f A exp(27r/fi) dr, and from its derivative with respect to t. Their time-averages 
f A.  A*df and f 4~2fZA • A*df (A* is the complex conjugate of A) are essentially 
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identical to (G ~} and ((]2). If the mean-square frequency f f2A. A* df/f A.  A* df  
is used as an estimate for 1/At 2, a comparison with Equation (40) gives 
At/p = ~ r ~ ,  and hence, according to Equation (39), 

W (RR) : f (27r2/3)GZrn'Z~I3~/~v2) dp ' .  (41) 

The result is independent of p. 
If the encounters are rapid processes, R 1 - R is much smaller than the dimen- 

sions of the system and can be neglected. Since we also assume ql - q = 0, the 
transformations (36) determine S(~) and W(~/ )  as functions of W(III/).  

B .  D Y N A M I C A L  F R I C T I O N  

The random walk produces an illusory growth in kinetic energy, which must be 
balanced by the dynamical friction. This is proportional to the relative velocity of 
the particle with respect to the local mean motion, but the notations are simpler 
if we first use the generalized deceleration A • ((X'} - X) with a tensorial coefficient 
A. 

The friction influences the terms ~ and i~- in Equation (12). Since ~: is equivalent 
to O~/Ot + X. (0~:/0X), the contribution of the friction is 

~'f : f ((X') - X) .  A +. 0~:0X dp ' .  (42) 

The integrand represents a binary interaction, and we can therefore use relations 
which correspond to Equations (8)-(10). Hence, 

f . ( ( x '  - x )  • At .  [ 1 +  (r' - r)" Vlog dp' + 
0X L 

1 f (  + - V -  n ( r ' - r ) ( X  X) A + 0~: 2 . . . .  dp ' .  (43) 

A similar expression is found for / 'y( .  
Let Xo represent the mean value of X for the point (r + r ')/2. Inserting the 

power expansion 

0X ~ + (X - X0)" + ' "  (44) 
\0X0X/0 

and taking into account the fact that (r + r ' ) /2  inside ( ) is equivalent to r outside 
it, one can transform the derivatives of ~ and r to their mean values in the 
expressions for ~ and if~:. For the same reason, if A is assumed to depend on 
(r + r ') /2,  t, p and p' in Equation (42), it is a function of r, t, p, and p' outside 
the operation ( ). 
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Introducing the notations 

AS(X) = f A .  ((X' - X)[1 + (r' - r ) .  V log ~ ' / N ] )  d p ' ,  

if a w ( x x )  = 2 { A .  [((X' - X)X> - iX'  - X ) £ ]  + [<X(X' - X))  - 

(45) 

- £ ( x '  - x ) ] -  A*} dp' 

one finds that the contributions of ~s and l~r~ to Equation (12) are correctly taken 
into account if we add to S (0  and W(~T/) the quantities 

o-~ + a w ( x x )  • • °2~ 
a s ( 0  = a s ( x ) - o x  o x o x '  

(46) 

a w ( ~ n )  = ~ • a w ( x x ) . - - . o x  

(47) 

One must thereby observe the identity 

[fiX' - X)(X + X')) - 2(X' - X)£] .  O_yr = 0 ,  
0X 

which follows from the power expansions of r and r '  at X0. The result also 
implies a symmetrization of the tensors if they appear in double products of types 
• . (@/0XOX) and V- (V  .). 

C. NET RESULT 

Equations (36), (41), (45), and (46) determine the net result for encounters. If 
the generalized friction A .  ((X') - X) is replaced by the expression A((I~') - 11) 
with a scalar coefficient A, the non-zero components of the resulting S(X) and 
W (XX) will be 

A(v[1 + (r' - r ) .  V log N @ ] )  dp ' ,  (48a) Sc(l l )  
3 

f 
Wc(RR) = [WG(RR)] ~ = J (A/2)((vR) - (v)l~) d o ' ,  (48b) 

W~(I~R) = f [(27r2/3)GZrn'2~I3~ + (A/Z) x 

x ((vl~ + Rv) - ( v ) l / -  l/(v))] dp ' .  (48c) 

The transformation rule (46) provides S (0  and W (~,/). 
The coefficient A is derived from the conservation of energy. Since Equation 

(12) is only valid if the condition (13) is satisfied, it is not possible to construct 
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the source function for kinetic energy directly, but one can insert ~: = 1~2/2 and 
thereafter multiply by m. If e = 0 ,  the resulting energy production is 
mn[fi, fi + S(112/2)]. The first term represents the mechanical work, while the 
second one with S = S t  corresponds to the encounters, so that the integral 
f mnSG(II2/2) dp must vanish. The transformation of type (46) for S t  then gives 

f rnn[Sc([I). 11+ trace WG([lJl)] -- 0 .  dp (49) 

To avoid a non-zero net force as a consequence of dynamical friction, we assume 

tunA(p, p ')  = m'n'A(O', O). (50) 

Hence,  if l/is expressed in terms of (I~ __+ 1~)/2 and if the third-order quantities are 
omitted, Equations (48) and (49) give 

f f m n ( 2 ¢ r 2 G 2 m ' 2 ~ ~  - A(v2)/2) dp dp' = 0 ,  (51) 

because the antisymmetric terms vanish in the double integration. 
The space density n~ at point {r, s} is f N ( r ,  s, [l', q', p ')  df¢' dq' ,  and if we 

substitute x for C in Equations (3), these give 

nn~= ( N( r ,  s, 1~, q, p)N(r,  s, 1~', q', p ')  ds dl~ dq dl~' dq ' .  (52) 

