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Abstract. According to A.A. Khentov Venus' rotation is in the quasi-stationary stare as a result 
of the balance interaction of the solar tidäl torque with the aerodynamical torque of the rotating 
Venus' atmosphere. In case of the nonconservative forces are negligible and the solar attraction is 
the stabilizing factor, the rotation of the rigid Venus may be assumecl as the first approximation. The 
theory of the rotation of the rigid Venus in the coordinates #, u, ~r had been constructed. It have been 
found that Venus rotates almost uniformly and the libration harmonics are negligibte. 
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1. Introduction 

One of the important results of Venus' radar ranging observations was the discovery 
of its retrograde rotation. Earth-based radar observations used to perform near an 
inferior conjunction of the planet. It was discovered from the outset that during 
the inferior conjunctions, the same area of Venus' surface is observed. It was also 
found that the sidereal period of Venus' rotation, which is equal to 241.01 days, 
very close to the 243.167 days period, so at every conjunction the same Venus' 
meridian is nearly directed to the Earth's mass center. 

Goldreich and Peale (1968) developed the second kind resonance rotation theory 
for the case when apart from the Sun other planet (the Earth) exerts the influence 
on the rotation of the planet (Venus). Later on the resonance rotation theory was 
developed by Beletskij and his collaborators (Beletskij, 1975), (Beletskij et al., 

1980). They have found that although the second kind resonance is possible, but 
the probability of the capture of Venus to the retrograde rotation synchronized with 
the orbital motion of the Earth is negligible small. Barkin (1987) has found that 
in case of unrestricted three-body problem there are periodic solutions of the first 
sort, describing Venus resonance motion mentioned above. In this problem the Sun 
and the Earth are considered as points and Venus is considered as a rigid body. 

Analyzing expansion of Venus gravity potential made by Williams et al. (1983) 

Burga (1985) concluded that the Earth cannot control Venus' resonance. Zhang and 
Shen (1987) calculated the interaction of the torques of the body tides by the Sun 
and by the Earth with the atmospheric tides of Venus for non-rigid Venus model. 
They concluded that for some values of the ( B  - A ) / C  and Q parameters the tidal 
torque exerted on Venus by the Earth can control Venus', even though atmospheric 
torques would be only a half of the Sun's torque. 

Earth, Moon and Planets 71: 43-58, 1995. 
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Khentov (1982, 1986, 1989) investigated evolution paths, which may lead to 
the resonance rotations of the planets and concluded that observed Venus' rotation 
cannot be considered as synchronized with the orbital motion of the Earth. So 
Venus is not captured into the resonance zone by tidal forces, its angular rate differs 
from resonance one and the observed synchronization is outgoing phenomenon. 
Khentov (1992) suggested a new theory of "aerodynamical" type. The action of 
the solar gravitational torque on the planet is trying to establish its direct rotation. 
But it is suppressed by the rapid retrograde rotation - the superrotation of lower 
atmosphere layers. 

The torque stabilizing the retrograde rotation is expressed by the formulae 
M~ = k(,~~ - a~), where k is the fixed coefficient, a)~ is the averaged angular 
velocity of the lower dense atmosphere, ~ is Venus angular velocity. We observe 
the quasi-stationary rotation of Venus resulting from the balance interaction of tidal 
and aerodynamical torques. 

The problem of retrograde rotation phenomenon almost coinciding with the 
velocity of resonance one is not a subject of this paper. We have considered the 
dynamics of the observed rotation motion is under assumption that the noncon- 
servative forces are negligible, so in the first approximation the quasi-stationary 
rotation may be thought as the rigid rotation. Under this conditions the rotation 
theory of a rigid planet whose equator has a small inclination to the orbit have been 
constructed using #, u, 7r coordinates. 

2. Observational Data. Aphroditocentric celestial sphere. 

From the radar measurements we can obtain the geoequatorial coordinates of the 
venusian north pole (C~l, ~51 ), the diumal rotation rate (n) and the prime meridian 
position. According to IAU Report on Cartographic Coordinates (1991) 

Oz 1 = 272?76, ~1 = 67716 (J2000). 

The angular distance of the prime meridian from the descending node Q of Venus' 
equator on the geoequator is equal to 

w = 160720 - 174813688d (J2000). 

