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Abstract. In a previous paper of this series (Tokis, 1974b), we have discussed the solution of the 
Eulerian equation which governs the axial rotation, applied to the effects of viscous friction exhibited 
in binary systems which consist of a close pair of fluid bodies of arbitrary structure. The aim of the 
present paper will be to give an application of those results to the Earth-Moon system. 

It is shown that synchronism between the axial rotation of the Earth and the revolution of the 
Moon will occur at the value of 650 h, in a time scale which depends strongly on the value of the mean 
viscosity of the Earth (regarded as spherical or spheroidal). In particular, the variation of rotational 
angular velocity of the Earth over the next ten centuries commencing from 1900 A.D., depends 
sensitively on the value of viscosity. On the other hand, the time for synchronism of axial rotation of 
the Moon is not affected by the viscosity for values between 1024g cm -1 s -1 and 1027g cm -1 s -x. 

1. Introduction: Equations of the Problem 

In preceding papers  o f  this series (Tokis,  1974a; 1974b; hereaf ter  referred to as 

Papers  I and  II,  respectively) the Euler ian  equat ions  have been set up  explici ty (cf. 

Equat ions  (8.2) of  Paper  I) for  three-d imens ional  ro t a t ion  of  self-gravi tat ing com- 

pressible celestial  bodies  of  a rb i t r a ry  structure,  for the purpose  of  descr ibing the 

effects of  t ida l  r e fo rmat ion  in a close pa i r  of  such bodies .  The viscosity of  their  mater ia l  

has been regarded  as an a rb i t r a ry  funct ion of  spat ia l  coordinates .  Moreover ,  the 

solut ion of  one of  those differential  equat ions ,  namely  tha t  which governs the s imple 

ro ta t ion  abou t  an axis perpendicu la r  to the orb i ta l  p lane  of  b ina ry  system, has a l ready  

been discussed (see Sections 3 and 4 of  Paper  II).  

In  the present  paper  we shall  s tudy an i m p o r t a n t  app l ica t ion  of  the previous 

theoret ica l  results to the E a r t h - M o o n  system. We shall  t ry  to th row add i t iona l  l ight  

on the dynamica l  evolut ion  of  the system; in par t i cu la r  we shall  examine the effects 

of  viscosity on the as t ronomica l  future of  the ro t a t ion  of  the E a r t h  and  the Moon .  

The var ia t ions  of  their  axial  ro t a t ion  depend  on the complex  grav i ta t iona l  inter-  

ac t ion of  a m a n y - b o d y  system; however,  we shall  concentra te  on  the aspects  o f  

evolu t ion  of  a close planet-sate l l i te  system aris ing f rom t idal  processes,  as we have 

a l ready  discussed (Section 1 of  Paper  II). 

In  specifying our  p rob lem in the present  paper ,  we consider  tha t  the M o o n  travels  

in an elliptic orb i t  a round  the Ea r th  and tha t  their  axies of  ro ta t ion  are (a lmost)  

perpendicu la r  to the orb i ta l  plane.  In  accordance  with  the theory  o f  Papers  I and II ,  
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we shall suppose that, when considering tidal effects on the rotation of one component 
of the system, we may treat its companion as a mass point. Thus, when the compo- 
nents of our system are treated as nearly spherical, the equation which governs the 
rate of change of angular velocity co of axial rotation of each component is (from 
Paper II, Equation (21)) 

dco q q 
dt  + A  3 c o - 7  5 n = O '  (1) 

where: 
A (1 - e z) 

A - (2) 
1 + e cos v 

is the separation of the two components; 

( A )  2 ( l + e  COS v) 2 
n = COK , - - ,  x/1 - -  e2 = OK (1 - e2)  3/2 

is the instantaneous orbital angular velocity, with 

4 - ~ ( m ,  + m2) 
A 3 

(3) 

(4) 

denoting the Keplerian mean angular velocity of orbital revolution, A--semi-major 
axis, e=orbi ta l  eccentricity, v= t rue  anomaly measured from the periastron and 
G=gravitational constant; and 

4n (1 + k2)  m 2 
q = D¢]g' (5) 

5Cml  

is a constant (cf. Equation (22) of Paper II). In latter equations the 'apsidal motion' 
constant k2 ,  ths mass ma, the moments of inertia 

C = rn,h~, (6) 

where h a = radius of gyration, the mean radius R~ and the viscosity/t refer to the 
rotating component under consideration and mz to the revolving companion. 