Since nn-V£ is thus symmetric with respect to p and p' ,  the expression rnm'enn-TRR in 
Equation (51) can be replaced by mm'(m + m')nn~/2. Therefore, the solution for 
A which satisfies Equations (50) and (51) for any particular choice of other quanti- 
ties is 

A = (Tr2/3)G2m'(m + m ' ) n T £ ( 6 / ( v 2 ) )  3/2 . (53) 

The result deviates from Chandrasekhar's (1960) coefficient in two respects: it 
does not explicitly depend on the velocity of the moving body and the logarithmic 
coefficient is absent. The former difference follows from the systematic use of 
mean values, on account of which A is actually an averaged coefficient of friction. 
Chandrasekhar's expression can be modified in the corresponding manner and 
provides the order-of-magnitude estimate 

27rGZm'(m+m')~Rln[ L(v2) ] loglo[ L(v2! ] 
ACh = (V2)3/2 L G(m + m')J = 0.30A L G(m + m')A ' 

(54) 

in which L denotes the mean mutual distance between particles. To illustrate this 
relation in terms of galactic motions, let us assume rn = m' = 1 solar mass, L = 
1 pc, and ~ = 20 km/s. Equation (54) then takes the form Ach/A = 1.40. If L 

is reduced to 40 AU,  the result is 0.29, while L = 10 kpc corresponds to Act,/A = 
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2.60. The absence of the logarithmic factor (which in itself is based on an approxi- 
mation) therefore has no dramatic consequences. 

9. C a l c u l a t i o n  o f  CoUis iona l  M e a n  V a l u e s  

The quantities (11) are most easily calculated for the Cartesian coordinates X, 
and a subsequent transformation (Section 10A) provides the general case. For  the 
sake of simplicity, V l o g ~  is replaced by its mean value, which is approxi- 
mate to V log ~ .  Using the power expansion of r '  - r and re-arranging the 
terms in W, we thus have 

S ( X ) =  v X ~ - X  l + ( X ' - X ) . - - 0 r . v l o g  d p ' ,  (55a) 
OX n j /  

W(XX)  = f (t,/4)(2(X1 - X)(X1 - X) - (X1 - X ) ( X '  - X) - 

- (X'  - X)(X~ - X ) ) d p '  + W*(XX) + W**(XX),  

W*(XX) = f (v/4)[((X1 - X)(X + X ')) - 2(X 1 -- X ) X ]  d p ' .  

(55b) 

(S5c) 

The gravitational parameter  0 and the relevant functions of ~,/3, and 3' are also 
replaced by the appropriate averaged expressions. These are discussed in Section 
10D. The collisional mean values in S and W can then be calculated from Equations 
(9), (17), (21), (22), (29) and (31). The corresponding gravitational quantities (¢3 
in Equations (48) and (53) follow as a generalization of these results. 

The distribution of Rj(= R - s) is not defined by Equation (17), but this vector 
only appears in the difference R' - R, which is equal to (o- + tr')c, and in the 
expression <(Xl - X)(Rj + R~)). The latter is obtained from the identity 

Or 
[ { (Xl  - X ) ( X  + X' ) )  - 2(X1 - X)J~] • ~-- 2 : O, (56)  

OX 

which corresponds to Equation (47). 
A non-zero correlation between q and R or 1~ can only be maintained in 

exceptional cases, which are not discussed in this paper. The integrations for q 
and q' in Equation (21) are therefore trivial. After  that the integral (21) contains 
the variables s, s', 11, 1~' and c. Defining 

y = {s, R} ,  (57) 
y = yy  - yy  

one can change them to y, y' - y, and c. The first one only appears in linear terms, 
in which the integration transforms it to ~' - (y' - y - ~' + ~) • (Y + y , ) - i ,  y .  
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Equations (21) and (31) are now reduced to the expression 

gn'(cr+ o-92(1+ 20) f ~ ( e _ , / 2 ( _ c ) .  v d w d v ,  
v((} = X/(2~.)k_3 Det(Y + Y') 

u = (y' - y -  y' + y)" (Y + V ' ) - ~ .  (y' - y -  y' + y ) .  
(58) 

The vector s' - s consists of certain components of R' - R = (or + ~r')e. This quan- 
tity is significant if the mutual distances between particles in the direction of s are 
not much larger than ~r + o", but the Gaussian distribution for density can hardly 
be valid in this case. Since s' - s complicates the calculations without leading to 
any definitely better  results, it is neglected in u. The difference ~' - g for all the 
particles can obviously be much larger than s' - s for impacts. 

According to the definition (9) N'  is constructed for the same point r as N. 
Therefore  11' - 1~ in the exponential part of the integral (58) only consists of the 
random motion, while ( and ( - c )  • v also include the differential velocity due to 
the finite size of particles. In the first approximation this difference is not taken 
into account. Hence,  for the calculation of u, y' - y = {0, v}. 