Knowing these fundamental values the positions of all basic points and lines of 
the aphroditocentric celestial sphere may be found (Fig. 1). So the ecliptic longitude 
A1 and latitude fll of the north rotate pole are equal to 

A1 = 30719, ,31 = 88?76. 

The longitude of the descending node K of the Venus' equator on the ecliptic is 

Ak = 120719. 
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Fig. 1. Aphroditocentrical celestial sphere. 1~ - ecliptic north pole; T - the Earth equinox; P - 
Venus north pole; T v  - Venus vemal equinox; A1, fll - ecliptic coordinates of P; f~ ascending node 
of the orbit on the ecliptic; j - the inclination of Venus' equator to the orbit; Q - descending node of 
Venus equator on the Earth equator; t (  - descending node of Venus equator on the ecliptic. 

T h e  i nc l i na t i on  o f  the  equa to r  to the  ec l i p t i c  is 

I = - 1724. 

The  ang le  b e t w e e n  the  ve rna l  e q u i n o x  o f  Venus T v  and  the a s c e n d i n g  n o d e  o f  the  

orb i t  on the  ec l ip t i c  f~ is 

"~ f ~ T v  = 18789. 

T h e  i nc l i na t i on  o f  Venus '  equa to r  to the  o rb i t  is 

j = - 2 ? 6 4 .  

T h e  d i s t ance  o f  the  p r i m e  m e r i d i a n  f rom the node  E is 

w~ = 1 0 4 7 9 2 -  174813291d.  

A n d  the i n c l i n a t i o n  o f  Venus '  o rb i t  to the  ec l ip t i c  is 

i = 3?39. 
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Fig. 2. Frame of reference. O X Y Z  - inertial frame; O X : Y ' Z  j - coordinate system rotating at 
the orbit plane of epoch; xyz  - principal axes of the planet; -p, -v, -~" - the angles determining 
the position of O x y z  relative to inertial system O X Y Z ;  #, - v ,  -Tr - the angles determining the 
position of O x y z  relative to moving system O X ' Y J Z  '. 

3. Rotation of the planet with small obliquity of the equator to the orbit 
plane 

System of reference. Let us introduce the next planetocentric rectangular coordi- 
nate systems (Fig. 2): 

1. O X Y Z  is the inertial coordinate system with axes O X  and O Y  are at the 
standard epoch orbit plane of the planet. O X  axis is directed to the ascending 
node of the orbit on the equator Tp. O Y  axis forms the right-hand system and 
O Z axis is directed to the north pole of the orbit. 

2. O X ~ Y ~ Z  ~ is the system uniformly rotating at the orbit plane. Let us put the 
rate of this rotation n equal to the mean rotation rate of the planet. The rotation 
angle of the system would be counted inverse from the equinox point Tp: 

= - n r  + ~o.  

3. O x y z  is the mobile system, which is fixed in the body of the planet and 
coincides with the principle axes of inertia A, B,  C,  where A < B < C. 

/~, v, re - angles. The position of the O x y z  frame relative to the fixed system 
O X Y Z  will be determined by the next clockwise rotation angles: by - p  around 
O Z  axis, by v around O Y  axis in the new position and by 7 around O X  in the new 
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(x) (~11 
Y = /321 

z /~31 

where 

position again. And the position of  Oxyz  relative to the flowing system O X ' Y I Z  I 
will be determined by the angles #, - / / ,  - f r ,  where # = ~ - p. 

We consider the case when the planets equator has a smatl inclination to the 
orbit plane. Since the rotation rate of O X ' Y ' Z  ~ is assigned to be equal to the mean 
rotation rate of the planet (Oxyz  triad) the angles # , / / ,  rr would be small. Under 
these conditions the transformation matrix is represented as: 

B22 /323 y /  (1)  
B32 Ô33 ZI 

/311 z 1 -- 1#2  --  1//2 /312 = # /313 • // 

B21 = - #  +//vr /322 = 1 - 1//2 _ ½vr2 /323 = -vr 
/331 = - / / -  #vr /332 = vr - #re /333 = 1 - 1//2 _ lvr2 

Uni fo rm rota t ion  of  the rigid planet.  Let us suppose that a planet (the Oxyz  
triad) rotates uniformly around the axis of  inertia C (the O z axis). Let the rate of 
the rotation would be equal to n, and the inclination of  the rotation axis would be 
equal to j .  The position of the planet would be determined by the rotation angle 

around the Oz axis counted inverse from the nodes line O X  (Fig.2). Then the 
rotation of the planet will be expressed in terms of p, u, rc by the equations: 

tan p = + cos j tan cp, 

sin// = + s i n j s i n c p ,  

tanvr = + t a n j c o s c ? ,  

~o = - n t  + ~oo. 

