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Summary. The testing problem is to decide on the basis of repeated inde- 
pendent observations which of the probability densities f and g is true. 
Given upper bounds on the probabilities of error, the object is to minimize 
the expected sample size if the density p is true (allowed to differ from f and 
g). A characterization of the structure of optimal tests is obtained which is 
particularly informative in the case where f g, and p belong to a Koopman- 
Darmois family. If p = f  or g, then the optimal tests are sequential probabili- 
ty ratio tests (SPRT's) and a new proof of the well-known optimality 
property of these tests is obtained as a corollary. 

1. Introduction 

Independent and identically distributed random variables X1, X 2 . . . .  are observ- 
able one at a time and have probability density f g, or p with respect to a 
sigma-finite measure on the space where each X takes values. Assuming f and g 
are non-equivalent, it is desired to test whether f or g is the true density. The 
error probabilities of the test, c~ and /~, must satisfy prescribed upper bounds, 
and the object is to minimize EN, the expected sample size if p is true. This is 
known as the modified Kiefer-Weiss problem and leads [5] to consideration of 
the auxiliary problem of finding a test attaining 

R(u, v)= inf[EN + uc~ + vfi] 

for given u, v>0, the infimum being taken over the class of all tests. 
In the special cases p = f  and p = g ,  the solutions of the problem are 

sequential probability ratio tests (SPRTs) by virtue of the optimality property of 
these tests (Wald and Wolfowitz [13]). In typical situations, however, such as 
testing whether a real-valued parameter 0 is <00 or >01, it is less critical to 
minimize the expected sample size for 0=0  o or 01 than it is for 0o<0<03. 
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Rather than choose a particular value of 0 for which the expected sample size 
should be minimized, it is appealing to try to solve the Kiefer-Weiss problem of 
minimizing the maximum over 0 of the expected sample size. The latter problem 
reduces in special cases (e.g. those in [14]) to the modified problem in which a 
fixed 0 (or, equivalently, p) is considered, and the two problems seem to be 
related more generally (see Remark 1 in Sect. 7). 

The present paper investigates the structure of tests attaining R(u, v). Particu- 
lar attention is paid to the case where f ,  g, and p belong to a Koopman- 
Darmois family of densities (Sect. 5), in which more explicit characterizations of 
optimal tests are obtained, extending results of Kiefer and Weiss [5], Weiss 
[14], and Lai [6]. The basic theorem is stated in Sect. 2 and is applied in Sect. 3 
to give a new proof of the optimality property of the SPRT. This proof avoids 
some of the technical difficulties in the original argument of Wald and Wol- 
fowitz and in subsequent refinements (e.g. [2, 4, 7, 10]) by considering only one 
expected sample size at a time. (R. Berk and G. Simons have earlier developed a 
proof of the optimality property of the SPRT (to appear) which is also of this 
type.) Additional structural information is obtained in Sect. 4, which is applied 
to the Koopman-Darmois case in Sect. 5. A numerical example for a symmetric 
normal case is given in Sect. 6. 

2. Basic Structure of Optimal Tests 

Tests of f against g are definable on a suitable product space and sequence of 
sigma-fields, ~o c Yl c . . . ,  allowing for randomization. A test is specified by an 
extended stopping time, 0_< N < + 0% with respect to {~,}, together with an ~U- 
measurable partition of {N < oe} into i f=  {reject f}  and G =  {reject g}. 

Let F, G, P denote probability when f,  g, p are true and let f , ,  g,, p, denote 
the likelihoods (Radon-Nikodym derivatives), for n=0,  1 . . . .  observations, e.g. 
f ,=f(xl) . . . f(x,)  for n > l ,  f0-=l. Summing over the events {(N=n)c~b ~} and 
{(N =n)c~ G}, one derives the formulas for error probabilities 

g~ dP, (1) c~=F(ff ~(PN=O))+ ~F PN fN dn' fl=G(G~(PN=O))+ ! PN 

noting that the integrands are well-defined and finite outside P-null sets. To 
obtain a useful alternative definition of R(u, v), define 

