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Summary. Let X, X,,... be L.id. random variables in the domain of attrac-
tion of a stable law G, and denote §,=X,+...+X,, L, A4)

n-—-1
=n""Y x4(S;/a(n), where the real sequence a(n) satisfies a(n)~'S,—G.
j=0

Large deviation probability estimates of Donsker-Varadhan type are ob-
tained for L, (w, ), and these are then used to study the behavior of “small”
values of (S,/a(n)). These latter results are analogues of Strassen’s results
which described the behavior of “large” values of (S,/a(n)) when the limit
law was Gaussian. The limiting constants are seen to depend only on the
limit law G and not on the distribution of X ;. The techniques used are
those developed by Donsker and Varadhan in their theory of large de-
viations.

1. Introduction

Let X,,X,,... be real-valued independent identically distributed (iid.) random
variables and let

S,=X,+..+X,; S,=0 (1.1)

F will denote the distribution function of X,. We assume throughout this
paper that F is in the domain of attraction of a stable law G of index o,
0<a=2, which has a strictly positive density and satisfies the scaling property.
The scaling property requirement rules out certain asymmetric situations, when
o=1. Under our conditions we have

Sﬂ
a(n)
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=G as n—ow (1.2)
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118 N.C. Jain
where a(n)=n'"*I(n), | being a slowly varying function and “=" denotes the
weak convergence of the corresponding measures, i.e. for any bounded con-
tinuous function f on R (the real line)

lim ELA(S,/a(m)] = [f»dGw).

We will always use this arrow symbol in this sense.

y,(®), t=0, will denote the stable process on R of index a with y (1) having
the distribution G. It should always be understood that y, has sample paths in
D[0, o0), the space of real-valued functions on [0, c0) which are right-con-
tinuous and possess left limits. For h>0, D[0,h] will be considered as a
separable metric space with the Skorohod metric. The process y, has the
scaling property: for ¢>0, the process ¢~ **y(ct), t=0, has the same finite
dimensional distributions as y,(t), t=0. For a=2, the process is a constant
multiple of a standard Brownian motion process, and in this case we will use
the normalization that G has variance 1, so that the constant multiple is
actually 1.

Donsker and Varadhan [8] use their powerful theory developed in [4]-[7]
to prove a class of results for a stable process of the above type (actually, they
assume symmetry which is not necessary). These results are analogues of the
well-known invariance principle for Brownian motion due to Strassen [13].
Strassen’s results deal with “large values” of the process and hold only in the
Brownian motion case whereas the results of Donsker and Varadhan deal with
“small values” of the process and hold for not just Brownian motion but all
stable processes of the above type. For a discussion of this see Sect.4 [§],
p. 751, keeping in mind that the Brownian motion in [8] has variance-2 at
time 1.

In [13] Strassen also obtains results corresponding to Brownian motion for
sums of iid. random variables which are in the domain of normal attraction
of N(0,1), ie. for which
S
—nﬁ:N(O, 1). (1.3)
For comparison purposes we state some of Strassen’s results here. Under (1.3)
he shows that for a>1

1

17z
P [lim sup- Y. I18;1*/(nloglogn)** = Ga] =1 (1.4
n j=0

where 0, is evaluated explicitly in terms of a. He also shows

P[limsupv,=1—exp(—4(c *—1))]=1 (1.5)

where
n—1

1=
V"=; Z X(c,oo)(Sj/(zj IOg logj)llz)
=4
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for any ¢, 0=c<1. Here y,(x)=1(0) if xeA (x¢A4). To obtain these results the
important tool is the Skorokhod imbedding technique.

Our aim here is to obtain analogues of these results for “small values” of
the partial sums under the condition (1.2). To obtain our results we rely very
heavily on the techniques and results of Donsker and Varadhan [4]-[8].
However, the exposition here is reasonably self-contained. Before we describe
our results one more result needs to be introduced, the Chung type law of the
iterated logarithm. Let

A,= max [S] (1.6)
1<j<n
and for t 216 a
b(t)=[t/loglogt] (L.7)

where [x]=greatest integer <x.
It was shown in [10] that under (1.2) there exists 0 <¢< oo such that

lim inf A,

C)
n o a(b(n)
Although the conditions imposed on G in [10] are more general than in (1.2),
the method of proof there does not tell us whether the constant ¢ depends on
F or just on G. Only under (1.3) it was later shown [11] that czn/]/g, same
for all F. In this connection it is useful to mention the analogue of (1.8) for a
stable process. Assume that G satisfies our conditions and define

Aa(t)=sgrt> [V ()] (1.9)

(1.8)

Then it was shown by Chung [3] that for «a=2
hm 1nf )1/2 —n/ ,  a&S. (1.10)
and, more generally, by Taylor [14] that for 0<a <2

liminf 2~ 4,1

m infy o T =cg, as. (1.11)

where O0<cgz<oo. The result in (1.11) is also derived in [8], but here the
advantage is that ¢, is identified in terms of the I-functional of the process (to
be introduced in the next section). With this introduction we can now describe
some of our results.