For small values of arguments we have 

p = + ~ - j 2 s i n 2 ~ + . . . ,  

1 .3 1 .3 
// = + j  sin cp + ~3 sin ~ + ~--~3 sin 3cp + . . . ,  (2) 

1 .3 1 .3 
vr = + j c o s ~ -  ~3 c o s ~ + - i ~  3 c o s 3 ~ + . . . .  

Note that in general case of  rotation there is 

1 .  2 
# ( ~ ) =  ~3 s i n 2 ~ + r ( t ) ,  

where r(~) is the libration in longitude.  
Kinemat ie  Euler  equations.  In the O x y z  frame we can write the Euler equa- 

tions in terms of - p , / / ,  vr angles in the form: 

~co~ = -/5 s i n / / -  #, 

,~y = /5 cos / / s in  vr - / ,  cos vr, (3) 

ccz = - f i  cos / /cos  vr - / ,  sin vr. 
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And in the fixed system O X Y Z  the same equations will have the form 

wx = - / , s i n p -  # c o s p c o s u ,  

a~y = ü cos p + 7: sin p cos u, 

w z  = - / 5 - # s i n u .  

(4) 

Canoniea l  var iables .  We will solve the problem using the canonical variables. 
We take the angles p, u, 7r as the generalized coordinates and P», Pù, Pc as 
canonical impulses, which together forms the system of  the canonical variables. 
The formulas for the impulses are written in the form: 

Pc = Awx sin u - Bwy cos u sin re - CaJ~ cos u cos 7r, 

Pù = Bw v cos 7r - Ca~~ sin 7r, 

Pc = A~~. 

(5) 

In order to construct the Hamiltonian it is necessary to represent the kinetic 
energy T and the force function U in terms of  canonical variables. 

Kinet ie  energy.  From the system of  equations (5) we can define a~x, co v, w~ and 
substitute them into the expression for the kinetic energy 

2T  = Aw 2 + BaJ 2 + Cw 2, 

So we obtain 

1 2 

+ ~ Pü + p2 sin 27r tan z u + ~ r ~  tan u 

- 2 - ~ P c P c  tanu sec u + PùP~ tanu sin2rc + Ä P~ 

Ler us expand the right part of  this equality as the power series in u, re, P~, Pc 
and retain the next terms: 

T p2 -t- p2 ]92 P2w2 PPc q-,% »271"2 ~l~Pu T-}-'' ', 
= 2 T  ~ + 2 Ä  + 2C - 12C - 

where ~l = (C - B ) / B .  
Note that the function T does not depends on p and as will be seen below the 

force function does not depends on Pc, P~, Pc. Thus the Hamiltonian structure 
takes the form 

t t  = T(u, 7r, Pc, P~, Pc) - U(p, u, 7r, t). (6) 
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With the canonical transformation of variables p, P» to #, P~, by the formulas 

p = - ~  + r~t, G = G - C n  

we obtain 

H p2 + + + Cn2u 2 + ~;1Cn27c 2 + 2huP« + 2~ln~P~ 
=2--C 2 A 

u(# ,  ~, re, t) (7) 

Force function. The force function of the gravitational interaction between the 
planet and the Sun may be wfitten in the form: 

U = - ( ~ l t t  2 q- Vt~2~2,2). (g) 

Here 

3 GM¢ 3GM® 3 G M ® ( c _  A), m 3 -  - - ( C - B ) ,  
m l -  2 ä3 (Æ - - A ) ,  /?'Z2- 2 a ~ 2 a 3 

;14 0 is the mass of the Sun, r is the planet's radius-vector, G is the universal 
gravitational constant, a is the mean distance, u2, u3 are the direction cosines of 
the Sun's radius-vector relative to the Oy and Oz axes. 

Planetocentric coordinates of the Sun relative to the rotating system X~Y'Z ' 
are: 

X ' = - r c o s ( ~ b + v ) ,  Y ' = - r s i n ( v ä + v ) ,  Z ' = 0 ,  (9) 

where v is the true anomaly, ~b = cp + A + co, co is the angular distance of the 
perihelion from the node ~, A = (9  - Tp) is the angular distance between the 
orbit nodes on the ecliptic and on the equator, cp = - n t  + ~o is the rotation angle 
of the O X ' Y ' Z '  system. 