U, = uf~/p,, V, = v g,/p,, n = 0, 1 . . . .  , (2) 

and observe that U, and V. are a.s. finite under P. By (1), 

uc~+vfl>~ UNdP+~ VNdP> ~ min(UN, Vu)dP, 
F G {N< co} 

and equalities hold if {N < 0% PN = 0} is empty and ff = { U u < Vu}. Since any test 
can he modified to satisfy the last two conditions without changing EN, 
evidently 

R (u, v) = inf E [N + min (UN, VN)], 
N 
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the infimum begin taken over the class of all extended stopping times such that 
P(N < oo) = 1. (Note however that F(N < oo) < 1 and G(N < oo) < 1 are permit- 
ted.) For n=  1, 2, . . .  

g(x.) 
f (x.) and V.= V, 1 , u.= u._ ~ p(x.) - p(x.) 

and thus {(U., V.)} is a stationary Markov sequence and the problem of finding 
a stopping time attaining R(u, v) reduces in the usual way (e.g. Chapter 5 of [3]) 
to the determination of the set of (u, v)'s for which it is optimal to take no 
observations. Defining the "continuation risk", 

Rl(u, v)= inf E[N+min(Uu,  VN) ] = inf [EN+uc~+vfl], 
N_>I N_>I 

one obtains by straightforward extension of the results of [3], 

R(u,v)=min(u,V, Rl(U,V)) u,v>__O 

and the characterization that a test (5 attains R(u, v) if and only if for n=0 ,  1, ... 
it satisfies a.s. P 

rain (U,,, V., R1 (U., V.))= { U~ on (N=n)c~F  
V. on (N=n)c~G 
el(Un, gn) on {N>n}.  

(3) 

Thus, the properties of optimal tests follow from the properties of the sets of 
points {u<Rl(u,v)} and {v<Rl(u, v)} in the first quadrant of-the (u, v) plane. 
The structure of these regions is described in the following theorem. 

Theorem 1. There are positive-valued functions U( ' )  and V( . )  on [0,oo), concave, 
continuous, and nondecreasing, such that for u, v > 0 

sgn (R 1 (u, v) - v) = sgn (V(u) - v) 

and 

sgn (R 1 (u, v) - u) = sgn ( g  (v) - u). 

(4) 

(5) 

,U,,~s,~emded ~bove if P 4=F, and V is bounded above if P 4=G. There is a Wo>0 
such that for w > 0 

sgn (V(w) - w )  = sgn (w o - w )  ( 6 )  

and 

sgn (U(w) - w) = sgn (w o - w). (7) 

Proof. For fixed u > 0 

Rz(u, v ) - v =  inf [ E N + u ~ + v ( f i -  1)], 
N > I  

which is evidently concave and continuous in v. Being positive at v = 0  and 
negative for large v (considering N = I ,  ~=  1, fl=0), it has a unique zero, v 
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= V(u) >0, and V(u) satisfies (4). Furthermore, in the first quadrant of the (u, v) 
plane the region {v<Rl(u , v)}={v<=V(u)} is the intersection of regions of the 
form {v(1- f l )<EN+uc~}  and, hence, V(.) is concave, nondecreasing, and 
continuous on [0, oo). Similarly, there is a U(.)  with the same properties 
satisfying (5). 

If P + F ,  there are tests with stopping times N >  1 satisfying E N <  o% ~< 1, fi 
=0, e.g. the test that stops and rejects F at N, the first time p , > f , .  If ~=EN/(1 
-~) ,  then for all v 

Rl(fi , v) < E N  + ~5 =-~, 

whence by (5) ~7 is an upper bound on U(v) for all v. If P =t= G, similar reasoning 
yields an upper bound on V(u). 

Since F 4 G ,  either P:#F or P t-G - say the latter. Then, since V(.) is 
bounded above and positive, its concavity and continuity imply that (6) holds 
for some positive w o. Relation (7) follows immediately by applying (5), (4), and 
(6), and the theorem is proved. 