The solution of the differential Equation (1) is, with a sufficient approximation 
(omitting terms of magnitude ~ 10-~3), 

l+e= { l+e2 ~ [ qt ] 
(¢) = coK ( I  - e~) ~/~ + co° - co'~ ( I  - e Z ) ~ ' J  exp A~ ( i  2 e=) ~j2 

(7) 

for the axial rotation of the Earth, in which we treat the orbital elements A and e 
to be nearly constant and the terrestrial viscosity has value pe~<101a g cm -a s -1 
(cf. equation (44) of Paper II). 

The solution of (1) for the axial rotation of the Moon will be found by numerical 
methods, as was suggested in Section 3.2 of Paper lI. 
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In the simple case of a circular relative orbit, the solution of (1) is given by 

co (t) = core + (COo - COK) exp - ~ (8) 

(cf. Equation (25) of Paper II). 
Moreover, if the Earth is treated as a body with spheroidal form, the appropriate 

differential equation is 

do) [#r6] R1 m 2 CO2m 2 

C d t + 4 n ( l + k 2 ) ( C O -  n) Aaml +T~n(CO--n) Gm~X 
R~. R1 

x 1 1 4 - ~ -  /~r 8 dr + 85 ~ - -  

0 0 

1 + k 4  } + 5 ~ T -  [#ri i]~ * = 0, (9) 

where the moment of inertia is given by 

2k2R~co2 k2m2R~ (10) 
C = mlh ~ + 9~G- + 3A - ~ T - ;  

k 4 is the 'apsidal motion' constant, and the other symbols refer to the Earth, except 
for m2, the mass of the Moon. The solution of this equation will be found by numer- 
ical methods, as we suggested in Section 4 of Paper II, regarding the viscosity as 
constant throughout the whole Earth. 

2. Parameters of the Earth-Moon System 

In order to solve the differential Equations (1) or (9) for the case of the Earth-Moon 
system, we must assign numerical values to the parameters occurring in these equations. 

A. 'APSIDAL-MOTION'  CONSTANTS 

The 'apsidal-motion' constants depend on the internal structure (density concentra- 
tion) of the rotating body, and are given by the form 

kj. = j + 1 - t/i (R1), (11) 
j + t/j (R2) 

where t/j are the logarithmic derivatives of functions fj. which satisfy the Clairaut 
equation (Kopal, 1969a). The kj rapidly become small if the density concentration of 
the respective configuration grows large. On the other hand, for homogeneous con- 
figurations we have 

3 
k; - 2 (j - 1~)" (12) 
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For the Earth we have t/2 (R1)= 0.5627 and q 4 (R~)= 3.246 (James and Kopal, 1963; 
Melchior, 1972) and, therefore, it follows from (11) that k 2 =0.951 and k 4 =0.242. 
For the 'apsidal-motion' constant k2 of the Moon we can take the value 1.5, from 
(12), if we regard the Moon to be a very nearly homogeneous body. 

B. RADIUS OF GYRATION 

When the value of kz is known it is possible to find the radius of gyration hi of a 
fluid body, which is defined by the equation 

RI 

mah 2 = ~zc f or 4dr, 
0 

(13) 

where Ra denotes the mean radius of this body, while the k 2 is given approximately 
by 

Rt 

32zc f k2 - 5nhR ~ 0r 7 dr (14) 

0 

(Kopal, 1972b; p. 164). 
The constant hi could be evaluated by quadratures from (13) if we knew their 

individual internal structure; in the present case, in which the internal structure is 
unknown, it may be determined, very approximately, from an empirical relationship 
between hl/R 1 and k2 from the Equations (13) and (14). Numerical work by Motz 
(1952) has disclosed that 

log \ ~ j  = 0.42 logk 2 - 0.47, (15) 

where the value of the constant on the right-hand side has been adjusted so that the 
values ofkz are twice those used by Motz. Thus, from (15), we can obtain the fractional 
radii of gyration hl/R 1 of our body. 

For homogeneous bodies we have, as is well known, 

M 2 

R~ 5. (16) 

In the present work we shall use the latter equation for the determination of the 
radius of gyration of the Moon. 

For the Earth, from (15), it may be calculated that 

- 0.33, (17) 

where we have used k 2 =0.951. 
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C. VISCOSITY 

The constituent components of  the Ear th-Moon system should be regarded as con- 
sisting of compressible fluid of  arbitrary structure, and the viscosity of their material 
is an appropriate function of its physical state. 