The direction cosines of the Sun relative to the Oxyz triad from the transfor- 
marion (1) are: 

1 1 
Ul : --(flll X !  @ fll2Y')» u2 = -(f121XI -}- f122Y'), 

< T 

U3 = ! ( f l 3 1 X '  q-f132Y'). 

Substituting last expressions to (8) we obtain: 

U = - [-pro1 sin(2~b + 2v) + #2ml cos(2~b + 2v) + 

+u2m2 cos2(~b + v) + +~r2m3 sin2(~ + 2v) + 

+urcms sin(2~b + 2v)]. (10) 
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It is easy to expand the functions 

(~) (~) 3 sin~ -3 s i n ( 2 ~ + 2 v )  and + v )  
cos cos 2 (~ 

as the following trigonometric series with arguments multiplied of the mean anoma- 
ly g, i.e.: 

COS i= i  

½ (c?'~ - s?'~) cosSin (~_  ~g), 
i : i  

where coefficients C i , Si are depends from the orbital eccentricity e. As a 
result of the expansion the next series has been derived: 

(~) ~sin~~~+ ~~~= Zo~si~~~~+ ~~~, 
i=1 

i=1 

(~) ~ 1 ~~~co~~~~~, ~,~~ -3 sin2(, ~ + ~) = - ~  Z a~ cos(2~ + ig)+ ~ ~=1 
i=1 

- 3 C O S 2 ( ~ B + V )  =_ 2 a i c ° s ( 2 ~ + i g ) + ~ ~  bic°s(ig)" 
= i--1 

which is necessary to substituted to (10). 
Hamiltonian. After all substitutions the function (7) may be written in an 

expanded form: 

H _ P ~  2C #tal  ~ ai sin(2~ + ig) + #2m~ ~ ai cos(20 + ig) + 
i=1 i=1 

+ u2m2 ~b icos ig+~a icos (2~+ig )  + 
\ i = 0  i=0 

+~~~~3 (~~~c°~~~ »~c°s~~~+~~0 + ~ ~=1 
+uTcm3 ~ a i s i n ( 2 0  + i9) +. . .  

i= l  
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The obtained expression represents the first approximation in the expansion of 
the Hamiltonian (6). In this approximation the Hamiltonian splits at two indepen- 
dent parts: 

H = ~ ( , ,  Pù) + ~(ù, ~, P.,  Pc) 

Hence the canonical equations which are constructed using these parts will be 
solved independently of one another. 

/~ coordinate.  With the Hamiltonian 

F ( P , P ~ ) _  p2 2C >tal  ~ aß sin(2~b + ig)+ ~2m 1 Z  ai cos(2~ß + ig) 

we can built the equations of the second order: 

d2# 
= ~--~ Z a~ sin(2e + ig)+ - 2 ,  c 72 ~ cos(2~ + ig). dt 2 C 

In general case these equations may be used as the generalized Hill's equations. 
In the planet problem the factor rnl /C is represented as the value of order l0 -6 
- 10 -8 and as result the second term in the right hand of the equation gives the 
negligible contribution to the solution. Thus it is quite sufficient to integrate the 
equation in the linear approximation, i.e.: 

~ 2  ~ ai sin(2V + ig) p, = (clt + c2) + (2~ + i!)) 2 (13) 

v and ~ coordinates. The solutions for unknowns u and ~r we shell seek by the 
construction of an asymptotic series by the Deprit-Hori method (Deprit, 1969). To 
do this a number of canonical transformations of the Hamiltonian ¢ (u, ~r, P~, P~) 
are required. 