The sequences a(n) and b(n) have been introduced above. We will denote

c(m)=a(b(n)). (1.12)

In the theorems below we assume that (1.2) holds and G satisfies our
conditions.
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Theorem 1.1. For ¢>0 there exists a constant k_ , such that a.s.

n—1

. 1
lim sup Y Zo.qUS l/cm) =k, . (1.13)
n j=0

and for cZcg the constant k, ;=1, where cg is the constant in (1.11).

Theorem 1.2. Let A, be defined by (1.6), then

lim 1nf—A——cG, as. (1.14)

c(n)

where cg is the constant in (1.11).

This theorem tells us, in particular, that if instead of (1.3) we have

S
__r 0 r
7% I(n) =N(0,1), (1.3)
ie. F is in the domain of attraction of N(0,1) and could have infinite variance
((1.3) implies that F has variance 1) then

limn ian n//8, a (1.8)
This, of course, includes the result of [117] but the methods of that paper do
not appear to be adequate for the identification of the constant in (1.8").

Theorem 1.3. For a>0 there exists a constant A, ; such that a.s.

-1

hm mf Z (1S;l/c(m) =4, (1.15)

10
A, ¢=(cg)” in view of Theorem 1.2.

It is shown in [8] that A4, G—1/4 if G= N(O 1). The constant 0, in (1.4)
corresponding to a=2 equals 8/n

It should be noted that the results of Sects. 3-5 are more basic and the
above theorems are only their applications obtained in Sect. 6. Theorem 1.3 is
a special case of Example 6.2 in Sect. 6. The notation introduced here will be
used throughout; more notation and some preliminaries are given in Sect. 2.
Sections 3 and 4 contain the basic results leading to theorems in Sect. 5.

2. Preliminaries and Notation

We will denote

@ =Class of real-valued Borel measurable functions u on R such that
O<a<u<b<oo, where a,b depend on u;

9, = continuous functions in %;
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U,=members of %, for which lim u(x) exists;
%, =members of %, such that thrzconstant outside of a compact set;
9, = infinitely differentiable members of %;.

2 will denote Borel subsets of the real line R and for xeR, AeB, n(x,A)
will mean a transition probability function, ie. n(-,4) is a Borel measurable
function for each Ae#%, and n(x,+) is a probability measure on % for each
xeR. 7w will be called a Feller transition probability function if =f(x)
={f(y)n(x,dy) is a bounded continuous function whenever f is a bounded
continuous function.

If v is a measure on # and f is a Borel measurable extended real-valued
function we will write

V()= 1) v(dy) 2.1)

whenever the integral makes sense. Thus we will also write n(x,f) in place of
7f (x).

Following the notation in [8] we write
M =Subprobability measures on (R, %),

A = Probability measures on (R, %),

and for = a transition probability function and yeM we denote by I(y) the I-
functional corresponding to 7 given by

. ]
I(y)=— lanflog (7) (x) u(dx). (2.2)
As noted in [8], % can be replaced by %, in (2.2).

Lemma 2.2 shows that if 7 is Feller then % can be replaced by %, in (2.2)
and Lemma 2.1 is proved to prove Lemma 2.2.

Lemma 2.1. Suppose n is Feller. Let a be a fixed constant. Then given >0,
there exists K compact such that sup n(x, K)<e.

|x[<a

We always write A° to be the complement of the set A.

Proof. Let K,TR, K, compact, and let f, be a (pointwise) decreasing sequence
of continuous functions such that 0=f, <1, f, =0o0n K,, f,=1 on O, where O,
is a bounded open neighborhood of K,. Then zf,|0 pointwise and since nf, is
continuous, the convergence is uniform on compacts. Therefore sup nf, (x)<e

_ |x|=a
and so sup n(x, 0, )<e for some n,,.

Ix|za

Lemma 2.2. If n is Feller, then for yeM

()= — inf [ log (”—u‘f) () u(d). 2.3)

ues

Proof. Let I'(u) denote the right side in (2.3). Clearly I(x)=1I'(u). To see the
reverse inequality, let ¢>0 and suppose that I(y)>c. We will show that then
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I'(p)>c. By definition of I(p) there exists uy,e%, such that

~J1og (72 e ptd) > 04
Hence there exists a>0 such that
j" log ( )(x),u(dx)>c (2.5)
IfO0<a,Suysh, <, we can—pick a larger so that
o |§< log ( )(x)u(dx)* (10g )u[x:|x1>a]>c. (2.6)

Now define u, such that u,e%,, u,(x)=uy(x) for |x|=<y, where y>a will be
picked suitably, and a, Su, <bh,. Then

|mue(x) —mu, (x)|=£2b, | =n(x,dy). 2.7
Iyl>v
For |x|<a, by Lemma 2.1, we can pick y so large that the right side in (2.7) is
small enough so (note that u, (y) =uy(y) for |y|<a) that by (2.6)

- log( )(y)u(dy)>c+10gb—#[|yl>a]

[y|Za

which shows that
—[log ( )(y)u(dy)>c

We also define the I-functional for the stable process y, () with infinitesimal
generator L as in [8]. This will be denoted by I,. For ueM

To( = = int [ (2) (o (. 25)

uey

If h>0, let
" (x, 4)=P[x+y,(heAd]

= P*[y,(heAl. (2.9)

Then n® is a Feller probability transition and I,(u) will denote the I-function-
al given by (2.3) corresponding to n™. The dependence on G will be clear from
the context and will be suppressed.