The mean viscosity of  the Moon remains still largely a matter of conjecture and 
different values have been suggested. Using various techniques it is possible to derive 
a value of average viscosity of the lunar curst of  about 1025 or  1026 g cm -~ s -1 - at 

least down to a depth of some 100 km (Urey, 1968; Kopal,  1969b; Baldwin, 1970). 
On the other hand, the proposition of convection in the Moon to explain the departure 

of the lunar surface from hydrostatic equilibrium (Runcorn, 1967) requires that the 
viscosity of  the lunar interior be less than 1024g cm -1 s -1 (Turcotte and Oxburgh, 

1969). But, recently, using data from the surface topography and gravitational poten- 
tial on the Moon, the relaxation time (,-, 5 b.y.) of  the mascons may be estimated, by 
means of which the viscosity of  the lunar interior was found to be at least 1025 g cm -1 

s -1 (Arkani-Hamed, 1973a). Moreover, using data of  the Apollo 15 mission it was 
calculated that a lower limit to the viscosity of  the lunar interior within the last 3.3 b.y. 
was about 8 x 1026 g cm -1 s -1 (Arkani-Hamed, 1973b) and in the period 3.8 to 3.3 
b.y. ago about 1025 g cm -1 s -1. 

In our work we propose to use for the mean viscosity of the lunar crust the value of 

/2( = 1026 g c m -  1 s -  i ,  (18) 

but we will examine the effects on our results of  choosing values for the viscosity 
b e t w e e n  1 0 2 4 - 1 0 2 7  c m -  i S - 1 .  

In order to estimate the mean value of the viscosity of the Earth, we consider the 
special case in which the Moon moves around the Earth in a circular orbit. In this 
case the Equation (1), governing the axial rotation of the Earth, applies as follows 
from a consideration of the assumptions made for the Ear th-Moon system, which 
were needed for the derivation of this equation. The solution (8) of this equation 
indicates that the value of ~o is bound to approach o3K (or n) asymptotically as t ~ oo. 
The rate at Which the difference co-e)~: decreases with time depends on the value of 

q U A  3 in (8), and will diminish to one-half in the time 

A 3 
q/z = - -  I n  2 .  ( 1 9 )  

qe 

But, from (5) by (6) and (17) it follows that 

q .  4n(1 + k2) {m(R; '~  
A 3 - 5 ( h . / R . )  2 \m2~A3]/2.  = 8.82 x 10 -26 /2. s - a ,  (20) 

where m(= 7.35 x 1025 g the mass of the Moon;  m s = 5.977 x 1027 g, R e = 6371 km are 
the mass and the radius of the Earth; A = 384 400 km the mean Ear th-Moon distance; 

k 2 =0.951 the 'apsidal motion'  constant of the Earth; and p .  the viscosity of the 

Earth expressed in cgs units. 
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Moreover, if we assume that the synchronism between the rotation of the Earth 
and the revolution of the Moon will still be far from attained after a time lapse of the 
order of 10 9 yr (or 10 1%), we can conclude from (19) and (20) that 

/ ~  ~ 109 g c m  -1  s -1  (21) 

(Kopal, 1972a). On the other hand Kaula (1968) suggested for numerical estimates 
the value of viscosity of order 1022 g c m -  ~ s-  ~ for the upper mantle and 1026 g c m -  1 

s -  ~ for the lower mantle of the Earth. Our numerical calculations will be made with 
the values of  viscosity of the Earth in the region of (21). We shall examine the results 
for various values of  viscosity between 10 s g cm -~ s -1 and 1022 g c m  -1 s -1. 

The numerical values of each of the parameters of the Earth-Moon system are 

presented in Table I. 

TABLE I 

Numerical values of parameters 

Parameter Dimensions e.g.s, units Earth Moon 
planetary planetary 
units units 

Gravitation const. 

Earth 
Mass M 
Mean radius L 
Angular velocity (1900.0) T -1 
Apsidal-motion const, k2 
Apsidal-motion const, k4 

Moon 
Mass M 
Mean radius L 
Angular velocity (1900.0) T -1 
Apsidal-motion const, k2 

Present Orbit 
Semi-major axis M 
Eccentricity 

M-1L3T -2 6.67 × 10 -8 1.0 1.0 

5.977 × 1027 1.0 81.3 
6.371 × 10 s 1.0 3.67 
7.2921 × 10 -5 0.0588 
0.951 
0.242 

7.35 × 1025 0.0123 1.0 
1.738 × 108 0.2725 1.0 
2.661 699489 × 10 -6 0.002758 
1.5 

3.844 × 1010 60.3 221.7 
0.0549 

(Kaula, 1968) 

3. Synchronism of Rotation and Revolution of the Moon 

In the present section we consider the following situation: the Earth moves around 
the Moon in a Keplerian orbit so that, at all times, the equatorial plane of the rotating 
Moon is identified with the orbital plane of the Earth. In addition, the Moon rotates 
about an axis perpendicular to the Earth's  orbital plane. 