3. The Optimality Property of the SPRT 

By considering the special cases P = F  and P = G  of Theorem 1, the following 
proof of the optimality property of the SPRT is obtained. Like all known proofs, 
it follows the pattern of Wald and Wolfowitz's original argument, showing that 
an SPRT solves an auxiliary Bayes problem. The present argument also yields 
refinements of the optimality property (see Remarks 4-6 of Sect. 7). Note that it 
is not assumed that competitors of the SPRT have finite expected sample size 
under F and G. This assumption in [13] was shown to be removable by an 
additional argument (Burkholder and Wijsman [2]) that is not needed under the 
present treatment. 

Theorem 2. Let ~ and (7 denote tests with stopping times and error probabilities N, 
~, fl and N', ~', fi', respectively. Suppose 6 acts like an S P R T  in that for some 
0<B_<I_<A (A=~B) and for n=0,  1 . . . .  " 

(N=n)  c~P c {g, /s  > A} 

(N = n) n 6 c {g,/f,  < B} (8) 

( N > n ) c { B < g , / f , < A }  a.s. F, G. 

/f  
~'<~ and fl'<fi, (9) 

then 

EvN'>=EvN and E~N '>  Eo N  (10) 

and both inequalities in (10) are strict unless c(= ~ and fl'= ft. 

Proof. Consider only the first inequality in (10), since the roles of F and G are 
interchangeable. Let P = F in Theorem 1 and note that U n = u for all n and V, 
=vg, / f , .  It clearly suffices to show that 6 attains R(u, v) for some u, v>0.  
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The continuous function V(U(w))/w equals one at w 0 by (6) and (7) and goes 
to zero as w goes to infinity, since l /( .)  is bounded. Hence, there is a w , > w  o 
such that 

B V(U(wl) ) 
A w~ 

Choose u =  U(wl) and v=wl/A. Then 

Bv=V(u)<u, (11) 

the last inequality by (6), since u > U(wo)= w o. Also, 

u= U(Av) <Av (12) 

by (7), since Av=w 1 >w 0. 
Using (4) and (11), 

sgn(Rl(u,w)-w)=sgn(Bv-w ), w>O, (13) 

and, using (5) and (12), 

sgn (R 1 (u, w) - u) = sgn ( U (w) - U (A v)). (14) 

By (11)-(14), 

u if V,>=Av 
min(u, V,,RI(U , V,))= V, if V,<Bv 

Rl(u, V~) if Bv<V~<Av, 

which combines with (8) to show that c~ satisfies (3). Thus, 6 attains R(u, v) and 
the flaeorem is proved. 

4. Properties of  the Optimal Stopping Boundaries 

Additional information about the functions U(.)  and V(.) of Theorem I is 
obtained in the following theorem. The numbers 

L(P'F)=exp ( -  ~ n-~[P(p~< f,)+F(p~> f.)] 

and 

L(P,G)=exp ( -  ~ n-~[P(p <g~)+G(pn>g~)]) 
r l = l  

play an important role, slightly different from that of the information numbers 
I(P, F)=E log(p/f) and I(P, G)=E log(p/g). Some basic properties of the L- 
numbers are described in [9]. 

Theorem 3. The w o in Theorem 1 satisfies 

1 < w o < [1 - F(f < g ) -  G(f > g) ] -  1, (15) 
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with equality on the right if rain(f, g)<p a.s.P. Letting U=l im U(v) as v~oo, 

U<L(P,F)  -~, (16) 

with equality if P(g=0)=0 .  A similar result holds for V=lim V(u) as u~oo. 

Remark. The assumption min( f , g )<p  a.s. P which is Assumption B of Kiefer 
and Weiss (op. cit.), is satisfied whenever optimal tests are truncated, i.e. for 
some n take at most n observations. In fact, it is easy to see using Theorem 1 
that all optimal tests are truncated if and only if m i n ( f , g ) < ( 1 - e ) p  a.s. P for 
some e > 0. 