Finally, on M we will use the topology of vague convergence under which
A,—A means [fdi,~[fdA for each continuous function f with limits 0 at
+o0, and on . the topology of weak convergence under which A,—1 means
[fdA,—{fdA for each bounded continuous function f. Vague (weak) neigh-
borhood of a member of M (.#) will have the obvious meaning,.
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3. An Asymptotic Upper Estimate
The main result of this section is Theorem 3.2. Theorem 3.1 may be of some

independent interest; it facilitates the proof of Theorem 3.2.

Theorem 3.1. Let (k,) be a strictly increasing sequence of integers and for nz1
let y@,yP,...,y¥_, be a Markov process with state space R and stationary
transition probability function w,. Assume

w, is Feller, n=1; (3.1)
n,(x,*) = n(x,*), x€R, where 7 is again Feller; (3.2)
if ued,, n,u(x)—nu(x) uniformly in x; and (3.3)
|llim (ru/u)(x)=1 for ue,. (3.9

For Ae4, define

Lio. A= 5 1,0§'0) (.5
and for B a Borel subset of M (vague topology)
0, «(B)=P*[L,(w,")eB]. (3.6)
Then, if C is a vaguely closed subset of M, we have

1
lim sup = logsup@, (C)= —/ilngl()u), (3.7

where I denotes the I-functional of = defined by (2.2).
Proof. Let ue, and let
V,=m,u, exp(—W,)=uV,~'

W, is a real bounded continuous function on R. Using induction and the
definitions we have

E* [V, (%, _ )exp{ = (W,(Yg") + ... + W, (L )} =u(x).

From this we conclude that for all xeR

E” [exp{——kian(Yj("))}] <c<w (3.8)

where ¢ depends only on the bounds of u. Thié inequality is the same as (recall

(2.1))

EX[exp{—k,L, (o, W)}]=c.
Therefore
E*[(exp{—k, L, (w0, W)}) X[ Ln(o, -)ec]] Zc
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and we get
0, -(C)[exp{—k, iugi(VH)}] <

This last inequality is the same as

Q,,<(C)=cexp{k,sup A(W))}. (3.9)

Since the right side in (3.9) does not depend on x and W, =log(rn,u/u), we get

1 1
- logsupQ, .(C) S—==+sup log(r, u/u)(3) A(d). (310
n x n AeC
Now using (3.3) we get
1
lim sup k—log sup@, (C)= sup [log(ru/u)(y) A(d y). (3.11)
n n x AeC

Since the left side in (3.11) does not depend on u, we can take the inf in ue%,
on the right side. We thus obtain for a vaguely measurable subset C of M

lim sup K log sup Q,(C)< inf supjlog(nu/u)( ) A(d y). (3.12)

usYs AeC

k
If C= | C,, then the left-side in (3.12) is dominated by
=1

max lim sup — K log sup 0,.:(C)

15k n
and therefore the right-side in (3.12) can be replaced by the expression
inf max inf sup(log(ru/u)(y) A(dy), (3.13)

1£Ljsk ueUs AeCjy

where the first inf is over all measurable C, ..., C, whose union contains C.
Denote the integral in (3.13) by H(u,A). For ue,, log(ru/u) is a continuous
function and by assumption (3.4) it tends to O as |x|— oo, therefore for a fixed
ue%, the function H(u,A) is continuous in A If C is compact, then we will
show that the expression in (3.13) is dominated by

sup inf H(u, 4) (3.14)

AeC ucs

and this will prove the theorem via Lemma 2.2. Let the quantity in (3.14) equal
I < oo (otherwise there is nothing to prove). Let >0, then by the continuity of
H in A, given A there is a neighborhood N, of 1 and a u, such that H(u,,v)<I
+¢ for veN,. Using compactness of C we conclude that there exist N, ,...,N,,
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k
open subsets of M, such that | j N, = C and
j=1

max inf sup H(u, )Sl+e,
1ZjSk uelYy ZeN;LJ.
which is what we had to show.

In the following d(n).” oo and k(n).” oo denote positive integer sequences
and

r(ny=d(n) k(n). (3.15)

One should think of d(n) as the block size and k(n) as the number of blocks.
For Ae#, we define

riny—1

B, A)=— Y 14_.(5;(@)a(d®)), (3.16)

r(m <o
where a(n)=n'/*I(n), as before. For x=0 we simply write L (o, 4).