A. CIRCULAR ORBIT 

When the Earth moves in circular orbit about the Moon the rate of change of the 
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rotation of the Moon is governed by the differential Equation (1), the solution of 
which is given by (8). For a homogeneous Moon the parameters of (8) were given in 
the previous section; then, from (5) it follows that 

q( m.R~ 
A~ = 5re ~ / ~ <  = 2.791755 x 10 4 s - ~  , (22) 

where we have used the relation (6) and Table I. With this value of q</A 3 the Equa- 
tion (8) makes it evident that the angular velocity is approximately equalized with 
the orbital angular velocity n (or coK) in a time scale of the order of seconds. Table II 

T A B L E  II 

Var ia t ion o f  angula r  velocity o f  axial ro ta t ion  o f  the  M o o n  

T ime  Angu la r  velocity 
(sec) (10 -6 r ad  s -1 

Circular  orbit Elliptic orbit  

0. 2.661699489 2.661 699489 
0.004 2.664119061 2.882316759 
0.007 2.665 010062 2.949 877 541 
0.011 2.665338171 2.970567033 
0.014 2.665 458996 2.976902885 
0.018 2.665 503 490 2.978 843146 
0.022 2.665519 874 2.979437 322 
0.025 2.665 525908 2.979 619 280 
0.029 2.665528130 2.979 675002 
0.032 2.665528948 2.979692066 
0.038 2.665 529 249 2.979 697291 
0.043 2.665 529 401 2.979 699 381 
0.053 2.665529 424 2.979 699 592 
0.064 2.665 529 425 2.979 699 598 
0.072 2.665529 425 2.979 699 598 

displays the solutions of (1) from (8) for various values of the time t starting from 
t = 0  until the values of co tend to a constant (equal to coK=2.665529425 x 10 - 6  rad 
s-l) ;  thus, from this table, the time scale of synchronism is of order 10-2s. 

B. ELLIPTIC ORBIT 

If the Earth moves in an elliptic orbit around the Moon, the solution of the differential 
Equation (1) can be found by numerical integration of the system of Equations (54) 
and (50) (of Paper II). The results of this integration are again presented in Table II. 
The time scale, in which the co becomes constant, is again of order 10 . 2  S, as in the 
circular case, but the value of co tends asymptotically to the value 

(1 + e) 2 
2.979699 598 x 10 -6 rad s -1 , (23) 

/~/p ---'= ('OK (1 - -  e2)  3/2 - -  
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which is the mean angular valocity np at the pericentre passage which may be found 

from (3) setting the true anomaly v = 0. 
In the two cases, namely those of circular and elliptical orbits, the value of the mean 

viscosity #< of lunar crust was chosen to be 1026 g cm -1 s -1. For different values of 

/~( the results are unchanged: that is, we find the values given in the Table II for 
values of Pc lying between 1024 g cm -1 s -1 and 1027 g cm -~ s -~. Figure 1 illustrates 

the results of Table II. 
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Variation of angular velocity of axial rotation of the Moon. 

5 

Finally, for viscosities of the crustal order of magnitude (1024-1027 g cm -1 s -a) 

the tidal control by the Earth of the lunar rotation should be virtually instantaneous, 

and see to it that the angular velocity should be virtually equal to the mean angular 

velocity n at all times. 

4. Viscosity and Axial Rotation of the Earth 

In the present section we assume that the Moon moves in a Keplerian orbit around 

the Earth, which itself rotates about an axis perpendicular to the plane of the lunar 

orbit, so that the equatorial plane of the Earth always coincides with the orbital 

plane of the Moon. 

The calculations were performed for a range of values of the mean viscosity of the 

Earth and for various time scales; these are given in the tables and are illustrated 
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in the figures. However ,  in the text,  reference will be made  to the t ime scale fixed by  

the value of  the viscosi ty 10 9 g cm-1  s - l ,  because this value gives results comparab le  

with those of  some previous  invest igators .  The A d a m s - M o u l t o n  me thod  for  numer i -  

cal in tegra t ion  o f  the f i rs t -order  differential  equat ions  is used. 