Proof. Considering one-observation tests, clearly 

1 < R ~ (w 0, Wo) < l + E rain (U 1 , 1/1) = 1 + w o [ F ( f  < g) + G( f  > g)]. (17) 

Since Ra(wo, Wo)=Wo by Theorem1, (15) follows immediately. In case 
rain(f,  g)<p, R~(wo, wo) is attained by stopping after the first observation, since 
rain (Ux, V~) is at most Wo, and therefore equality actually holds in the second 
inequality in (17) and, accordingly, (15), 

If P = F ,  then L(P, F ) = 0  and (16) is trivial. If P ~F ,  the upper bound on U(v) 
obtained in the proof of Theorem 1 is 

E~ 
~7<~ =F(~ = oo)' (is) 

where 2~ = first time p, > f~. Using Corollary 2 of Spitzer [12], if f ,  p > 0 a.s. F, P, 
then 

E 2V = P(I"~ > n) = exp n-  t P(log (pJf,) < O) , 
n = O  n 1 

and by virture of (4.7) of [-12] 

F(N=~)=F(log(pn/ f~)<O for n > l )  

= exp - ~ n-  1F(log (pjf~) > O) , 
n = l  

which combine with (18) to yield (16). In the non-absolutely continuous case 
where P ( f  = 0)> 0 or F(p = 0)> 0, Spitzer's results must be applied with greater 
care, but the resulting expressions for EN and F(2~ = ~ )  are the same, as shown 
in the remark on p. 5 of [9]. 

To prove that equality holds in (16) if P (g=0)=0 ,  consider first the case 
where P ~ F .  Fix u = / ]  and let N*=N*(v)  denote the rule that attains R~(u, v) 
by stopping when RI(U ., V~) exceeds min(U~, V~). At almost every (P) point in 
the sample space, the following hold for sufficiently large v: 

U,<V~=vg,/p~ for all n < N  

and, since l~" is the first time U, < U, 

U~ < U (v) <_ U_<min U., 



Structure of Sequential Tests Minimizing an Expected Sample Size 297 

which imply 

N* +min(UN., VN.)=/V+ U~. 

Therefore, by Fatou's Lemma and (5) 

E/V+ U S = E ( N +  U~)< lim RI(U,v)< O, 

from which the reverse inequality in (18) follows immediately. 
It remains only to prove that if P = F  and P (g=0)=0 ,  then U =  + 0% i.e. 

U(.)  is not bounded above. This follows from (5) upon noting that for all 
choices of u > 0, U, ~ u and 

Rl(u , v ) > E m i n [ l + u ,  min {n+min(u, vg , /p , ) } ]~ l+u (19) 
l ~ n < l + u  

as v ~  co, since the g,'s are almost surely positive. 

5. The Koopman-Darmois Case 

If p, f ,  and g belong to a Koopman-Darmois family of densities, 

fo(X) = exp (~b(0) T(x) - b(O)), 

and if ~b(0(p)) is strictly between O(O(f)) and ~(0(g)), then 

a log (p/f) + b log (p/g) = 1 for some a, b > 0 (20) 

and it is helpful to transform from the first quadrant of the (u, v) plane to the 
(t, s) plane by 

t (u ,v)=alogu+blogv,  s(u,v)=log(v/u). (21) 

The image of the sequence {(U., V.)}, where Uo=u and Vo=v are specified, is 
found from (20) to be 

t. = a log u + b log v - n, S. = log (v/u) + log (g./f.), (22) 

so that the representation {(in, S.)} is the left-to-right reversal of the usual plot of 
log-likelihood ratio vs. time. To transform the optimality characterization of 
Theorem 1, it is only necessary to characterize the images under (21) of the 
stopping regions, {u < U(v)}, {v < V(u)}, and their boundaries. 

Theorem 4. Suppose that f ,  g, and p satisfy (20). Then there are unique functions 
A( ' )  and B(')  such that if (t, s) denotes the image of (u, v) under (21) 

sgn (s - A(t)) = sgn (U(v) - u) (23) 

and 

sgn (s - B (t)) = sgn (v - V(u)). (24) 
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Moreover, the functions A(. ) and B(. ) satisfy 
(i) A(t) "~ and B(t).~, strictly and continuously. 

(ii) sgn A (t) = sgn (t - (a + b) log [1 - F( f  < g) - G ( f  > g)] - 1) = _ sgn B(t). 
(iii) A( t ) -b - l  t + and has limit b-l(a+b) logL(P,F) as t - -~ .  
(iv) B(t)+a-l t ~ and has limit -a- l (a+b)  logL(P, G) as t-+oo. 