At first we transform (u, P , ,  re, Pc) to (x2, X2» X3, X3) by the formulas 

// = g22X2 q- ff23X3» /ru = h22x2, 

7c = g32x2 q- g33x3, P~r = h32X3, (14) 

where 

1 1 1 
g22- r~v/U, Æ23- r~ ~x/77C' g32- x/U' 

h22 = -/~V/C, h32 = - ~ ,  

Then we have 

1 (n2tq~2x 2 X2 ) + ~=~1 (~2~~ + ~2) + ~ + 

~/a7 

( c - A )  
A 
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1 ~2  (X2q_ X 2 2X2X3~ (~-~ bi cos ig q_ Z a i  cos(2~b q_ ig)) q_ 
~ 2n2 C ~22 + V'~~ ,/ 

+~>-~~~ (~~ +~~x3 ~- ~,~~~~~)(~~~cos~~ ~o~cos(~~ + ~~)) 

( x2X3 ) ~ ai sin(2~ß 1 m 3 x2X2 - v / ~ z 3 X 2  ~- ~ - x3X3 + ig). 
n C  

The transformation (x~X~) to (~k~Æ)Æ=2,3 we perform using: 

1 
xa = - 2v/~2cosa32~2, X2 = x/2~2sina~2~]2, 

n 
1 

x3 - - -  v/~~cosaJ3r]3, X3 = 2x~3sina~3r]3, (15) 
~¢N1 N2 

where cc2 = n, ¢o 3 z ~ t ~ .  
In new variables the Hamiltonian assumes an easy to use form: 

(~ = ~2 q- ~3 q- « {~2 E Ahlh2h3 c°s(kl2w2Y2 + k22~b + k3(ig))+ 

q-~3 E Bh~h2k3 COS(kl2W3Y3 -k k22~ß q- k3(ig)) + (16) 

+ ~ ~ «/~2/~3 COS(CC2Y2 :g c~3Y3 + k22~ + k3(ig))},  

where: e = r n 2 / C ,  kl = 0, q- 1, ]~2 = 0, -}- 1, k3 = - 1 ,0 ,  + 1. The factors A ~~'~2'k3, 
B ~1'~~'~~, C ~~'»2'~3 depends from dynamical parameters (C - A)/A, (C - A)/C, 
(C - B) / B, (C - B) / C, (B - A) / C and also from the orbital motion parameters 
e and D = ~GM¢/a 3. 

The obtained form represent the zero and the first terms of the Hamiltonian 
expansion 

= Ho + eH1 + . . . ,  

where/ /0  = «~ + ~2, and//1 is the function enclosed in braces. 
Deprit method. In this method properties of the Lie-series are used. The trans- 

formation of the variables (~~, ~~) to (yk, Yk) by the formulas 
O O  

n~ gk 
n=l 

n 

~k = Yk + ~ (Y~, Y~) 
r~-----1 

is canonical one. It performs the generating function W, which is also represented 
by the series: 

~~ ~2 
W(yk, Y~, «) = ~ W~+I ~- W1 ~- æW2 -~- ~..W3 @ "" .  

n~o • 
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dt 

where 

K 

K0 

In new variables the differential equations retain the canonical form: 

dy~ OK dYk OK 
OY~ ' dt cgy k. 

(17) 

~.2 
= K o + « K 1  + ~[I~2-'[- " ' '~ 

= [Ho], (18) 

OW1 
1(1 = [H1J + Lw,[Ho] ót 

The square brackets denote that in the funct ions/ /0  and H~ the variables rl~, ~k 
were replaced by Yk, Y~. Lwp is the Poisson's operator: 

( O ÜWp O OWp ) 
k 

Let us K1 = 0. Then we obtain from (18) the partial differential equation with 
respect to Wa 

OWI ~- 0t/V1 0WI - [H1]. 

This equation has the following partial integral: 

A/kl'kz'k3 sin(kl2CO2Y2 + ]¢22~fl q- h3(i9)) -+- 
W1 = Y2 E ka2W 2 + k22~ß + k3(it}) 

B~ 1 'k2'k3 
+Y3 ~ k12co3 + k22~ß + k3(i[7) sin(k12a~3y3 + k22~b + k3(ig)) + (19) 

c°2 :[: c03k22~ + ~:3(i~)) sin(a3292 ± w393 + k22> q- k3(i9))" 

Deprit method has one remarkable property. If f(r/,  ~, t) is the differentiable 
function of its arguments, then using generating function W this function may be 
expanded as series in y, I/, t: 

-2 
f (%~, t )  = f ( ° ) (y ,Y , t )+e f (1 ) (y ,Y , t )+  ~ . f (Z ) ( y ,Y , t )+ . . . ,  (20) 

where 

f(0) = f (9 ,  Y,t); f(1) = Lw~f(o); f(2) = 2Lw~f(1) + Lw2f(o). 