The integration for c in Equations (58) is trivial. It is carried out for those solid 
angles in which ( - c )  • v > 0. Thereaf ter  Equations (58) are only needed for ( = 
((v), and constructing nR according to Equations (17) and (52) we find 

v(((v)) = gn--~Rrr(o" + o02(1 + 20)VDet[(Y + Y')-1/27r]v~ × 

× f ~'exp{-(v - V) .  [(Y + y , ) - l ]~  . (v - v)/2}lvl dv ,  (59) 

V = Ii' - 1R- (g' - ~)- (Yss + y/~)-1.  (Ys~ + Y/v)- 

in which the indices s and v refer to the corresponding subspaces: 
Yss = ss - ss, Ysv = ~ - sR, and [(Y + Y')-l]vv contains the components of 
( y  + y , ) - i  in the velocity space. It is to be observed that Y', R', and g' are 
constructed for the point r instead of r ' .  

The coagulation and fragmentation of particles are included if the integral (59) 
is calculated for a restricted interval Vmin < IV] < V,,,a, outside which the number 
of particles is not conserved. 

An i m p r o v e d  approximation follows if the differential velocity VD= 
o-e • VR+ o-'c. VII' due to the finite particle size is taken into account. Since 1~' - I~ 
is treated as a small quantity, vD is also approximated by (or + cr')c • Vl~ Using v 
as a notation for the random velocity, we must substitute v + VD for v in ((--c) • v 
when calculating the integral (58). The Taylor expansion of ( ( - c )  • (v + VD) then 
gives the linearized correction term 

(60) 
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The condition ( - c )  • v > 0 also ought to be modified, but this turns out to produce 
a second-order correction and is therefore not taken into account. 

The gravitational mean values which appear in Equations (48) and (53) are 
assumed to coincide with the corresponding collisional expressions (f) in the limit 
cr + o" ~ 0. No attempt is made to include the finite encounter distances. 

10. Summary of Basic Equations 

A. EQUATION OF CONTINUITY 

If ~ = 1, Equation (12) gives the conservation law 

On~at + V. F = ng,  (61) 

F = n [ ~  + S ( r ) ]  - V .  [nW(rr)]. 

The particle flux F is used to define the operation 

d/dt  -- a/ot + (F/n) • V, (62) 

and Equation (12) can now be expressed in the form 

n d ~/dt  = n[e~ "- e~ + ~ + S(~)] - V. {n[/'-( - 

- ~ -  + 2W(r  0 - W( r r ) .  V~]}. (63) 

All the quantities S and W which appear in Equations (61)-(63) can be calcu- 
lated from the relations (H~imeen-Anttila, 1984) 

S(O = S(X)- 05 + W(XX) • • a2---~-~ 
aX aXaX'  (64) 

? 

= • w ( x x ) .  
0~7 

\ O X /  a x  ' 

in which the difference in notations is taken into account (W instead of the original 
W/2) .  The same transformations are also valid for encounters (Section 8). 

Since Equations (61)-(63) determine the derivatives of n~/ ,  n~, nn  and n, it is 
also possible to calculate d [ n ( ~ -  ~n)]/dt. Omitting the high-order terms and 
using Equations (64), one finds that 

d(~n - ~n) /d t  = (e - e ) ( ~ -  -~)(~q - ~)  + ~n + ~ n -  

- Cn  - ~,~ - ( ~ i  - ~ 0  v ~  - ( v ~ ) * .  ( i T -  i T )  + 

+2(a~-a~r'V@k0X 0X " W ( X X ) ' ( 0 ~  0xOr'v~) " (65, 

Equations (61)-(65) imply conditions of type (13) for ~ and n unless these can 
be treated as small quantifies. 



GENERALIZED THEORY OF IMPACTS IN PARTICULATE SYSTEMS 65 

B. NOTATIONS 

The tensor Y is decomposed to its components in the subspaces s and R according 
to the schema 

s s - s s = H ,  

s l i  - s R = K ,  ( 6 6 )  

I1[i - 11[I = T + K * .  H - I .  K .  

The inverse tensor is found to have the component (Y-1)v~ = T -I  in the velocity 
space. The term K* • H -~ . K arises from the difference between the mean values 
for all the particles at r regardless of their s and for those particles which have a 
common 3-dimensional position. The former corresponds to 1~11 - II1~, while T 
stands for the (averaged) dispersion of velocities in the latter sense. An alternative 
representation is 

T_~=0--C ( C C _ C C ) _  ~ (0C)* 
0-~" • ~ . ( 6 7 )  

This expression was derived by Verronen (1989) for non-rotating particles, but it 
is also valid in this paper. 

The systematic relative velocity defined by Equations (59) and the differential 
motion of colliding particles introduce the quantities 

V = R' - R - (s' - s) .  (H + H') -1.  (K + K ' ) ,  (68) 

D = ( o - +  o - ' ) V R .  

The difference between V and l~' - 11 corresponds to that between T and 1~11 - 
111~. The axial rotation is described by the vector q = o-w and tensors 

Q = q q -  q q '  ( 6 9 )  

J = Q + Q' + (q + q')(q + q ' ) .  