Theorem 3.2. Let X |, X ,,... be iid. random variables satisfying (1.2). Then for a
vaguely closed subset C of M we have

. 1
lim sup ——

logsup P[[:(w, -)eC1 £ —infI4(4) (3.17)
n k(ﬂ) x AeC

where I4(2) is given by (2.8).
To prove the theorem we will need the following lemma.

Lemma 3.3. If ue, and p,= 11, i, i in M, then

fux+y) (@ y)=fulx+y) pdy)
uniformly in x.

Proof of the Lemma. Since u is bounded and p, = g it is enough to show that
for a>0

| | ux+ypldy— | ulx+y)pdy)]|-0 (3.18)

[yisa yisa

uniformly in x, and a can be picked so -a are continuity points of u. Let c>a
be so large that for |y|<a, u(x+y) is constant for |x|>c(ue,). It is thus
enough to consider |x|<c. Let >0 be given. Since u is uniformly continuous,
[~c,c] can be partitioned —c¢=x,<x,<...<xy=c¢, N depending on e, so
lu(x"+y)—u(x"+y)|<e for x, x” in any closed subinterval of the partition and
all y. If xe[x,, x;, , ], then writing I=[y:|y|Za]

1§u(x+y) un(dy)—iu(xw)u(dy)i §l§(u(X+y) —u(x; + ) 1, (dy)]

+ lgu(fory) un(dy)—gu(wry)u(dy)l +l£(u(xg+y)—u(x + 1) udy)l.
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Each of the first and the last terms on the right is <¢, and the middle term
tends to O as n—oo. Therefore there exists n, depending on N (hence on &
only) such that for n=n, the right side <3¢ This finishes the proof.

Proof of Theorem 3.2. Let h >0, and define
dm=[hd(n)], Kn)y=[r(n)/dm]+1

and
Jm=[j:(k—1)d'(n)<j<kd [n)].
Also, let
VAU ENDY X adm), 1=sksk(n)-—1, iz0, (3.19)
JeJx(n)
and for n=1, let
m,(x, A)=P[x+ Y"(0)e4]. (3.20)
For xeR we have
7,0, ) = 1™ (x, ) (3.21)

where
1™ (x, 4)=P*[y,(h)eA].

The transitions 7, and n™ are easily seen to satisfy conditions (3.1), (3.2) and
(3.4) where ™ plays the role of n. Lemma 3.3 shows that condition (3.3) is also
satisfied. Now let ue%, and let exp(— W,)=u/n,u. As in the proof of Theo-
rem 3.1, for i20, n= 1, we have (Y{())=0)

E* [exp { - (kir{; 1 WY@ +...+ Y,‘"’(i)))}] <c

where ¢ depends only on the bounds of u. Since this holds for all x, we can
replace x by x+(S,/a(d(n)) to conclude that

k'(ny—1
E* [exp{— Y W,,<Z£")(i>)}] <c
r=0
where we write

ZP3) = Sy oy +i/Ad(n).

By Jensen’s inequality

B [exp{—a,—tn;w:’fl (kl(%:VK.(Zﬁ")(i»)}]

i=0 r=
1 dm~1 K (m)—1 ( ()
<FE* [,— exp{ — W(ZP( ]§c.
d'(n) i=zo p{ rgo ( )}

Since W, is a bounded function and the incomplete block consists of no more
than d'(n) terms, we have

1
E [GXP{—M(M(SO/GM(H)H ot W(Srm_l/a(d(n)))}] =¢ (322
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where ¢, again depends only on the bounds of u. Let ¢(n)=r(n)/d’'(n). Then
(3.22) is the same as

E[exp{—o(n) L;(w, W)} <c,. (3.23)

Now following the proof of Theorem 3.1 we get

hlim sup k( ) log supP[L"( -)eC]= —infl,(4), (3.24)
reC
where [, is given by
. M u(x)
()=~ inf flog ( e )xl(dx). (3.25)

We have thus shown that for C a closed subset of M,

1 .
lim sup W logsup P L (w,*)eC] < — IiI}l‘l S(l).lp /ilng(l W(A)/h). (3.26)

If ue, and L is the infinitesimal generator of the process y,(f), then

7™y

L
=1+h7u+o(h)

where o(h) is uniform in x. From this we get

j. o (n"‘) u(x)

)/l(d )= | ( )(x)ﬂ(dx)—l—o(l)

where o(1) is uniform in 4 as h—0. Taking the sup over ue%, on the left side
we therefore get

LYz -] ( ) (0 2dx) 0,0

for every ue#,, where ¢,(u) depends on u and tends to 0 uniformly in 4 as h—0
(u fixed). Therefore,

lim sup inf(1,(4)/h) 2 — inf ( ) () A(dx)

h—0 AeC
for all ue%,. Since the left side does not depend on u, this implies

lim sup inf(1,(4)/h)= — inf sup | ( )(x)/l(dx) (3.27)
h—0 AeC

ue@a AeC

This and (3.26) give

lim sup k—(—)log sup P[ L (w, -)e C]1 < inf sup | ( ) {(x) Adx). (3.28)

ue4 AeC
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k
Ifce|)C » C; closed in M, then the left-side in (3.28) is dominated by