A. C I R C U L A R  O R B I T  

The var ia t ion  of  the angular  veloci ty of  axial  ro ta t ion  of  the Ea r th  with the M o o n  

travel l ing in a circular  orbi t  (whose elements are regarded  as constant)  is given by  

Equa t ion  (8). Us ing  this equa t ion  we ob ta in  values given in Table  I I I  which presents  

TABLE III 

Variation of angular velocity of axial rotation of the Earth (spherical model; e, A = constant) 

Time Angular velocity 
(109 yr) (10 -5 rad s -1) 

/t = 10 8 cgs /1 = 10 9 cgs /~ = 101° cgs Circular orbit Elliptic orbit 

Numerical Series 
integration expansion 

0. o. o. 7.2921 7.2921 7.2921 
0.1788 0.0179 0.0018 6.9495 6.9481 6.9480 
0.4470 0.0447 0.0045 6.4666 6.4633 6.4633 
1.3410 0.1341 0.0134 5.0951 5.0877 5.0876 
2.2351 0.2235 0.0224 4.0271 4.0175 4.0173 
3.1291 0.3129 0.0313 3.1952 3.1850 3.1848 
3.5761 0.3576 0.0358 2.8511 2.8409 2.8407 
7.1522 0.7152 0.0715 1.2174 1.2109 1.2105 

10.7282 1.0728 0.1073 0.6163 0.6139 0.6135 
14.3043 1.4304 0.1430 0.3952 0.3953 0.3949 
17.8803 1.7880 0.1788 0.3139 0.3152 0.3148 
21.4564 2.1456 0.2146 0.2840 0.2859 0.2855 
25.0325 2.5032 0.2503 0.2730 0.2752 0.2748 
28.6086 2.8609 0.2861 0.2689 0.2712 0.2708 
32.1847 3.2185 0.3218 0.2674 0.2698 0.2694 
35.7608 3.5761 0.3576 0.2669 0.2693 0.2689 
39.3369 3.9337 0.3934 0.2667 0.2691 0.2687 
42.9130 4.2913 0.4291 0.2666 0.2690 0.2686 
46.4891 4.6489 0.4649 0.2666 0.2690 0.2686 

the var ia t ion  of  ~o with different values of  viscosity o f  the Ear th .  Thus,  the angular  

velocity o~ becomes cons tan t  and  equal  to 

co~ = 2.666 x 10 -6  rad  s -1 - m K  (24) 

after a t ime of  abou t  4.3 b.y. (in fact  this t ime scale depends  on the chosen value for  

the viscosity).  F igure  2 i l lustrates  the var ia t ion  of  angular  veloci ty for var ious  t ime 

scales cor responding  to different values o f  viscosity. 

Hence,  the per iod  of  the Ear th  is at  present  increasing and,  f rom (24), will become 
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655 hr long about 4.3 b.y. from now. The length of the terrestrial day and the sidereal 
month will be approximately in synchronism after 4.3 b.y. 

B. ELLIPTIC ORBIT 

When the Moon travels in an elliptic orbit (with constant elements ) we must integrate 
the differential Equation (1) as mentioned in Section 3.2 of Paper II, Table III contains 
the results of these integrations for different values of viscosity. At the same time 
these results have been checked by comparison with the approximate solution (7) 
of (1); as we can see from Table III an accuracy of order 10 -8 is attained for results 
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with viscosities 

# e  ~< 102° g c m - 1  s-1 (25) 

F r o m  this table we conclude that  the angular velocity becomes constant  and equal to 

l + e  2 
co S = 2.686 × 10 -6 rad s -1 ~- c% (1 - e2) 3/2 (26) 

after 4.3 b.y. f rom now, as in the circular case. 

Figure 2 shows the behaviour of  the angular velocity as a funct ion o f  the time, while 
Figure 3 shows the difference between the circular and elliptic cases. Figure 3 indicates 

that  the angular velocity in the elliptic case decreases more rapidly than for the circular 
case until about  1.3 b.y., when this phenomenon  reverses and the values become 

constant  and equal to 2.686 x 10 -6  rad s -~ for the former,  and to 2.666 x 10 -6 rad s -~ 

for  the latter, at about  the same time (4.3 b.y.). 

Thus, the period of  the rotat ion of  the Earth  in the elliptic case tends to a constant  

value of  650 hr  after 4.3 b.y., while in the circular case the asymptot ic  value is about  

655 hr. 
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In the case in which the orbital elements (A and e) are regarded as variable with 
respect to the time, instead of Equation (l), we integrate the differential Equation (69) 
coupled with the Equations (66)-(68), as was described in Section 3.2 of  Paper II  
(where we took for the Sun e ' =  0.017 and COo~/Co~: = 13.368). The variation of difference 
of angular velocities between the present case and the previous case, in which the 
semi-major axis and the eccentricity are constant, is displayed in Figure 4. Thus, as 
can be seen from the latter figure, the difference between these two cases becomes 
approximately zero after about 2.2 b.y. and, consequently, the period becomes con- 
stant at about 650 hr after 4.3 b.y. from the present time for both cases. 