Proof. Define A(. ) parametrically in terms of v > 0  by 

x=alogU(v)+b logv, A(x)=log(v/U(v)), (25) 

noting that the relation between v and x is strictly increasing and continuous. 
Thus, A( ' )  is well-defined and, since the continuous function U(.)  is concave 
and positive, A(-) is strictly increasing and continuous, as claimed in (i). To 
prove (23), let x be as in (25) and note that 

sgn (s - A (x)) = sgn (log (U (v)/u)) = sgn (U (v) - u) (26) 

and also 

sgn (A (x) - A (t)) = sgn (x - t) = sgn (U (v) - u), (27) 

which combine to yield (23). Similarly, B(.)  is defined in terms of u and V(u), is 
strictly decreasing and continuous, and satisfies (24). The uniqueness of A(.)  and 
B(.)  is clear from (23) and (24), which imply (ii) also, using (6) and (7) and the 
evaluation of w o in Theorem 3. By (25), 

A ( x ) - b - l x =  -b- l (a+b)  log U(v) 3, in v, (28) 

so that the left-hand side is decreasing in x, and Theorem 3 evaluates the limit, 
proving (iii). Relation (iv) is similar and the proof is complete. 

Theorem 4 along with Theorem 1 characterizes optimal tests as almost 
surely continuing only if B(t,)<S,<A(t,), rejecting f only if S,>A(t,), and 
rejecting g only if S,<B(t,). Thus, the optimal tests are generalized sequential 
probability ratio tests (GSPRT's), which was already established by Kiefer and 
Weiss (op. cit.) for a slightly larger class of problems. They also proved the 
monotonicity property in (i) and established (ii) without determining explicitly 
the "truncation point", t=(a+b) log[1-F( f<g) -G( f>g)]  -1, where the 
boundaries cross. (Weiss [14] found the truncation point, however, in the 
symmetric normal and binomial cases.) Note that the values of A(t) and B(t) to 
the left of the truncation point are immaterial, since optimality requires stopping 
there and choosing between f and g according to the sign of S,. Remark 7 in 
Sect. 7 indicates that the Koopman-Darmois case is nearly the most general 
circumstance in which the optimal tests are GSPRT's. 

Remark 3 in Sect. 7 shows that the monotonicity in (iii) and (iv) is strict. 

6. An Example 

In the Koopman-Darmois case, one can calculate the stopping boundaries, A(t) 
and B(t), along a sequence t=to, t o + l ,  to+2  . . . .  by the method of "backward 
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induction" (I-13]) based upon the relation 

e l ( $ t  , v ) =  1 + E R ( U 1 ,  V1). (29) 

Using the transformation from (u, v)~(t,s) of the preceding section, define 
versions of R and R 1 in terms of s and t, R*(t,s) and R~;(t,s), so that (29) 
becomes 

R* it, s) = 1 + ER* i t -  1, s + log (g/f)). i30) 

By (5) and (23) 

s gn (R* (t, s) - u (t, s)) = sgn (s - A (t)). (31) 

Thus, A(t) is calculated by finding the s where R* (t, s ) -u ( t ,  s) changes sign and, 
similarly, B(r) is the change point of R*(t, s)-v(t,  s). Then R*(t, s)=R*(t ,  s) for 
B(t)<s<A(t), =u(t,s) for s>A(t), =v(t,s) for s<B(t), and the induction pro- 
ceeds to t + l  after calculating R*(t,s) on a suitable grid of s-values. For  an 
initial t < (a + b) log wo, R* (t, s) = u(t, s) for s > 0, = v(t, s) for s < 0. 

This scheme was carried out on a computer for the case where f,  g, and p are 
normal densities with variance one and means -0 .1 ,  0.1, and 0, respectively. In 
this case, a=b= 100, wo= 12.554, U =  V=211.74, and log(g/f)=O.2X, where X 
denotes an observation with density f, g, or p. The following tabulated data 
describe the optimal boundaries A(t), Bit ) ( B ( t ) = - A ( t ) )  and characteristics of 
optimal tests (the ones starting from s = 0 and the indicated t). 