The gravitational expressions (48) are incorporated into S and W in terms of 
the modified coefficients of collisional mean values. For this purpose we define 

F1- m' II + d fi waa2(m + m')2 ( ~ ; / 2  -+ ~nR , 
m + m' 2 7 3v (70a) 

F2 = \ m ( ~ t 2 [ ( 1 ~ +  m / k \  +2 a _ ~)2 + 3 ( ~  + 2:r2GZ(m+rn')2(~)) 3/2 ] 3 v  n----~R , 

(70b) 

F3 = F1 \m  + m ' /  [_ -- 
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m'/3 
F4-- 

7(m + m ' ) '  

m 
= 3 F4 - i-5 k m  + m ' / L \  

r6=( m' ~2~, 
\ m  + m ' l  \ 7 /  

\ m  + m ' /  \ 7 /  

16 [7(1 + d)m'  
r 8  = ;7) 

2 [ (1  + ff)m' 4 1 
F9 = 5 L ~ m + ~ - T )  + r4 + 4F6 + 3 r 7  

(70d) 

4 5 1 ]  
F1 + F 3 + ; F 4 + - 8  F5 + F6+3I"7  ' 

(70f) 

(70g) 

(70h) 

+ F5 - Fs.  (70i) 

C. EXPRESSIONS FOR S AND W 

Since the viscosity soon dissipates rapid internal motions, we assume Kv)] ~ (tvl). 
Therefore,  (v) and (vvv/v 2) are treated as second-order quantities; while (v]v]) can 

be ignored. 
The terms - K  + • H -1 • K, o-vH -1 • K are not taken into account. They represent 

systematic motion (usually expansion or contraction) in the s space. If the corre- 
sponding velocity is much smaller than (Ivl), K* • H -~ • K is negligible as compared 
with T. The tensor o-vH -~ • K could be larger in collapsed systems having H - o -2, 
but K tends to vanish in these. If K t .  H - I .  K or o-vH -1 .  K were occasionally 
significant, one could use a 3-dimensional r space. 

Since F6, F7 < 0.02, the terms proportional to them are not needed with high 
precision. This permits the calculation of J .  (PC), (c × J x e), and (ee. J • ee) as if 
the distribution of e were isotropic. The same method was used for 

F4(q + q')  x (ee) and F4(I3 - (ee)), except in S(q). 
The correction (60) for the differential velocity is not added to the small terms 

~F6, F7, or r4q. It is also neglected in W(qq),  since this tensor determines Q 
which elsewhere has the coefficient F6 or F7. Excluding S(q), which is sensitive to 
the differential velocity, the correction term was partly calculated for an isotropic 
distribution of e. 

If the radius vector r depends only on R and [i, the expressions for S and W 
are 

S(R) = 0 ,  (71a) 
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J{ [ S(I~ )  = p E l ( V  ) + (o- + 0 . ' ) ( (1~ 1 - R ) c > .  o__[_r + 
OR 

+ ((1~1- l~)v)- 0 ~ ] . V  log dp ' ,  (71b) 

S(q) = f ~F4[(~ + 0.')V × R-  { v x D'~ > v 2 

(<vv>) j 
- 313- -~ "(fl+fl') dp', (71c) 

W(RR), W(Rq), W(qR), W(l~q), W(ql~) =0 (71d) 

W(I~R) = W*(RR) = - f 4[(or + o-')((R~- l~)c) • 

• [I3 - (It + H') 1. (H' - -  H)] + 2((1~1 - R)v). (T + T') -1. 

• [K t. (H + H') -1. H' - K'*. (H + H') -1. H + 

+ ( T ' - T ) . ~ .  dp ' ,  (71e) 

W(1~1~) = F2(v2>I3 - F3(vv> + F 5 × (Cl + (1') - 

- (¢1 + Cl') x <v~)] + ~ F6(I3 trace J - J) + 

1[ 
+ 4~r7(I3trace J 1 5  + 7J) + 2 ((R1 - 1R)v> (T + T') -1 

• ( T ' - T ) + ( T ' - T ) . ( T + T ' )  1 . (v( l i l_R))]  + 

(<v~> Dt (vffl > <vl~l > ) +Fs  - D +  • + traceD - 

- F9[D • (v~) + <v~) • D* + 1 (D + D*)(Iv[>] 
2 

358 F2(2(v~} " " D + (ivt) trace D)I3} dp' (71f) 
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W(qq) = 

F 6 (I3(v) - (vv)) + x (~ + q') - 

- (it + Cl') x (vl-~) + ~ (I3 trace J + 7J)] + 

,3F7[  i3<v2>, <vv>) - x (q + ~') + 

+ (fl + ~1,)x ( v ~ ) +  ~(I3 trace J -  J ) l - 2 F 4 Q }  dp ' .  (71g) 

The mean values ((1~1 - ll)c) and ((1~1 - l ~ ) v )  are used here as abbreviations for 
the expressions 

{ ( 1 t ,  - l i ) e }  = - 4 { ( 2 F ,  + r )(vv/lvl> + ( r l  - 2r )  <lvl> + 

+ 5F4[(~1 + ~ f )  x I3  - Dill2 - 

- ( r t  - 3F4/2)(D + D* + 13 trace D)}/15, (72a) 

((11, - l~)v) = F~(vv) + 415F4fft + ~t') × (vv/Ivl) - (;F1 + F4)" 

• ((vv/lvl) • D + D * .  (vv/lvl) + (vv/lvl) trace D) - 

- ( F 1  - 2 F 4 ) ( 2 D -  <vv/Ivl> + (Ivl>a)]/15. (72b) 

A simpler approximation, ((111 - l~)v) = Fl(VV), can be used for the terms - T '  - T 
as was shown by numerical calculations. This is important, because 
(vv) • (T + T') -1 is easy to derive from equations of Section D. 

m 

D. MEAN VALUES, P, n~ ANt) g 

The mean values (~(v)) and v are calculated from Equations (59), in which 
[(Y + Y')-l]vv is to be replaced by (T + T') -1 and V by the expression given in 
Equations (68). The coagulation and fragmentation of particles introduce the finite 
bounds Vmi,, < IV] < Vmax into Equation (59) and are assumed to reduce the integral 
by the same proportion as in the case of an isotropic T + T'. This is equivalent 
to multiplication of v(() by the coefficients 

f zmax / f ~  Jk = z k e -z dz z k e -z dz ,  (73) 
Zmln 

z = 3v2/2 trace(T + T ' ) .  