The shape of the Earth in the foregoing paragraphs has been regarded as approxi- 
mately spherical, in accordance with the scheme of approximation of Section 3 of 
Paper II. I f  the Earth is regarded as spheroidal, instead of differential Equation (9), 
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we mus t  in tegrate  the Equa t ions  (90) o f  Paper  I I  for  A and e constant ,  and  (94) of  

same pape r  for  A and e var iable .  Table  IV conta ins  results  of  this in tegra t ions  for 

var ious  values of  viscosity.  The va r i a t i on  o f  the difference o f  angular  velocity between 

these two cases is i l lus t ra ted in F igure  4, since the results  are the same as for the 

spherical  mode l  of  the Ear th .  

In  fact, in the ell iptic case the results  for  the angular  veloci ty agree up  to the 8th 

decimal  place for  cons tant  o rb i ta l  e lements  as well as for  var iable  orb i ta l  elements.  

TABLE IV 

Variation of angular velocity of axial rotation of the Earth 
(spheroidal model; e, A = constant) 

Time Angular 
(10 9 yr) velocity 
. . . . . .  (10 -5 rad s -z) 
/.t = lO s g cm -1 s -1 /t = 109 g cm -1 s -1 p = 101° g cm -1 s -~ 

O. O. O. 7.2921 
0.1355 0.0136 0.0014 7.0299 
0.2709 0.0271 0.0027 6.7775 
0.5418 0.0542 0.0054 6.3006 
0.6773 0.0677 0.0068 6.0754 
1.3546 0.1355 0.0136 5.0696 
2.7092 0.2709 0.0271 3.5503 
4.0637 0.4064 0.0406 2.5118 
5.4183 0.5418 0.0542 1.8020 
6.7729 0.6773 0.0677 1.3168 

10.8366 1.0837 0.1084 0.6036 
14.9004 1.4900 0.1490 0.3758 
17.6096 1.7610 0.1761 0.3189 
21.6732 2.1673 0.2167 0.2849 
27.0915 2.7092 0.2709 0.2724 
32.5097 3.2510 0.3251 0.2697 
43.3463 4.3346 0.4335 0.2690 
44.7009 4.4701 0.4470 0.2690 

The var ia t ion  of  angular  veloci ty is shown in F igure  2 for  all of  these cases, but  the 

t ime scale depends  s t rongly on the mean  value o f  viscosi ty o f  the Ea r th ;  this var ia t ion  

is also shown on F igure  5. 

Fu r the rmore ,  we can ob ta in  detai ls  of  the effects of  viscosity on the present  rate  

of  ro ta t ion  of  the Ear th .  We regard  the orb i ta l  e lements  as cons tant  on t ime scale o f  

order  103 yr ;  then we integrate  Equa t ion  (56) of  Paper  II ,  the Ea r th  being regarded  

as spherical ,  or  Equat ions  (92) of  the same pape r  for  a spheroida l  Ear th .  The results 

of  (56) are checked by  (7) for  cor responding  t imes;  these results coincide up  to the 

n in th  decimal  place (see Table  V). The results  are l is ted in Table  V. F igure  6 displays  

the var ia t ion  of  ro ta t ion  of  the E a r t h  for abou t  ten centuries after  1900.0 A.D. ,  for  

var ious  values o f  viscosity.  In  Table  VI, results  are shown for the effect of  different 

viscosities on the lengthening of  the day  over an interval  of  one century.  
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Thus, from Figure 3 we conclude that the period of axial rotation of the Earth in 
the elliptic case is larger than for the circular case until about 1.3 b.y. Then, this 
phenomenon reverses and the period in the elliptic case will become constant and 
equal to 650 hr at about 4.3 b.y., while in the circular case it will become constant at 
about 655 hr at approximately the same time. This time scale for the value of viscosity 
10 9 g cm -1 s -1 is comparable with the time scale 5.3 b.y. of  MacDonald of syn- 
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chronization between rotation of the Earth and revolution of the Moon (MacDonald, 
1964). 

5. Viscosity and Future Evolution of the Earth-Moon System 

In the present section we propose to study the future evolution of the Earth-Moon 
system, especially the effects of viscosity on the rotation of the Earth and on its 
synchronism with revolution of the Moon, using the results of  the previous numerical 
calculations. 
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TABLE V 

Variation of angular velocity of axial rotation of the Earth (spherical and 
spheroidal model; e, A = constant) for 10 centuries from 1900 A.D. 