Let us use this property for construction of desired solutions. According to (15) 
the variables x~, Xk are the functions of r]k, ~» and they may be represented as 
series (20): 

X l¢(~.]tc~l~) = X(0) ~_ LWlX(0) X/¢(~11¢~1~)= X£ 0) J[- Lw1X~ O) , (21) 
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where 

x° =-?zl 2k~22c°s~2Y2' x ° =  r~ l ~ v ~ v / ~ 3 c ° s c ° 3 Y 3 '  

X ° = 2V~2 sin w2Y2, X ° = 2v/~3 sin co3Y3, 
(22) 

Lwlx 0 = -v/-Y22 Z £kk~'h3 cos(co2Y2 +/~22~B + k 3 ( i g ) ) -  

_V/~33 Z j~~~,k3 cos(co3y 3 + ,~22~ q-/~3(ig))~ 

(23) Lw1XO =-,4-"/~-~ ~-~JV"h2'k3 COS c ° 2 Y 2 - z _ . ~  m ( + /~22~ß + k3(ig))+ 
+ /'~- V"  ~/~2,~3 V *3 ~ I~ki COS(CO3Y3 + k22~b + k3(ig))" 

Ler turn our attention to equations (17). At Kl = 0 they give the solutions: 
( 

Y2 = t + C3, Y2 = c4, Y3 = t + c5, Y3 = c6. 

Thus in the functions (22) and (23) Yk are the constant values and the variables 
w2Y2 and w3Y3 are the linear functions: 

(ùd2y 2 z nt n t- C3, cd3Y3 = n~'- lN2t q- C5. 

If we substitute functions (21) to (14) then we obtain the solution for u and rc as 
the series: 

u = g22 2x//~2 sinw2Y2 + g22[~w1X~ O) "q- 

+923 2V/~3 sinco3y3 + g23Lw1X~ 0), 
(24) 

~r = v32 £ 2,,/~22 cos a~2y2 + v32i, w~ *~ °) % 
1 

+g33 - -  ~ sinw3y3 + g33Lw, X~ °). 
7t~/g 11%2 

Formulas, describing the planet rotation. In the construction of the numerical 
theory of the planets rotation it is necessary to use despite of mentioned above 
parameters, the values of the mean rotation rate n and the mean inclination of the 
equator to the orbit j .  as an initial data of the problem. They can be determined 
from the observations of the rotational motion of the planets. 

It was noted above that in case of small inclination of the equator to the orbit 
the uniform rotation of the rigid body (or of the xyz triad) may be written by ~~, 
u, ~r in form (2). Using this property let now determine the constants Y2, c3, Y3 by 
the comparison of main harmonics in the solution (24), which have the frequencies 
equal to n, with the formulas (2) obtained from observations. 

1 2~/~2 sinc~2Y2 = - j  sincp. 
r~v/-Ü 

1 2k/~2 cos 0d2y 3 ~- - j  cos ctg. 
7Sd 
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Hence 

V ~ =  -jn, co2y 2 = nt + ~ = ~, (25) 

where also Y~ = O. If  now we substitute the numerical values of Y2 and co2y 2 to 
(24) we obtain the solution for u and rc for the planet, which has the mean rotation 
rate n and the inclination j .  

The formulas for #, u, er obtained in the first approximation are given below: 

rnl Ai s in(2~ + ig), B = (¢1 t + C2) -- ~ -  Z (2~ + i ) )  

u =-jsin~-Jn[i~=oQ~sin(~±ig)+~Q21isin(~+(2~+ig))]'(26)i=l 

er :-jc°s~-jn[i~--oR~C°S(~±ig)+~R~c°s(~+(2¢+ig))]'i=l 

4 .  R o t a t i o n  o f  V e n u s  

Let now consider Venus' rotation with regard to the XIY~Z~ system, which rotates 
with the rate equal to the mean observed rate: 

n = 2°5855665.  lO-2rad/d. 

To obtain the formulas of  the rotation motion the next numerical values of  the 
parameters and of  the constants were taken: 

- angular distance between the nodes ft and T v  on the orbit A = 18.°89; 
- inclination angle j = 2.°64; 
- exact value of  the dimensionless moment  of  inertia C/MR 2 is unknown. 