The calculation of Jk is trivial for integer values of the index, and J3/2 follows from 
Galton's function approximated by the expression 
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~rna~v 
exp(-x2/2) dx = 1_~/1 - exp(-2X2ax/Vr) (74) 

2 

with an accuracy better than 1% (Boll, 1957). 
Defining 

Z = 3(T + T')/trace(T + T ' ) ,  (75) 

we obtain the approximations 

(V) = ( I  3 q- ( W / V 2 > )  " V ,  (76a) 

(vv) = (16J2/45J1)(Z + Z-  Z/4) trace(T + T ' ) ,  (76b) 

(vv/lv[) = @ ) Z / 3 ,  (76c) 

(tvl) = (J3/z/J~)(Det Z)-l/3%/37r trace(T + T ' ) /8 ,  (76d) 

(vv/v 2) = Z/3 - (Det z)s/15[(a - Z . .  Z/3)I3 - Z + Z .  Z]/15, (76e) 

v = gn~(0- + O'')2(1 + 20-)Jl(Det Z)l/3%/8-vr trace(T + T ' ) /3 .  (76f) 

This expression for v is used in Equations (71) and (72), while the true frequency 
of collisions follows from Equations (60) and (76f): 

u + zXu ~- u[1 - trace DX/~r/6 trace(T + T ' ) ] .  (77) 

If V-+ 0, Equations (76) are exact for the isotropic distribution of velocities. 
For Keplerian systems in which the largest eigenvalue of Z is four times the 
smallest one, the relative errors are less than 0.6%. This estimate was obtained 
without including the coagulation and fragmentation of particles. These processes 
increase the error, but the laws for them are far less certain than the numerical 
approximations. 

The mean space density for particles of type p' in the zone occupied by those 
of type p is calculated from Equations (17) and (52) as 

- -  n' exp[-(g '  - g)- (H + I-I') -1- (g' - ~)/21 
n~ = ~/(27r) 3-j Det(H + H') (78) 

If the r space is 3-dimensional, then nn = n. 
The coefficient g is problematic. The maximum packing density for identical 

spheres, 6max = 7r/~i-8 (cf. Anderson, 1974), can be used only for gravitationally 
compressed systems having no differential motion. A more realistic model follows 
from the cubic arrangement of particles, which is the densest one permitting a 
non-zero velocity gradient. In this case 6,,,= = (4rr0"3/3):(20-) 3, and Equation (22) 
gives 

= 1 - 8 ~ n-~RO "'3 1/g dp ' .  (79) 
d 
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If the system consists of particles having very different radii, Equation (79) is 
not justified, because the small particles can be located between the larger ones 
without reducing the free space available for these. A generally valid analytic 
expression for 6ma~ would therefore depend on p, p' and the degree of com- 
pression. 

If maximum accuracy is sought for, the relevant functions of a, /3, 3', and 0 
ought to be averaged according to the rule ( f ( a , /3 ,  y, 0)(c. V)2)/{(C " V)2), This is 
a slight modification of an empirical finding for ~ (H~imeen-Anttila and Lukkari, 
1980) and it is also suggested by the expressions (c. v) 2 and (re + ev)c • v in the 
dominating terms of W(XX). This method leads to excessive numerical integra- 
tions, however, and we shall see in Section 12 that satisfactory accuracy also 
follows from a simpler procedure in which X/trace(T + T') is substituted for [c. v I 
(= tc" v*l), on which a,/3,  and y are assumed to depend. If the particles gravitate, 
the definition (0(e. v)2)/{(e • v) 2) is used for 0. Equations (31)-(33) then give 

0 = G ( m  + m')]<v2)(o" + o-'), 

= X/(1 + 20 ) [aco , (W )]  2 - 20 ,  (80) 

w = V(1 + 20-) trace(T + T ' ) .  

A similar method was employed in Papers I and II, although tc" v[ was replaced 
by ~ .  This is approximate to ' )2 trace(T + T')/3. 

11. Equations for a Thin Disc 

For thin discs we define R -- r + zN, s = zN and C = {z, R, q}, where N stands 
for the unit vector perpendicular to the equatorial plane (the x y  plane) and r • N = 
0. The notations r and r* are used for ]rt and N × r. 

The circular, epicyclic and vertical frequencies of the disc are fl,  K and /~, 
respectively. Their definitions (cf. Binney and Tremaine, 1987) provide the auxili- 
ary equation 

Ofl lOr = - (4 •  2 -  K z ) / 2 r D ,  (81) 

and hence, 

Vii---- V(f~r*) = - ~ [ r * r  + (2D 2 - K Z ) r r * / 2 f t 2 ] / r  2 . (82) 

An expression for i l  follows from the Taylor expansion of the potential gradient: 

= --~Z2r -- /*2zN - t x tx ' zZr / r  . . . .  ' (83) 

I x '  = OIxlOr. 