=1

max lim sup ——
1gisk  n k(

) log supP [E (e, *)e C;]
and then by (3.28) we get

lim sup K(n )log supP[L’C (w,)eC]

< inf max inf supf( )(x)i(dx) (3.29)

<j<
Ce Ucl LSk ueUy LeCj

j=1

Let H(u, /) denote this last integral, which is continuous in 4 for each ue,
because (Lu/u)(x)—0 as |x|—oc0. The rest of the argument is the same as in the
proof of Theorem 3.1 except that we should take N,’s to be closed neigh-
borhoods to show that

inf max inf supj( >(x)/1(dx)<sup 1nf§< )(x)/l(dx)
Cc U C 1=k ueUq AeCj u AeC uedly
C; él;lsed
and since the right side equals —inflg(4), this together with (3.29) implies
(3.17). AsC

4. An Asymptotic Lower Estimate

Let d(n) and k(n) be nondecreasing positive integer sequences tending to oo,
and let r(n)=k(m)d(n) as in (3.15). The main result of this section is Theo-
rem 4.1 which is an analogue of Lemma 2.12 of [8].

Theorem 4.1. If § is a probability measure on R such‘that Bi{x:|x|ZLa}=1and V
is a weak neighborhood of B in M, then for a’>a>0 we have

lim 1nfmlog inf P[Lx (w,)eV;|x+(S;/aldm) =

fx|=a

0gj<rm—13z —16(p), (4.1)

where IZ is defined by (3.16) and I; by (2.8).
The proof of this theorem depends on the following theorem which is a
restatement of Lemma 2.12 [8]. First we need a notation.

Lo, A)=%£XA(yu(s, w))ds, AeAB. 4.2)
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Theorem 4.2. If f§ is a probability measure on R such that f{x:|x|<a}=1and V
is a weak neighborhood of B in M, then for a’ >a >0 we have

1
lim inf—log inf P*[L,(w,*)eV; |y, ()| <a’,0<s<t]= —15(h). 4.3)
t—00 |x|<a

What we actually need is the following corollary of Theorem 4.2

Corollary 4.3. For f and V as above and 0<a<a' we have

1
lim inf-log inf P*[L(w,}eV;|y, ()| Sa,0<s<t;

twoo L |x|£a
vl 2alz —Is(h). (4.4)

Proof of Corollary. Without any loss of generality we may take

V={ved:||f,dv—{f,dpl<e1<i<k} (4.5)

where f,, 1 i<k, are uniformly continuous bounded functions on R. Then

L @)~ L fyis e 46)

and the upper bound tends to 0 uniformly in w as t—o0; it follows that there
exists ¢, (independent of w) such that L, ,(w,*)eV, implies L,(w,)el, when-
ever t >t,, where

={ved:|[f,dv—[fdBl<e/2 1 i<k} (4.7)

Therefore, if t=t, then by the Markov property the probability in (4.4)
dominates (a <a”’ <a’)

P*[L, (o, ")eVi; |y, ()l <a”,0=s=st—1].
inf P[]y, (s)|<d,0<s<1,|y,(1)| a]. (4.8)

lz|ga

The second quantity in (4.8) is positive since G has strictly positive density.
The corollary now follows from (4.8) by applying (4.3).

Proof of Theorem4.1. Let V, be given by (4.7). For 6>0 we pick a large
positive integer h so by Cor. 4.3, with a<a” <d’
inf Px[Lh(wa .)eVl > |,sz(5)| :<:a”7 O§S<h7
x| <a
ya(W SalZexp{ —h(I5(5)+)}. (49)
Let
dm)=hdn), Kk®n)=[rn)ydw]+1. 4.10)
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The idea is to work with blocks of length d'(n), so there are k'(n) blocks, the
last one being possibly incomplete. The event

k’(ﬁ—l[ 1 ‘“% 1f( rd(n)+1) ~{fidBl<e 1<i<k;

=0 d'(n) j= a(d( )
M , Sr+1)d n
i | S 0SSO s <ol

is contained in the event A which occurs in (4.1). Therefore, by using the
Markov property we see that inf P(A}) dominates

|x|<a

d'(n)—-1
{@iipﬂdon,z i awom) ffd4<81<,<k
Saw_

S k' (n)
(4.11)
P a(d(m) wméﬂ}'

We now claim that the quantity within curly brackets in (4.11) has lim inf
larger than the quantity on the left side in (4.9). Assume this claim for the
moment. Then

=d,0=m<d' (n);|x+

lim 1nfmlog inf P{A;]1= —h(I;(B)+9).
|x]Za

Since hk'(n)~k(n) as n— o, we get

lim 1nfmlog inf P[AZ]Z —(I4(B)+9)
|x]Za

and §>0 being arbitrary, the result follows. We now establish the claim made
after (4.11).
Define Y,(t), 0=t<h, n=1, as follows.