351 

Time Angular velocity (10 -5 rad s -a) 
(yr) 

/t = 10 ~ g cm -1 s -t p = 109 g cm -1 s -1 fl = 101° g cm -1 s -1 

Numer. From Eq. Numer. From Eq. Numer. From Eq. 
integrat. (25); (44)  integrat. (25); (44)  integrat. (25); (44) 

0. 7.2921000 7.2921000 7 .292100 7 .292100  7 .292100  7.292100 
49.96 7.2920999 7.2920999 7 .292099 7 .292099  7 .292090  7.292090 
99.92 7.2920998 7.2920998 7.292098 7 .292098 7.292080 7.292080 

149.88 7.2920997 7.2920997 7.292097 7 .292097  7.292070 7.292070 
199.84 7.2920996 7.2920996 7 .292096 7 .292096  7.292060 7.292060 
249.80 7.2920995 7.2920995 7 .292095 7 .292095  7 .292051  7.292051 
299.76 7.2920994 7.2920994 7 .292094 7 .292094  7 .292041 7.292041 
349.71 7.2920992 7.2920993 7.292093 7 .292093  7 .292031  7.292031 
399.67 7.2920991 7.2920992 7 .292092 7 .292092  7 .292021  7.292021 
449.63 7.2920990 7.2920991 7.292091 7 .292091  7 .292011  7.292011 
499.59 7.2920989 7.2920990 7 .292090 7 .292090  7 .292001  7.292001 
549.55 7.292098 8 7.2920989 7 .292089 7 .292089  7.291992 7.291992 
599.51 ~ 7.292098 7 7.292098 8 7 .292088 7 .292088  7.291982 7.291982 
649.47 7.292098 6 7.292098 7 7 .292087 7 .292087  7.291972 7.291972 
700.62 7.292098 5 7.292098 6 7 .292086 7 .292086  7 .291962  7.291962 
750.58 7.2920984 7.292098 5 7 .292085 7 .292085  7.291952 7.291952 
800.58 7.2920983 7.2920984 7 .292084 7.292084 7 .291942  7.291942 
850.50 7.2920982 7.2920983 7.292083 7 .292083  7 .291933  7.291933 
900.46 7.2920981 7.292098 2 7 .292082 7 .292082  7 .291923  7.291923 
950.42 7.2920980 7.2920981 7.292081 7 .292081  7 .291913  7.291913 
1000.21 7.2920979 7.2920980 7 .292080 7.292080 7 .291903  7.291903 

The iesults of Section 3 indicate that  the effects of viscosity on the rate of synchro- 

nizat ion between the angular  velocity of axial ro ta t ion  of the M o o n  and its orbital  

revolut ion are not  impor tant ,  because this synchronism is obtained on a t ime scale 

of the order of 10 -2  s for values of viscosity between 1024 g cm -1 s -1 and  1027 g 

cm -a s - L  This synchronism will not  be main ta ined  for all time, because the angular  

velocity of the M o o n  will vary with the Moon ' s  posi t ion in  its orbit  (even for a 

circulai orbit, if it is inclined to the equator)  and will be synchronized only with the 

mean  angular  velocity n, which is given by (3). 

On  the other hand,  the angular  velocity of axial rota t ion of the Ear th  is slowed 

down by bodily tides raised on the Ear th  by the M o o n  (see Figures 2, 5 and  6). It  is 

well known that  the ro ta t ion  of the Ear th  will eventually be synchronized with the 

revolut ion of the Moon.  When  this has occurred the angular  velocity to S of synchro- 

nism will lie between the lower limit co/~ (when the orbit  of  the M o o n  is regarded very 

near to circular) and  the upper  l imit ~oK(1 +e)2 / (1 - -e2 )  3/2 (which is the value of n 

at perigee passage) - e.g., 

(1 + e) 2 
c°K ~< cos <~ c°K (1 - e2) 3/2" (27) 
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T A B L E  VI 

Increase of  the  length o f  the day for the Ear th  
(for 10 centuries f rom 1900 A.D.)  

Viscosity Increment 
(g cm -t s -t) (sec per century) 

10 s 2.16 × 10 -~ 
10 9 2.17 × 10 -2 
101o 2.18 × 10 -1 

In particular, the angular velocity of the Earth will become constant and equal to 
oK (see Equation (24)) in the case of a circular orbit. Thus the synchronism will be 
exact and, therefore, the terrestrial day will become precisely equal to the sidereal 
month. But the orbit of the Moon is elliptic, and so this synchronism will not be 
exact; instead the angular velocity of the Earth will become constant at the value 

1 + e 2 (1 + e) 2 
cos - oK (1 - e2) 3/a < e)~: (1 - e2) 3/2' (28) 

from (26), whether the orbital elements are regarded as constant or variable (as given 
by Equations (58)-(60) of Paper II). 

