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Abstract. It is shown that the near-periodicity in the Earth-Moon-Sun system demonstrated by the 
possibility of using the Saros to predict eclipses, suggests that the Saros can also be used in a fast and 
accurate method of special perturbations which can be applied for long term study of the evolution 
of the Moon's orbit. 

1. Introduction 

The M o o n  in its geocentr ic  orb i t  is subject  to many  d is turb ing  forces, among  which 

are  the grav i ta t iona l  pulls o f  Sun and planets,  the depar tu re  of  the M o o n ' s  and  Ear th ' s  

g rav i ta t iona l  fields f rom those due to point-masses ,  t idal  effects and  so on. The ma in  

d is turber  is o f  course the Sun. A b r eak -down  of  the secular  rates of  mo t ion  of  the 

lunar  o rb i t ' s  apse and line o f  nodes,  t aken  f rom Brown 's  lunar  theory,  is instruct ive 

in this respect  (see Table  1). 

TABLE I 

Mean annual motion of Perigee Node 

Principal solar action + 146 426.92" - 69 672.04" 
Mass of the Earth -- 0.68 + 0.19 
Direct planetary action + 2.69 --  1.42 
Indirect planetary action -- 0.16 + 0.05 
Figure of the Earth -- 6.41 -- 6.00 
Figure of the Moon + 0.03 -- 0.14 

+ 146 435.21 - 69 679.36 

The ma in  lunar  p rob l em therefore  deals with the E a r t h - M o o n - S u n  system, taken  

as po in t  masses.  Everything else m a y  be added  later  in the form of  small  but  very 

numerous  correct ions.  F r o m  the t ime o f  Newton ,  many  people  have a t t empted  to 

p roduce  an analyt ica l  lunar  theory  capable  o f  predic t ing  the M o o n ' s  pos i t ion  to at  

least  the accuracy to which observat ions  cou ld  be made,  for  ephemeris  purposes ,  

for  the s tudy o f  the evolut ion  o f  the lunar  orbi t ,  for  geophysical  s tudy and towards  a 

comple te  unders tand ing  o f  how close to real i ty  Newton ' s  law of  grav i ta t ion  was. 

Newton ,  Euler,  Cla i raut ,  Hansen ,  De launay ,  Hill ,  Brown and Depr i t  have been a 

few who have p roduced  such theories,  Depr i t ' s  so lu t ion  o f  the main  lunar  p rob l em 

being achieved by  p r o g r a m m i n g  an electronic compute r  to ob ta in  an analy t ica l  

lunar  ephemeris .  

* Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on29 April 1973. 
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All of these theories have two common features - the large number of terms they 
contain and the need for selection of a zero order intermediate orbit. For example 
Brown's lunar theory contains 1500 separate terms. The number of terms required is 
dictated not only by the required accuracy but also by the choice of intermediate 
orbit and method of development. Most theories began with the equations of motion 
expressed in terms of  polar coordinates or functions of the orbital elements though 
Euler's theory of 1772 used rectangular coordinates, the x- and y-axes rotating with 
the Moon's mean angular motion. Similarly, Hill's theory utilised rotating rectangular 
coordinates but with the x-axis restrained to point at the Sun's mean position. A 
fixed keplerian ellipse, a rotating ellipse of fixed shape, a periodic orbit more com- 
plicated than either, have all been used at various times as intermediate orbits. 

In this paper we are interested in Hill's approach as the example of an intermediate 
orbit most similar to the one suggested below. Hill chose a periodic orbit which was 
a particular solution of two second-order differential equations in u and s, where 

u=X+iY ,  s = X - i Y ,  i = x / - 1 ;  

X and Y being the Moon's geocentric ecliptic coordinates, the X-axis always pointing 
to the Sun's mean geocentric direction. The independent variable ( was defined by 

-- exp (i (n - n') (t - to) } , 

where n' is the mean motion of the Sun about the Earth, t is time and t o and n are 
undetermined constants at that stage. 

Hill obtained these equations by neglecting the solar eccentricity e', the solar 
parallax 1/a', the Moon's  latitude Z and the lunar eccentricity e. The solution used by 
Hill as his intermediate orbit was expressed in Fourier series of (n - n ' )  t. The deviations 
of the real lunar orbit from this intermediate orbit were then developed analytically 
by Hill and Brown to give the lunar theory still used in preparing the lunar ephemeris. 

It  is our suggestion in this paper that a far better intermediate orbit can be found 
by considering the existence of the Saros. A method of special perturbations can then 
be developed that may well be superior to any standard numerical method that can be 
applied to the lunar problem in step-size, minimisation of error and computing time. 