I T U L S
Yn(t)—a(d(n)), d(n)§t<d(n), 0=j<hd(n),
Y, ()= b

a(d(m)
The sample paths of Y, lie in D[0,h] and each Y, is a process with independent
increments. By Theorem 5 [9], p. 435, it readily follows that
Y, =y, 4.12)

in the sense of weak convergence of measures in D[0,2]. By a theorem of
Skorohod [12] we can construct a probability space on which ¥, n>1, and 7,
D[0, h]-valued random variables, are defined with the distribution of ¥,(7,) the
same as that of Y™ (y,) and such that as n— o0

Y-y, as. (4.13)
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The convergence in (4.13) is in the Skorohod metric in D[0,4]. Since j, is a
stable process without fixed discontinuities, we assume that j, is a.s. con-
tinuous (from the left) at A. It then follows from (4.13) that

Y.(h-73,0h), as. (4.14)
The following lemma will now be useful.

Lemma 4.4. With Y, and 7, as above, f a bounded uniformly continuous function
on R, as n— oo

f‘[f(x—i- f’,,(t))dt—»?f(x—i—fa(t))dt, as., 4.15)
and ’

sup [x+ Y, ()— sup [x+ 7,00, as., (4.16)

0<t=h 0<tZh

where the convergence is uniform in x in (4.15) and (4.16).

Proof of the Lemma. Let I' be the set of all continuous, increasing, functions 4
on [0,1] such that 1(0)=0, A(1)=1. Then

ISUtlp Ix+ ¥, —sup |x + 7,0 =|S'§p |x + f’n(/l(t))l—sgp Ix+ 7,0
<infsup [(x + ¥,(A(1)) — (x + 7,(5)| >0

as n— oo, uniformly in x, which proves (4.16). By (4.13) we have as., 4, (w)el’
such that
sup | Y, (2, ) = 7,(4, (1), )| -0 (4.17)
t

and
sup |4,(t) —t]—0. (4.18)
t

Therefore

h h
gf(X+ ﬁ(t))dt—ff(xﬂLy”a(t))dt

S TS+ T (0) = (4 7o (2, (0) |dt+£|f(x+J7a(/1n(t)))—f(X+ia(t))ldt,

O'—;:‘

since f is bounded and uniformly continuous, each integrand on the right
tends to O a.e. () boundedly (note that y, is continuous a.e.), so each term
tends to zero; the uniformity of convergence in x is clear.

Now let

h h
L (o, A)=h" [y (x+¥,@)dt  and Ly(w,A)=h""[y,F,0)dt
0 0

By Lemma 4.4, (4.14), and the fact that j, (h) has a continuous distribution, we
conclude that if a<a”’<a’ and V] is given by (4.7), then

lim inf inf P[L; (v, e Vs [x+ F,(9| £a, 0S5 <h, [x+ ¥, (W) <a]
n |x|<a

2 inf P*[L,(w,")eV};17,(9)| Sa”,0<s<h, |§,(h)| Sal.

Ix|=a
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This is clearly the claim we made, because

By o) =, 11 6+ T, 00 d

lhd(n) 1d 1f S
(n)~ (x + )
Z a(d (n))
This establishes Theorem 4.1.
We now use Theorem 4.1 to prove the following analogue of Theorem 2.15

[8].

Theorem 4.5. Let f§ be a probability measure on R such that B{x:|x|<a}=1 and
I:(p)<1. Let V be a weak neighborhood of B in M. Then for ' >a

P[L,(w,)€V; max |S/c(n)| a’;io]=1, (4.19)
RESEN
where

L@Ayﬂzmmww (420

and c(n) is given by (1.12).
We need the following lemma for the proof of this theorem. Let y>1 be
such that yI,(f)<1 and let

Ja=Tlexp ()], (4.21)
and
@(n)=b(j,) /b (j,)]- (4.22)
Lemma 4.6. We have
lim( max [S;|/c(j,))=0, as. 4.23)

n 0sjZe(n-1)

Proof. By a lemma of Skorohod (Lemma 3.2 [2], p.45) we have for >0

P[ max |Sj|>28c(jn)]§

0z2jso@m-1)

1
—¢ PlSe@-yl>ec)]l, (4.24)

n

where
¢,= max P[I§;|>ec(j,)]. (4.25)

0=jZ2on-1)
If 0 <o’ <o (the stable index is «), then by Theorem 6.1 [1]

lim E|S,/a(m)|* =E |y, (1) < co. (4.26)

Since (p(n)~ I al@(n—1))/c(j,)—0, and (4.26) easily implies that ¢,—0. There-
fore it is enough to check that ZP[|SW nl>ec(j,)] <. By (4 26) we have by
Cebysev’s inequality

PS> c(j)]=const. {9(_(2%}“
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This upper estimate is easily seen to be summable in n. The Borel-Cantelli
lemma then implies (4.23).