t J*(t) A(t) EN a, [3 

506 - 5.65 0 0 0.500 
606 - 4.65 0.09 1.50 0.445 
706 - 3.65 0.22 3,02 0.418 
806 - 2.65 0.43 7,17 0.371 
906 - 1.65 0.74 16.21 0.310 

1006 - 0.65 1.18 32.86 0,241 
1106 0.35 1,74 58.74 0,175 
1206 1.35 2.41 93.72 0.121 
1306 2.35 3.16 136.62 0.0810 
1406 3.35 3.98 186,04 0,0527 
1506 4.35 4.84 240.68 0.0338 
1606 5.35 5.74 299.54 0.0214 
1706 6.35 6.66 361.82 0.0134 
1806 7,35 7.59 426.93 0.00838 

For large-sample considerations, it is natural to use A(t) and/~(t) as stopping 
boundaries instead of A(t) and B(t), which are a great deal harder to compute. It 
was shown in [8] that this approach attains R(u,v) to within o(1) as 
max (u, v)--, o% assuming that log (P/f) and log(p/g) have finite second moments 
under P and p > 0  a.s. F, G. This leads to the theorem in [-8] that a 2-SPRT, i.e. a 
test that rejects F the first time f j p , < A  and rejects G the first time g,/p,,<B 
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(rejecting either if both inequalities hold), minimizes EN to within o(1) as 
m i n ( A , B ) ~ 0 ,  among all tests with the same or smaller error probabilities. In 
the normal mean example, calculations reported in [8] showed that with A = B  
the 2-SPRT's  minimize EN to within 1 ~ .  

7. Remarks and Refinements 

1. In the Koopman-Darmoi s  case of Sect. 5 there is a natural way of searching 
for Kiefer-Weiss solutions. Assuming that A(t) and B(t) have been determined 
for t = t*, t* + 1, ..., t* + k, say, where t* > t o > t* - 1, fix t at one of these values, 
say t= t  1. If there is an s 1 between A(t 0 and B(t 0 such that the optimal test 
starting from (tl, s 0 has its max imum expected sample size when 0 =  O(p), then 
this test evidently minimizes the maximum expected sample size among all tests 
with the same or smaller e and ft. It is plausible that such an s 1 can be found 
because one expects that for s near one boundary the maximizing 0 should be 
larger than O(p) and for s near the other boundary it should be smaller. If  the 
location of the maximizing 0 varies continuously with s, then there should be an 
s~ where O(p) is maximizing. This suggests that solutions of the Kiefer-Weiss 
problem are to be found among the solutions of the modified Kiefer-Weiss 
problem in the Koopman-Darmoi s  case. 

2. In case min (f, g )<p ,  the results of Sect.4 can be extended to show that as 

U, ~ ~, W 0 

R (u, v) = 1 + u F ( f  <= g) + v G( f  > g) + o(v - wo), 

which leads to the conclusion that U( . )  has right-hand derivative at w o equal to 
G(f>g) /F( f>g) .  A similar formula holds for V( ' ) ,  and in the Koopman-  
Darmois  case these yield expressions for the right-hand derivatives of the 
boundaries at the truncation point, t o �9 

F ( f  > g ) - G ( f  >g) 
A'( t~ b F ( f  > g) + a G( f  > g)' 

G(g> f ) - F ( g >  f )  
B'(~o)  = 

aG(g> f ) + b F ( g >  f )  

For  the example of Sect. 6, the derivatives are +0.0008, whereas the slopes of 
the asymptotes are +0.01. Anderson [1] found that for 5 % error probabilities 
the best choice of slopes for straight-line boundaries is about +0.0066, which 
yields boundaries reasonably close to the opt imum ones over the range needed. 
(As pointed out in Sect. 6, however, using the asymptotes themselves as bounda- 
ries is highly efficient.) 

3. It is straightforward to show that the monotonici ty of U( . )  and V(-) in 
Theorem 1 is strict under stronger assumptions, e.g. if P ( f  > p > g > 0) > 0 then U 
is strictly increasing. The argument is based on noting that for every v > w 0 there 
is an n such that {f>p>(V/Wo)J/'g>O} has positive P-probability, and the 
occurrence of this event on each of the first n observations would cause a certain 
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test optimal for u =  U(v) to reject G, showing that this test has a positive 13. It 
follows that U(v) is larger than U(v') for all v' <v and, since v can be chosen 
arbitrarily large, U, being concave, must be strictly increasing. 