2. The Saros 

The Saros, known to the ancient Chaldeans, is a period of time of approximately 
18 years 10 or 11 days (depending upon the number of leap years in the interval). 
At the end of a Saros, the geometry in the Earth-Moon-Sun system is repeated to a 
close enough extent that solar and lunar eclipses can be predicted from the occurrence 
of past eclipses at the Saros' beginning. Table II shows, for example, the values of the 
semidiameters of Moon and Sun during four eclipses, each set of four occurring in 
the years 1898, 1916, 1934, 1952, 1970. The eclipses were: 

(1) Partial eclipse of the Moon Date in 1970: February 21 
(2) Total eclipse of  the Sun Date in 1970: March 7 



(3) Partial eclipse of the Moon 
(4) Annular eclipse of  the Moon 
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Date in 1970: August 17 
Date in 1970: August 31-Sept. 1. 

TABLE II 
Semidiameter of Sun and Moon during eclipse 

Year 1898 1916 1934 1952 1970 

Date Jan. 7 Jan. 19 Jan. 30 Feb. 10-11 Feb. 21 
Moon 14'52':00 14'49':8 14"48'.'5 14'4753 14'46':8 
Sun 16'15'. '87 16'15'.'3 16'14'.'1 16'12'.'4 16'10':3 

Date Jan. 21 Feb. 3 Feb. 13-14 Feb. 25 Mar. 7 
Moon 16'24'.'30 16'25'.'4 16'27'.'3 16'29'./2 16'31'.'6 
Sun 16 '14 ' :83 16'13'.'5 16'11'.'6 16'09':4 16'06'.'8 

Date Jul. 3 Jul. 14 Jul. 26 Aug. 5 Aug. 17 

Moon 16'4Y:32 16'42'.'9 16'43'.'1 16'43'./2 16'43'.'9 
Sun 15 '43 ' :86 15'44'.'1 15'44':9 15'46'.'2 15'47'.'9 

Date Jul. 18 Jul. 29 Aug. 10 Aug. 20 Aug. 31-Sep. 1 
Moon 14'45'.'87 14'44':0 14'43."2 14'42'.'5 14'42'.'6 
Sun 15'44' . '36 15'45'./3 15'46/./8 15'48':6 15'50':8 

All four 's  characteristics were unchanged in the five years in which they occurred. 
In comparing the values of  the lunar semidiameter (and therefore its geocentric 
distance) from Saros to Saros it is seen how little it varies. The same is true of  the 
Sun's semidiameter even though the ranges within which both lunar and solar semidia- 
meters can vary are large (Sun: 15'45"-16'18"; Moon:  14'42"-16'44"). I f  we also take 
additional eclipse data from the respective NauticalAlmanacs and the 1970Astronomical 

Ephemeris concerning solar and lunar ecliptic longitudes (2) and latitudes (fl), and 
also the rates of  change of these quantities, we find that their values at the beginning 
of a Saros are very nearly repeated at the end of the Saros. Thus in Table III ,  data 
for the partial lunar eclipses of  1952 February 10-11 and 1970 February 21 are 
compared. In the Table the differences between the Sun and Moon 's  geocentric 
ecliptic coordinates during eclipse are tabulated for each eclipse. 

Suffixes M and S refer to Moon and Sun respectively, the dots denote daily rates 
of  change and a stands for semidiameter. 

One more example, not at an eclipse but taken at random in the lunar ephemeris 
is illustrated in Table IV. Again it is seen how closely the relative positions and 
velocities of  Sun and Moon are repeated after one Saros. The reason, of  course, is the 
interesting set of  near commensurabilities existing among the Moon 's  synodic period, 
its anomalistic period and its nodical period. From the Astronomical Ephemeris 
(1970) their mean values are: 

Synodic (S) 29.a530 589 
Anomalistic (L) 27.554 551 
Nodical (D) 27.212 220 
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Then, as is well-known 
223 S = 6585~3213, 
239 L = 6585.5377, 
2 4 2 D =  6585.3572. 

The close agreement ensures that the geometry of the Earth-Moon-Sun system at 
any epoch is almost exactly repeated one Saros later. When the Moon's elongation is 
repeated at the end of the Saros its argument of perigee and true anomaly also have 
very nearly the same values as before. In addition, because the Saros length is only 
10 days longer than 18 yr, the Sun is almost back to its original true anomaly and 
length of radius vector. Thus the closeness of the fit is not only in position but in 
velocities as well. 

It should also be noted that within any Saros, the perturbations of the Sun on the 
Earth-Moon system almost completely cancel themselves out, in particular the large 
disturbances in semimajor axis, eccentricity and inclination. 

It is perhaps easiest to see this if we take the situation at the beginning of a Saros to 
be such that full Moon happens when the Moon and the Sun are at perigee, the Moon's  
latitude being zero. Then the velocity vectors of the Sun and Moon are perpendicular 
to both the radius vectors. This is a mirror condition and by the mirror theorem, (Roy 
and Ovenden, 1955) the history of the system after that time is a mirror image of its 
history prior to that time. 