Proof of Theorem 4.5. We take V as in (4.5), and let

B,=[L,(, *)eV; max |S;/c(n)|=d].

O0Zj<n

If j, is given by (4.21), we will show
P[B; io.]=1.
To make the events independent, let
. 1 ew-1 .
Lj,,(w: A)=—- Z XA((Sj_S(a(n~1))/C(Jn))J
M) j—pam-1)

where ¢(n) is given by (4.22), and define

gjn:[f‘jn(w: evy; max |(Sj—_S(p(n-1))/C(jn)léa”]a

em—1)=j<pn)

where ¥, is given by (4.7) and a<a”<da'. Since ¢(n)~j, and (¢(n—1)/p(n)—0,
by Lemma 4.6 we conclude that for almost all w, n sufficiently large, if B;
occurs, then B; occurs. Therefore, it suffices to prove that

P[B, io]=1. 4.27)

The events B 5, are independent, so by Borel-Cantelli it suffices to prove that

Y P(B;)=c0. (4.28)
Now
. o —pm—1)—1
P(B.)=P [— S8 /e(G eV max |S./c(jn|§a”].
( Jn) o) j;o X()( J/ (e ozic ol iy )
Let

={ved:|[fdv—[fdBl<e/4, i=1, ...k}

If k(n) is chosen to be [n/b(n)], then o(n)—e@n—1)—1~pm)~k(j,)b(j,)~j, It
follows that for n sufficiently large, writing r(n) = k(n) b(n), we have

r(jn) —1
P(B;)zP [ 1 Z X(8i/cl,)eV,;  max ISj/C(f,.)léa”]. (4.29)
rUn) = 0Zj<r(jn}
We now use the estimate of Theorem 4.1 given in (4.1), with b(n) playing the
role of d(n) in this estimate, to conclude that if >0 is picked so y(I4z(f)
+0)<1, then, for all n sufficiently large, the right side in (4.29) dominates
exp { —k(j,)(I5(B)+ )} ~n~"Uc®+3 This completes the proof of the theorem.
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5. Important Corollaries

We use the topology of vague convergence in M. Closures in M will be with
respect to this topology.

Theorem 5.1. Let C,={feM: I,(f)<1}. Let L (w,*) be defined by (4.20). Then
Sor almost all w

A U G ) =Co. (5.1)

m=1nzm

Proof. With d(n)=b(n), k(n)=[n/b(n)] and x=0 we define L, as in (3.16). Since

sup L, (0, A)— L, (e, A)| é%("_r?nr)(_”))_)o
AeB

(note that r(n)=k(n)d(n)~n), the set of limit points of {L, (w, +)} is the same as
that of {L,(, -)} for each w. Therefore, it suffices to prove (5.1) for L,.

We first prove that the left side in (5.1) is contained in the right side. Let
N; be an open neighborhood of C. Since I; is lower semicontinuous on M,
we have inf I;(A)=60>1. Let 0<y<1 be such that 8y>1 and let j,=[exp (n")].

AeN¢

Let £>0 be such that y(§—&)> 1. By Theorem 3.2
P[L; (e, -)e N1<exp{—k(j,) (6 ~2)} (5.2)

for all n sufficiently large. The right side of (5.2) summed on n converges.
Therefore, by the Borel-Cantelli lemma

P[L, (&, )eN; i0]=0. (53)
This means
PIN) U L0 )} =R1=1. (54)

Now, if j, ;=<p,<j, then c(p,)/c(j,)—1, consequently for any continuous f
with compact support and weQ

lim|L, (o, /)—L; (o, )| =0.

Therefore {I:pn(a), )} and {fljn’(a), *)} have the same vague limit points and

PN Q {L(0,*)} =N]=1. (5.5)

m nzm

Since we can pick NjD]\7j+1, N; open, j=1, such that ﬂ N;=Cg, (5.5) implies
that the left side in (5.1) is contained in the right side. =t

To see the converse, by Lemma 2.16 [8], the set D of probability measures
B with compact supports and satisfying I,.(f)<1 is dense in C, so there exists
D,={f,, B,, ...} =D which is dense in C,. By Theorem 4.5 the left side in (5.1)
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contains D, a.s. and since the left side is a closed set it must contain D, hence
Ce-
The following theorem is an immediate corollary of Theorem 5.1.

Theorem 5.2. If & is a functional on M which is lower (upper) semicontinuous
on M in the vague topology, then

lim sup ¢(L,(w, *)) = sup &(f), as., (5.6)

()BeCe
where L, is defined by (4.20) and C,={BeM: I,(f)=1}.
This has the following corollary.

Corollary 5.3. If @ is a continuous functional on M in the vague topology, then

lim sup ®(L, (e, *))=sup ®(f), as. (5.7)
n feCa

6. Applications

We now turn to applications similar to those in Sect. 4 [8]. As before

Ce={BeM: I;(p)=1}.
Recall that c¢(n)=a(b(n)).
Example 6.1. Let V be a continuous function on R such that V{(x)—0 as

[x]— o0, then

lim sup%1 n.io V(S;/c(n) =ﬁsucp [V(x)dp(x). (6.1)

Proof. For BeM, ®(f)=|V(x)dp(x) defines a continuous functional on M and
(6.1) follows from Cor. 5.3.