The time scale for any of these types of 'synchronization' between the rotation of 
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the Earth and the revolution of the Moon is dependent on the mean value of the 
viscosity of  the Earth (see Figures 2 and 5). A wide range exists between values of 
the viscosity attributed to different parts of the Earth. The astronomers suggest a 
value of the mean viscosity of the terrestrial globe as a whole to be of the order of  
10 9 g cm -1 s -1 or smaller (cf., e.g., Kopal,  1972a); while the geophysicists arrived at 
a value of the order of  1022 g c m -  1 s -  a or larger for the Eal th 's crust (e.g., Kaula, 1968). 

Supposing now that the actual value of the viscosity is between 108 g cm -1 s -1 
and 1022 g cm -1 s -1, we can repeat the numerical integration of Equations (1) or 

(9) for these values of viscosity for all cases. The variation of the time ts of synchroniza- 
tion (the time when o)~-e)s) with respect to the mean value of viscosity is shown in 
Figure 7. Thus, the time ts decreases as the viscosity increases. I t  is obvious that we 
cannot employ the value of viscosity which is given by geophysicists, because it would 
mean that the synchronism occurs on a time scale of  a few hundred years, which is 
impossible. Probably the values of viscosity in the region of the order of  1022 g c m -  ~ 
s -  1 refer only to the viscosity of the outermost solid crust of the Earth. The value of 
the order 109 g cm-1 s-  1 which we estimated in Section 2 and used in our calculations, 

is more compatible with the mean rigidity of  the Earth, as a whole which is of the 
order of 1012 dyn cm -2. 
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In conclusion, we can say that the terrestrial day will become constant and equal 
to about 650 hr, which is smaller by about 5 hr than the present sidereal month, 
in a time scale depending on the mean value of the viscosity of the Earth, when the 
Moon travels in an elliptic orbit. 

6. Discussion 

The aim of the present paper bas been to study the effects of viscosity on the future 
evolution of the Earth-Moon system. The matter of the viscosity in this problem is 
a complicated one, because the variation of viscosity of the material neither of the 
Earth nor of the Moon is known. Supposing that the viscosity is a function of the 
radius of each material point, we have constructed the differential equation for the 
angular velocity of each component of such a close system (Tokis, 1974a). 

Regarding the viscosity to be constant at the surface (or, for 'cold' celestial bodies, 
at the outer crust) of spherical bodies, or throughout the entire body in the case of 
spheroidal bodies, we then discussed the solution of one of these equations (Tokis, 
1974b). 

The application of this theory to the Earth-Moon system showed that the results of 
the spherical model of the Earth are the same as those for the spheroidal model 
(Figure 2). The times required for synchronism between rotation of the Earth and 
revolution of the Moon, and the variation of angular velocity in the next ten centuries 
from 1900 A. D. are again the same for the two models. These results were found for 
the values of viscosity of the Earth in the region of 109 g cm - 1 s - 1 and they vary with 
the viscosity (Figures 2, 6). On the other hand, the Moon is not affected by the varia- 
tion of viscosity (for values between 1024  g cm -1 s -1 and 1027 g c m  - 1  s - l ) .  

Moreover, the results for the Earth-Moon system remain approximately the same 
(Figure 2) when we solve numerically the previous equations with variable orbital 
elements (with the aid of the approximate Equations (58)-(60) of Paper II). 

Thus, the synchronism of the period of the Earth's rotation and the revolution of 
the Moon occurs at the value 650 hr, which is 5 hr less than for the case of a circular 
orbit. The time scale for this synchronism strongly depends on the value of the vis- 
cosity. There is a big difference between the results (Figure 7) for the values of viscosity, 
which are suggested for the Earth by astronomers and those suggested by geophysicists. 

The results of the present work indicate that the mean value of viscosity of the 
Earth should be of the order of 108g cm -1 s -~, because this value gives rise to an 
increase of the length of the day per century (Table VI) compatible with the value of 
1.8 x 10- 3 seconds per century which is obtained from astronomical observations over 
the past two centuries, as well as from palaeontological evidence. 

The general conclusion drawn from the present application to the Earth-Moon 
system at the theory of Paper I and II is that the value of the viscosity of the material 
of the Earth is a very important factor affecting phenomena arising from tidal friction 
and the rotation of the Earth; and, together with the separation of the Earth and 
Moon, the most important characteristics which determine the rate of tidal dissipative 
processes in this system. 
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