The tensors H and K are replaced by the scalars H = z 2 and K = zg (z, f = 0), 
because H is now 1-dimensional and the components of K along the equatorial 
plane can be assumed to vanish. 
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If E and the high-order terms are neglected, Equations (63)-(67) and (71) give 

dT/dt  = 2W(tI[ i)  - IT + 2W(I lR)] .  (Vl/+ KNN/H) - 

- (Vl/+ KNN/H) *- [T + 2W(RI i ) ] ,  (84a) 

d H / d t  = 2 K ,  (84b) 

d K / d t  = T~z - p.2H + 2Wzz(Rl~), (84c) 

dQ/dt  = 2 W ( q q ) ,  (84d) 

d ~ t / d t  = S(q) ,  (84e) 

where the term K*. t1-1 .  K(=  K 2 N N / H )  in Equations (66) is included for the 
differentiation dT/dt  but elsewhere neglec ted(see  Section 10C). 

To construct the flux vector we assume R =  f~r* + u. The vector u, a small 
second-order quantity, is parallel to the equatorial plane and represents the contri- 
bution of impacts. If it is split into the local Cartesian components ur (radial) and 
u, (tangential), Equations (62), (63), (66), (81), and (82) give 

d u r / d t  = 2 D u t  - i ~ t x ' H  + S r ( R  ) -~ [ T t t +  2 W t t ( R R ) ] / r  - 

- ( 1 / n r ) O { n r [ T r r  + 2 W r r ( R [ I ) ] } / O r  (85a) 

d u J d t  = - K2 Ur /2 O  + S~( l i )  - [T~r + 2 W ,  r ( R f l ) ] / r  - 

- ( 1 / n r ) O { n r [ T r t  + 2 W ~ t ( R R ) ] } / O r .  (85b) 

According to Equations (61), (68), (71a), and (71d), the radial flux and V are n u t  

and u' - u, respectively. 
An alternative system of variables follows from the epicyclic coordinates r, e, 

z, and ~, which correspond to the Taylor expansions (Hfimeen-Anttila et  a l . ,  1988) 

R = r - ( r r  + 2llr*r*/K) • e / r  + z N  + • • • , 
(86) 

R = f~r* + [~ r* r  + (2~ 2 - K2)rr*/K] - e / r  + ~ N  + • . • . 

The vector r is not the same as above, but it represents the circular component  
of motion (/" = 12r*), and e gives the superposed epicycles. We shall use these 
variables for the Keplerian systems only, in which case r represents the orbital 
semi-major axis and mean length of the particle while e is a constant of motion 
equal to the projection of the perihelion vector 1~ × (R × [ I ) / G M - R / [ R ]  (M 
stands for the central mass) onto the equatorial plane (H~imeen-Anttila, 1978). 
The vector e is assumed to be statistically independent of z and g. 

The above-mentioned paper (H~imeen-Anttila et  a l . ,  1988) gives the derivatives 
of r and e which are needed for Equations (65) and (67). Inserting f~ = K = / z  and 
defining P = ee - ee and Z = ~ - 72, we obtain 



72 K . A .  HA.IVIEEN-ANTTILA AND HEIKKI SALO 

dP/dt  = 2[(2rr* - r ' r ) .  w ( R R )  • (2r*r - rr*) + 

+ f~(rr - r ' r * )  • W(RR) • (2r*r - rr*) + 

+ f~(2rr* - r ' r )  • W(Pdi) • ( r r  - r*r*)]/f~2r 6 , (87a) 

d Z / d t  = 2[Wz~([ll~) - / x 2 K ] ,  (87b) 

T = (f~/2r)2(2rr * - r ' r )  • P -  (2r*r - rr*) + ( Z  - K 2 / H ) N N .  (87c) 

Equations (84b)-(84e) are still valid, but the flux vector is different: namely, 

F r = (2n / f~ ) [S t ( f l )  + trace W(l~R)/ar]  - 

- (4 / f~zr2)O{nP[Wt , ( f l [ I )  + 2 f ~ W r t ( l l R ) l } / o r .  (88) 

If the system consists of a mixture of particles, S(I~) introduces the vector V = 
u' - u which is calculated from Equations (85). The new variables then increase 

the number  of differential equations. If, however,  the particles are identical, S(I~) 
vanishes and Equations (85) become unnecessary. In this case the computational 
work is reduced. Equation (88) is also useful for studying of local density fluctu- 
ations, since the gradient term then dominates. 

A comparison of Equation (88) with the hydrodynamical treatment of Keplerian 
discs (cf. Stewart et al . ,  1984) indicates that 4[W~(l~l~) + 2f~Wr~(Rl~)]/3f~ 2 repre- 
sents the coefficient of kinematic viscosity. If this is calculated for the equilibrium 
solution of Equations (84) (the state in which H,  K and the components of T, Q 
and ft are constants), the resulting expression agrees with the sum of local and 
non-local viscosity as given bv Araki and Tremaine (1986). However,  Equation 
(88) is more generally valid, since it can also be used for the non-equilibrium 
states. 

The remaining terms of F r correspond to the loss of energy in partially elastic 
collisions. 