Example 6.2. Let V be a continuous function on R such that V(x)— oo as
|x|—>o00. For fe., let

P(B)={V(x)dp(x), if the integral is finite
=00, otherwise.

Define #(f)=o00 on M —.#. Then

n—

1 V(S;/e(n)=inf [V(x)dp(x). 6.2)
0 M

.o 1
lim inf —
n n BeCgn

J=
Proof. 1t is easily seen that @ is lower semicontinuous on M. Let ¢, be a
continuous, nonvanishing, function on (— oo, co] such that |@,(x) —x|<¢ for all
x and @, (x)=x for |x|>¢. Then ¢, o ® is lower semicontinuous and (@,o ®) ' is
upper semicontinuous on M. By Theorem 5.2 we get

lim inf @, (% io V(Sj/c(n))> 2 inf (0,2 0)f), s 6.3)
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Therefore
n—1

lim inf% i V(s j/c(n))gﬁiréf ®(B)—2e. (6.4)

Since @(f)=c0 on M —.#, the inf on the right in (6.4) can be taken over
Con .

We now prove the inequality in the opposite direction: Let f be a proba-
bility measure on R such that f{x:|x|<a}=1 and I;(8)<1. By Theorem 4.5
this B is a limit point of L (o, +) along sequences where L, (w, *) is supported
by [ —a, a’] a.s. Therefore

lim inf% Y V(S /et =]V dB) (6.5)

a.s. for each such f. As observed in the proof of Theorem 5.1, let D, be a
countable set of such f’s dense in Cg. Then the right side in (6.5) can be
replaced by

inf [ V(x)dB(x). (6.6)
BeD;

Now suppose that fe.# nCg, and | V(x)df(x)<co. Then if B,eD,, B,—f, we
have

[ Vixdp,x)— | Vix)dp(x),
[a, b] [a,b]

where g, b are points of continuity of §. It is thus clear that

lim inf | V(x)dB,(x) = | V(x)d B(x).

Therefore the quantity in (6.6) is the same as the right side in (6.2). This
finishes the proof.

If we take V(x)=|x|* for a>0, we get Theorem 1.3 of the introduction. For
a=a=2, the constant on the right side in (6.2) is identified in [8] to be 1/4.

Example 6.3. For ¢>0 let
D.(B)=p{x: |x|=c},

and
D.(B)=PB{x: |x|<c},

the @.(P)) is upper (lower) semicontinuous. If I (f)<co, then f§ is absolutely
continuous with respect to Lebesgue measure [5], hence

sup @(f)= sup D, (f)=k_ q- (6.7)
BeCo BeCa

It is clear that for fixed G, the limit distribution, k_ . increases in c. Let ¢; be
the smallest ¢ such that k, ;=1 for c=c;. The existence of such a ¢ is pointed
out in [8]. It is also shown there that if a=2 (i.e., G is N(0, 1)) then ¢, =8"1?x
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(this corresponds to standard Brownian motion). This constant ¢, is identified
with the constant of (1.11) in [&].
By Theorem 5.2 applied to @, and &, we get

) 1 n—1
limsup~ Y. 70,alS,l/ct) =k g, ~as. (6.8)
n j=0

and for ¢z ¢, the right side equals 1.

Example 6.4. This example is Theorem 1.2, and we now give its proof. Suppose
¢ <cg, then by (6.8) we have
n=1

. 172
hmsup; Y K0S l/em<1,  as. (6.9)
n j=0

Therefore almost surely there exists >0 such that for all sufficiently large n

3. 0,008 fe) <1 =) (6.10)
and this implies
lim inf(4,(w)/c(m)=c, as. (6.11)

It remains to prove the opposite inequality. Let c;<c<c'. Suppose there
exists a fe.# such that f{x: [x|=<c}=1 and I;(f)<]1, then by Theorem 4.5 we
have

lim inf(4,(w)/c(m) =, as.

It is thus sufficient to show that for any ¢>c¢, such a j exists. By the definition
of ¢g, there exists a sequence {f,} such that §,eCg4, so B, is absolutely
continuous with respect to Lebesgue measure, and f,{x: |x|<c}—1. It follows
that along a subsequence fi, = f, and f,{x: |x|<c}=1, and since I is lower
semicontinuous, I;(B,) SliminfI4(f,)<1. Now let §>1 and define

B(A)=B,(0-1*4), Aea. (6.12)
Then by the scaling property

014(B)=15(B,). (6.13)

If ¢, >c, then 0>1 can be picked so f{x:|x|<c,}=1, and by (6.13) we have
I;(P)<1. The constant ¢, is identified with the constant of (1.11) in [8]. This
finishes the proof.
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