4. In Theorem 2, the error probability conditions, (9), are needed in the 
proof only to establish that u c(+ v 13'< u c~ + v13, which follows alternatively from 
(11) and (12) if it is assumed that 

2~'+fi'<Zc~+fi for ).=A,B. (32) 

Interchanging the roles of f and g does not change this condition. (Simons' [11] 
conditions c(/(1 - 13') < c~/(1 -/3) and 13'/(1 - z') < 13/(1 - c~) are also sufficient, being 
stronger than (32) by virtue of Wald's bounds, ~/(1-  f l )<A-1 and/3 / (1-  c~)<B.) 
Furthermore, at least one of the inequalities in (10) is strict unless 5' satisfies (8). 
To see this, note that if neither inequality is strict then 6' attains R 1 (u, v) and, 
hence, by (3) and (13) the events (N' > n) c~ {g, < Bf,} and (N' = n) c~ G c~ {g, > Bf,} 
are F-null. It clearly follows that the first event is G-null, and the second is, too, 
because its intersection with {f,,=0} is G-null (otherwise, /3' could be reduced 
without changing ~' or N'). Similarly, the conditions related to the A-inequality 
hold a.s. F, G, so that 6' satisfies (8). 

5. Both inequalities in (10) are, in fact, strict, except in rather special 
circumstances. If, say, the expected sample sizes under F are equal, then either 

(i) g > f  a.s. G, or 
(ii) 6' satisfies (8) a.s.F. 

(In case (i) holds, f i=0  for all SPRT's with B<I . )  If (i) does not hold, then 
{ f > g > 0 }  has positive probability under G, hence also under F, and by 
Remark 3 U is strictly increasing. Thus, (14) can be strengthened to 

sgn(R 1 (u, w) - u) = sgn(w - A v), 

which combines with (13) to show that 6' can attain Rl(u,v ) only if it obeys the 
same (A,B)-prescription as 6, a.s.F. 

It is, however, possible that 6' does not satisfy (8) a.s.G. This can occur only 
if G(f = 0)> 0 and if (with positive probability) 6' continues rather than rejecting 
f when f , = 0 .  (Note that this "indecisiveness" does not affect c(,/3' or EFN'. ) In 
the absolutely continuous case where F ( g = 0 ) = 0  and G ( f = 0 ) = 0 ,  one conclu- 
des that both inequalities in (10) are strict unless 6' satisfies (8). The only tests 
other than SPRT's and "indecisive" SPRT's that can minimize one of the 
expected sample sizes are those in case (i) (or its analog with f and g 
interchanged), where it is easy to see that the tests that are optimal (in the sense 
of minimizing EFN among tests wi th /3=0 and with the same or smaller ~) are 
those tests that reject g (a.s. F) if and only if gn=0. Among these tests, however, 
only the SPRT's are optimal for EGN (by Remark 4). 

6. If two SPRT's have the same e and 13, then by Theorem 1 their expected 
sample sizes match and by Remark 4 they satisfy (8) for the same (A, B) pairs. 
(This uniqueness result is essentially Theorem 5 of [15].) The same conclusion 
holds if two SPRT's have at least one match between error probabilities and at 
least one between expected sample sizes, since by the last line of Theorem 1 both 
error probabilities must match. 
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7. U n d e r  mi ld  regular i ty  condi t ions  it is easily shown that  the op t ima l  tests 
are  G S P R T ' s  only  if g/f is a sufficient s ta t is t ic  for {F, G, P}, whence p belongs  to 
the K o o p m a n - D a r m o i s  family  genera ted  by f and  g (and lies between them). In 
the case of  discrete  measures ,  for instance,  it is easily seen tha t  the value  of g/f 
must  de te rmine  the value  of  p/f or  else there  is an ini t ia l  po in t  (Uo, Vo) f rom 
which the same value  of  g/f can yield (U1, V1) be longing  to the (strict) s topp ing  
region  or, a l ternat ively ,  the con t inua t ion  region,  depend ing  upon  the value of  

p/f. 
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