12. Comparison with Computer Simulations 

A. S I M U L A T I O N  M E T H O D  

All the numerical simulations were performed with the local simulation code (Salo, 
1991; see also Wisdom and Tremaine,  1988). Assuming that the system is axially 
symmetric, the calculations are confined to a small volume which follows the mean 
orbital motion of the particles. Each time one of them leaves the cell, another 
enters it with an appropriately modified position and velocity. By adjusting the 
volume, one can study various optical thicknesses up to values > 1 with a reason- 
able number of particles. Numerical tests (Wisdom and Tremaine,  1988; Salo, 
1991) indicate that the method is valid as long as the mean free path between the 
impacts remains below the dimensions of the cell. Compared with Wisdom and 
Tremaine's  (1988) simulations of identical frictionless particles, the present paper 
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includes the size distribution and axial rotation. The number  of particles is also 
essentially larger. 

Since the orbital calculations are carried out in a non-inertial frame,  the simul- 
ation velocities contain an extra te rm arising f rom the rotat ion of coordinate axes: 

l i~ = l~, - ~ N  x 1/,. (89) 

The subscripts f~ and I distinguish between the rotating coordinates and inertial 

f rame aligned with the instantaneous direction of the simulation system, R a  = Re .  

Equations (23)-(29) indicate that the expressions for the collisional changes of 
velocity and spin vectors are not modified by the use of l~a instead of 1~1, but 

q + q'  in Equations (26) and (29) must be replaced by q + q'  - (or + ~r')f~N. This 
is caused by the different inertial velocities of  the particle centres due to the 
rotating coordinate system. Also, before applying Equations (26) and (29), the 
spin-axes referring to the fixed initial coordinates must be rotated to the instan- 

taneous system. After  the impact they are rotated back to the initial one. 
The simulation system consists of 200 to 2000 particles and corresponds to 

Saturn's rings at r = 105 km. The program did not include y, which is therefore 
zero for all the comparisons.  The coefficient /3 was constant,  but for c~ we also 
used the expression 

a = Min[1, (Ic" vl/vc) -°23 1 , (90) 

which is an empirical result for ice (Bridges et  a l . ,  1984). Since the original constant 
vc = 0.01 c m s  - I  does not distinguish sufficiently between a = ~(Ic-v[) and a = 
const.,  it was replaced by vc = 0.2 cm s -1. Some tests were also carried out for 

c~ = 1/(1 + I¢. vl/Vc ) .  

B. EVOLUTION OF KEPLERIAN DISCS 

Orbital mot ion in Keplerian systems is characterized by the mean-square  eccentri- 

city and inclination, which are obtained with a high degree of accuracy from the 
expressions 

2 C2 e,~ = trace P ,  (91) 

l,~'2 = V = ( H  + Z / t x 2 ) l r  2 

Since (t turns out to be parallel to N, the axial rotation of particles, ~ = q/o-, 
can be discussed in terms of the quantities. 

[A(w)]2 = ¢02 _ G2 = trace Q/o- 2, (92) 

co m = q z / c r .  

Figure 2 shows the evolution of era, i,~, o)m and A(w) for identical particles having 
or, /3 --- 0.5, o- = i m and r = nTro -2 = 1. 

Since trace D now vanishes, the true frequency of impacts,  u + Av, does not 
differ from the "apparen t "  one, v, as is seen f rom Equat ion (77). Its behaviour  
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is illustrated in Figure 3. The form of the theoretical curve, including the wavy 
appearance of the simulated evolution, is correct but gives a slightly too low v. 
The error is probably caused by g or approximations in the differential rotation 
terms. 

The results for a velocity-dependent ~ are similar. The accuracy obviously varies 
with the functional form of this quantity if Vtrace(T + T') is substituted for te. v I 
as explained in Section 10D. 

The evolution of the radial dispersion of identical particles in a ring-shaped 
system can be calculated from Equations (85) or (88), both agreeing with the 
simulations. Some problems arise with the initial values of ur and ut if Equations 
(85) are used, since a minor error in u produces periodic oscillations in the radial 
expansion. In this respect Equation (88) is superior for identical particles. 
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Fig. 3. Impact frequency as a function of time according to the theory (dashed line) and simulation 
(solid line). The system is the same as in Figure 2. 

Figure 4 represents the radial evolut ion for a mixture of  two particle types 
according to Equations  (85). Since the above -ment ioned  problem is complicated 
by the rapid initial variations of  T, the simulation particles were first confined to 

a co-moving  cell for a period of  5 orbital revolutions,  after which the radial 
boundaries were removed  and comparison with the theory began. The smaller 

particles are spread more  rapidly than the larger ones ,  but they were not  observed 
to accumulate at the edges of  the ring as was found by Brophy  et al. (1990) in 
their work.  