There are theoretical computations, which were made by the construction of  
the models of  Venus interior structure. For some models Kozlovskaya (1966) 
obtained the values of  C/MR 2 in the range from 0.321 to 0.360, and Shen 
and Zhang (1988) - -  in the range from 0.321 to 0.350. We have taken 

C/MvR 2 = 0.340; 

- Stokes parameters C~0, C22 relative to the axes of  inertia A, B,  C were 
obtained by Williams et al. (1983). The following values correspond to these 
parameters: 

B - A 1 . 0 7 0 6 . 1 0  -5, C -  B C - ~ - 1 . 2 6 1 8 . 1 0  -5 , 

C - A  
- 2 .3324-  10-5; 

C 
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- putting D = ~GM®/a~ = 1 .17284.10 -3 we calculated 
ml  B - A 

- D - -  - 1 .2556.10  -8 , 
C C 

m2 C - A 
- D - -  - 2 .7355 .10  -8 , 

C C 

m3 _ D C - B -  1.4799 10 -8. 
C C 

- eccentricity e = 6.772- 10-3; 
- diumal rate of the mean anomaly g = 2.796252. lO-2rad/d. 
Using these numerical values of parameters the following expressions for coor- 

dinates #, u, ~r were obtained from formulas (26): 

B = (Clt -- 62) + tan 2 J s in2~  + ffJO001 sin(2~ + 2w + g) + 

+0(~0241 sin(2~ + 2w + 2g) + 0(~0004 sin(2~ + 2w + 3g) + " "  

u = - ( j  + 8 j  3) s in~  - 0('3042 s in~  - 0('0015 sin(~ + 9) + 

+0(~0304 sin(~ - g) + 0~!0004 sin(~ + 2w + g) + 

+0~!0411 sin(~ + 2w + 2g) + O~JO005 sin(~ + 2w + 3g) - 

1 .3 
-0( '0010 sin(~ - 2w - 2g) + ~ 3  s in3~  + 

+~~0035 sin(3 ,~ + 2w + 2g) + . . .  

z = - ( j  - 4 j3) cos ~ - 0('3042 cos ~ + 0('0038 cos(~ + g) - 

-0(~0472 cos(~2 - 9) + ff!O004 cos(p + 2w + g) + 

+0(~0343 cos(~ + 2w + 2g) + 0(~0025 cos(~ + 2w + 3g) - 

1 .3  
-ff.'O020 cos(~ - 2w - 2g) + ]~3 cos 3~ - 

-0~!0007 cos(3c 2 + 2w + 29) + . "  

B = - n t + ~ o ;  w = A + w .  

5 .  C o n c l u s i o n  

The obtained results shows that Venus rotates nearly uniformly with the rate n and 
we can conclude that the radar observations are not sensitive to the libration of 
its rotation. For the rigid body model this phenomenon is explained by the fact, 
that the dynamical figure of Venus is very close to the spherical one and that the 
values of parameters of its flattening are small - of order to m l / C  ~ 10 -8. Venus 
orbit is almost circular: e ~ 10 -3 .  And finally the inclination of Venus' equator to 
the orbit plane is also small. All these factors together cannot produce noticeable 
perturbations on the steady-state quasi-stationary rotation of  Venus. 
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Fig. 3. 
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Precession of the mean rotational axis relative to inertial frame of reference. 

The longitudes component of the rotation p = ~ - # is affected to the smallest 
oscillations. But the secular term #0 = Clt + c2 presents the regular precession 
of the rotation axis. It became obvious if we express the components of rotation 
vector co with regard to the fixed coordinates system X Y Z .  Let us substitute the 
expressions ~, _~ j sin ~ and 7r _~ j cos p to (4). Then we obtain: 

~~ -~ n j s i n#o  -~ n s i n j s i n # o ,  

c~r ~- n.j cos #o ~- n s i n j c o s # 0 ,  

~ z  -~ - ~ ( 1  - 2 j 2 )  - ~ _~ - ~ ~ c o s j  - ~0.  

Hence the rotation axis lies at the meridian plane, distant from the coordinate 
plane to the angular distance #0 (Fig.3). The precession angle /2o increases or 
decreases uniformly depending on the sign of the precession constant Cl. In this 
case the precession of equinox point may be superposed on the precession of the 
axis of the proper rotation. But at the moment these theoretical discussions have no 
big practical sense since the modern observations methods do not allow to detect 
thin effects in the rotation of Venus. 
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