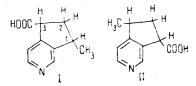
THE STRUCTURE OF PEDICULARINE

A. Abdusamatov, S. Khakimdzhanov, and S. Yu. Yunusov


Khimiya Prirodnykh Soedinenii, Vol. 5, No. 5, pp. 457-458, 1969

The isolation of pedicularine from Pedicularis olgae Rgl. has been reported previously [1]. When pedicularine was subjected to TLC in the ethanol-chloroform-butyl acetate (3:2:1) system we found two spots with R_f 0.19 and 0.52. By repeated recrystallization we obtained a base showing on TLC a single spot with R_f 0.19, $C_{10}H_{11}NO_2$, mp 208-209° C decomp., methanol), $[\alpha]_D^{20}$ -15.3° (c 0.78; methanol), mol. wt. 177 (mass spectrum); UV spectrum: λ_{max} 272 mµ (log ε 2.89). The IR spectrum of the base had absorption bands at 2960 cm⁻¹ (C-CH₃), 1710 cm⁻¹ (>CO), and 1600 cm⁻¹ (pyridine ring).

The NMR spectrum of pedicularine (taken on a JNM-4-H-100/100 MHz instrument in CF₃COOH with HMDS as internal standard, τ scale), clearly showed a one-proton singlet at 1.08 ppm and two two-proton doublets at 1.53 and 1.93 ppm, corresponding to three hydrogen atoms in the α , α' , β' positions with respect to the nitrogen atom of a pyridine ring. The absence of other signals from the weak-field region shows that the remaining two positions of the pyridine ring are substituted. The three-proton doublet at 8.93 ppm (J = 6.0 Hz) is due to the protons of a methyl group at C₍₁₎. The signals of the methine protons at C₍₁₎ and C₍₃₎ appear at 6.92 ppm in the form of a two-proton multiplet. The two one-proton multiplets at 7.82 and 8.34 ppm relate to the two nonequivalent protons at C₍₂₎.

The mass spectrum of pedicularine (taken on a MKh-1303 instrument with an energy of the ionizing electrons of 32 eV at a temperature of 220° C) has the peaks of the ions (m/e) M^+ 177 (52%), 162 (100%) 133 (40%), 118 (68%), 91 (34%), and 77 (14%). This route of fragmentation is characteristic for the alkaloid plantagonine [2,3].

When pedicularine was oxidized with $KMnO_4$ in an alkaline medium, 12 g-atoms of oxygen were consumed and we obtained an acid with mp 261-262° C (decomp.), identical according to a mixed melting point and in respect of its IR spectrum with pyridine-3, 4-dicarboxylic acid [4].

Consequently, either of structures I or II is possible for pedicularine. On the basis of biogenetic considerations, we consider structure I more likely.

REFERENCES

1. Kh. Ubaev, P. Kh. Yuldashev, and S. Yu. Yunusov, Uzb. khim. zh., no. 3, 33, 1963.

2. A. Abdusamatov, M. R. Yagudaev, and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds, 4, 265, 1968.

3. A. Abdusamatov and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 4, 392, 1968.

4. A. S. Samatov, S. T. Akramov, and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 3, 182, 1967.

23 April 1969

Institute of Chemistry of Plant Substances AS UzSSR

UDC 547.944/945

A NEW SYNTHETIC ISOMER OF THE MATRINE ALKALOIDS

T. K. Kasymov, A. I. Ishbaev, Kh. A. Aslanov, and A. S. Sadykov

Khimiya Prirodnykh Soedinenii, Vol. 5, No. 5, pp. 458-450, 1969

When epilupinoylpiperidine (I), which we have obtained previously [1], was heated in acetic acid solution with mercuric acetate at $70-80^{\circ}$ C for 22 hr [2, 3], a mixture of dehydro products was formed which contained three com-