But 9 years and approximately 5 days later, a new mirror condition occurs very 
nearly - a new Moon, Sun within 6 ° of perigee, Moon at apogee, Moon's  latitude 
zero. The velocity vectors of Sun and Moon are very nearly perpendicular to both 
the radius vectors. If  this second mirror configuration were exact, the Moon's  orbit 
would be exactly periodic, returning at the end of the Saros to a repeat of the first 
mirror configuration so that the perturbations built up in the first half of the Saros 
would have been cancelled completely in the second, the only result being that the 
sidereal position of the line of nodes of the Moon's  orbital plane would have regressed 
approximately 11 °. 

As it is, the Moon's  orbit under solar perturbation is very nearly periodic in a 
period of length one Saros, the close repetition of the geometrical properties of 
solar and lunar eclipses being the outward manifestation of how closely the system 
Earth-Moon-Sun approximates to a purely periodic motion. All other perturbations 
(planetary, tidal, figures of Earth and Moon) are very small indeed. 

According to the present viewpoint, therefore, by far the best reference orbit for 
dynamical study of the Earth-Moon system would be the set of geocentric positions 
of Moon and Sun from the previous Saros. 

3. Procedure 

Let the Moon's geocentric equation of motion be 

i ~ = - #ru + F,  (1) 
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where r is the Moon's  geocentric radius vector, # = G(m e + m O, u = r -3 .  G is the 
constant of gravitation, rn .  and m( are the masses of Earth and Moon respectively 
and F is the acceleration due to the perturbing effects of Sun, planets, shape of Earth 

and Moon, tides, and so on. 
Let r be almost periodic in a time interval T (one Saros) and let suffix n refer to a 

value of r or any other variable anywhere within the nth time interval, i.e. nth Saros. 

Define r', by 

r n = r . _ l  + r '  n. 

Introduce the general difference formula 

• _ ( i + 1 )  i O, 1,  . . . ,  n 1 r(. ') = r( .°- i  + "n , = 

w h e r e  (i) denotes the i-th difference. 
Then it is easily seen that 

n - 2  

r. = Z r(.°-i + r(. "-2)" (2) 
i = 0  

Also 

r . = r i +  i r; 
i = 2  

o r  

n - - 1  

r.= Z 
i = 0  

Now by Equation (1) 

r 2  = F2 - -  f l r z u 2  ; 

rl  = F1 - pr lu l  ; 

Let 

r,o = r,O_l + F, ,+.  } 
. (i) , r i o  . ( i + 1 )  
Un " n -  1 + Un 

Then, substracting (5) from (4), 

(3) 

U 2  r 2  3 = - , ( 4 )  

u l  = r i  3 (5) 

i = 0 , 1 , 2  . . . .  , n - 1 .  

. .! ! ! 

Similarly, 

• .!  ! t t 
r3 = F 3  - f l  (r2u3 + r3u3), 

giving, on substraction 

. , i t  vt ! v t t  

r3 =F3 -#(r~u~ +2r2u3 +r3u3). 

Hence, in general, 

(6) 
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n - 1  

Z "-'C, J"- i - , )  , 2 .  - r.- i  (7) 
i=0  

Rewriting (2) and (3), we have 

n - 2  
r. : Z r~i)-i + r~ n - l )  (8) 

i=O 

and 

n - 1  
n - , . ( 0  rn = ~" 1Ci - i+ 1. (9) 

i = O  

Equations (7), (8) and (9) form the set of equations for the problem. 
The procedure may be sketched as follows. 
During the first Saros cycle, Equation (7) with n = 1 is integrated numerically by 

some standard procedure. The step lengths will be of order a few hours at most. The 
positions and velocities are stored. 

During the succeeding Saros cycle, Equation (7), with n = 2 is integrated numerically, 
use being made of the positions and velocities of Saros 1. Equation (9) is also used. 
Because of the almost periodic nature of the Earth-Moon-Sun system's geometry 
in a Saros period, it is to be expected that in this cycle of numerical integration, the 
step-lengths will he much larger. It may be remarked that in this cycle the method is 
essentially an Encke-type procedure except that the reference orbit is not a fixed 
keplerian orbit osculating with the real lunar orbit at some epoch and subsequently 
computed from the usual two-body formulae but is much more efficient since it in- 
cludes to a high degree of accuracy solar perturbations. 

For the third Saros cycle, Equation (7), with n = 3, is integrated numerically, use 
being made of the positions and velocities stored from the first two Saros periods. 
The step-length may be increased still further. Indeed by proceeding to this and higher 
differences, we may expect the real power of the method to be realised. 

It is hoped to publish elsewhere in detail numerical studies of the above procedure 
in which consideration is given to such questions as to what order in n it is practicable 
to take the differencing to, at what order loss of accuracy sets in appreciably, and 
so on. It seems likely, indeed, that the law of diminishing returns must set in when 
the value of r~"-i) becomes so small that it is of the order of the non-solar perturba- 
tions. But as seen from Table I, these are very small so that there are good grounds for 
hoping that by a procedure of this kind, the main lunar problem may be accurately 
'subtracted out' allowing really long timescale study to be made of such questions as 
the evolution of the lunar orbit under tidal effects. 
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