C. EQUILIBRIUM STATES 

Figure 5 gives the equilibrium values for some of the relevant quantities for 
satisfying Equation (90) and ]3 = 0.5. The effective thickness h is defined by the 
relation 
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/3=0.5. 

h = @  (93) 

and represents  the geometr ic  thickness of  a h o m o g e n e o u s  layer  having the same 
vertical dispersion ~ - z 2 as the disc. The  er ror  in t race T is p robab ly  caused by 

the substi tut ion of  ~/trace(T + T ' )  for Ic. v L in o~. A similar effect in h is explained 

by Equa t ions  (84c) and (93), since W~z(R[I) is insignificant if h >> o-. 
I f  ~, /3 -- const,  and r < 1 the accuracy of  the theoret ical  predict ions is a lmost  

as good  as in Figure 5, but  for r > 1 the finite size of  the particles produces  

considerable  errors  in some quantit ies.  I f  r = 3, ~ Q and v are twice as large 
as in the simulations,  while the axial ratios of  the tensor  ellipsoids for  T and Q 
contain  errors  of  up to 30%. The  or ienta t ion of  the latter is correct  to a high 

degree  of  precision,  but  the fo rmer  shows a deviat ion of  10%. The  o ther  quantit ies 
agree with the simulations as far as these were  carr ied out  ( r  < 5). 
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The error in ~ Q  can be expected, because Equation (71g) for W(qq) is 
uncorrected for the differential rotation. Since F6, Fv < 0.02, Q does not contribute 
greatly to the other quantities. Better results for it would imply second-order 
corrections for differential rotation. Those and the uncertainty of g also influence 
v. A detailed study of simulations indicated that the large number of impacts for 
r > 1 follows from an excess of grazing collisions. These can contribute to the 
rotational terms but their effects on T, H, and K are small, - ( c .  v) ~. The 
errors in the eigenvalues and orientation of T probably depend on the isotropic 
distribution of c, which was used in some cases to simplify the corrections for 
differential rotation. 

The generally good agreement between the theory and the simulations is also 
seen in Figures 6 and 7 for a mixture of two particle types having a, /3 = 0.5. One 
can observe the above-mentioned behaviour of Q in Figure 7, but a curious 
phenomenon also appears in h, since if r < 2.5, the large particles are concentrated 
near to the equatorial plane, but if r > 2.5, the small ones behave in this manner. 
The latter case is also seen in Figure 8 for the vertical structure of the system. 
This effect ultimately follows from the fact that 8m,x in Equation (22) is a function 
of particle type. This is not taken into account by Equation (79). 

D. GRAVITATING PARTICLES 

Gravitational interactions produce a number of effects: the vertical field of the 
disc, pre-collisional acceleration and post-collisional deceleration of impacting 
particles, growth of their collisional cross-sections and gravitational encounters. 

The vertical field (disc + central body) follows from Poisson's equation in which 
the density of matter is replaced by rnnR. This quantity is a function of particle 
types, as can be expected, since the amplitudes of vertical oscillations depend on 
m and imply a different construction of mean density for each type of particle. 
Combining Equation (78) with Poisson's equation and the properties of f~ and K, 
one obtains 

/X 2 = 2[~ 2 - -  K 2 q- 4 ~ - G  f 
gHrrt r 

~/2~r(H + H')  
dp' (94) 

if Z = Z' = 0. Since the horizontal effect is neglected, we have f~ = ~: = ",/GM/r 3. 
The increased collisional cross-sections and mutual gravitational attraction of 

impacting particles are given by Equations (76f) and (80), while the encounters 
correspond to the gravitational terms in Equations (70). 

Figure 9 represents a comparison with the simulations for ~ = 0.5, 13 = 0, o-= 
5cm, and r =  0.1. The particles are identical and have the internal density 

0 .0g rcm -3 (curve A), 0 .9g rcm -3 (curve B) and 1 .8grcm -3 (curve C). The 
agreement between the simulations (squares) and theory (solid lines) is good for 
curves A and B, but curve C shows a rather large error. This is probably caused 
by the particle groups which are seen to grow and decay during the simulation. 
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Their gravitational fields heat the system and probably cause the discrepancy. 
They also produce the fluctuations in curve C. The system seems to be on the 
verge of gravitational instability, and an increase of r actually led to the formation 
of semi-permanent particle clouds. 

13. Discussion 

The advantages of the theory discussed in the preceding sections are its great 
generality and the avoidance of multidimensional numerical integrations without 
any appreciable loss of accuracy. Better results could be achieved if the corrections 
for differential velocity were calculated more precisely, but since the approxi- 
mations chiefly affect less important quantities in special circumstances ( r >  1, 
h - o-), the compromises between simplicity and accuracy are justified. There is 
also an ultimate limit beyond which the analytical methods become uncertain, this 
limit being set by the filling factor g and the maximum packing density 3max, which 
must be replaced by empirical functions if high accuracy is required for dense 
systems. These quantities can occasionally produce drastic effects, as seen in the 
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concentration of the smallest particles near to the equatorial plane in discs having 
~- > 2.5 (Figures 7 and 8). 

The treatment of gravitational interactions between mutually colliding particles 
is of a preliminary nature, since the results derived from the two-body approxi- 
mation can only be valid for rarefied matter. The model also ought to be gen- 
eralized for /3, y ~ 0. An important phenomenon which was neglected in the 
theory of encounters is the formation of particle groups (see Section 12D). They 
can occasionally produce larger gravitational effects than the single particles. 

The simple, crude method of substituting Vtrace(T + T') for Ic • v[ in the relevant 
functions f (a ,  /3, y) turns out to be better than could be expected. A relatively 
simple alternative would be to calculate (f(~, /3 ,  y)(e .  v)2}/((c • V) 2) for an isotropic 
velocity field and to fit an empirical function of trace(T + T') to the data. 

The e terms in Equations (61)-(65) were not tested at all. One important 
application would be the gravitational coagulation of particles and the destruction 
of the resulting loose configurations in subsequent impacts, but this would have 
extended the theoretical calculations more than was desirable. The tests were 
restricted to discs for the same reason, although the basic relations are more 
generally valid. 
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