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Summary. Let X~,X 2 . . . .  be i.i.d, random variables in the domain of attrac- 
tion of a stable law G, and denote S11=X 1+...+X11, L11(oJ, A) 

t1--1 

=n -1 ~ XA(S/a(n)), where the real sequence a(n) satisfies a(n)-~Sn-+G. 
j = 0  

Large deviation probability estimates of Donsker-Varadhan type are ob- 
tained for L11(r .), and these are then used to study the behavior of "small" 
values of (SJa(n)). These latter results are analogues of Strassen's results 
which described the behavior of "large" values of (S11/a(n)) when the limit 
law was Gaussian. The limiting constants are seen to depend only on the 
limit law G and not on the distribution of X 1. The techniques used are 
those developed by Donsker and Varadhan in their theory of large de- 
viations. 

1. Introduction 

Let X 1, X 2, ... be real-valued independent identically distributed (i.i.d.) random 
variables and let 

S, =X1  + ... + X , ;  S o =0. (1.1) 

F will denote the distribution function of X~. We assume throughout this 
paper that F is in the domain of attraction of a stable law G of index ~, 
0 <  ~ < 2, which has a strictly positive density and satisfies the scaling property. 
The scaling property requirement rules out certain asymmetric situations, when 
c~ = 1. Under our conditions we have 

S, ~ G  as n ~ o e  (1.2) 
a(n) 
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where a(n)=nl/~l(n), l being a slowly varying function and " 0 "  denotes the 
weak convergence of the corresponding measures, i.e. for any bounded con- 
tinuous function f on R (the real line) 

lira E [ f  (SJa (n))] = SU (Y) d G (y). 
n 

We will always use this arrow symbol in this sense. 
y,(t), t>O, will denote the stable process on R of index e with y~(1) having 

the distribution G. It should always be understood that y~ has sample paths in 
D[0, oo), the space of real-valued functions on [0, oo) which are right-con- 
tinuous and possess left limits. For  h>0,  D[0, h] will be considered as a 
separable metric space with the Skorohod metric. The process y, has the 
scaling property: for c>0 ,  the process c-1/~y(ct), t>O, has the same finite 
dimensional distributions as y~(t), t>=O. For c~=2, the process is a constant 
multiple of a standard Brownian motion process, and in this case we will use 
the normalization that G has variance 1, so that the constant multiple is 
actually 1. 

Donsker and Varadhan [8] use their powerful theory developed in [4]- [7]  
to prove a class of results for a stable process of the above type (actually, they 
assume symmetry which is not necessary). These results are analogues of the 
well-known invariance principle for Brownian motion due to Strassen [13]. 
Strassen's results deal with "large values" of the process and hold only in the 
Brownian motion case whereas the results of Donsker and Varadhan deal with 
"small values" of the process and hold for not just Brownian motion but all 
stable processes of the above type. For  a discussion of this see Sect. 4 [8], 
p. 751, keeping in mind that the Brownian motion in [8] has variance,2 at 
time 1. 

In ['13] Strassen also obtains results corresponding to Brownian motion for 
sums of i.i.d, random variables which are in the domain of normal attraction 
of N(0, 1), i.e. for which 

S, 
nil2 ~ N(O, 1). (1.3) 

For comparison purposes we state some of Strassen's results here. Under (1.3) 
he shows that for a > 1 

r nl n - 1 Oa 1] 
e [ l imsup jZ=olSy/(n lo 8 log n)o/2 = = 1 (1.4) 

where 0 a is evaluated explicitly in terms of a. He also shows 

P [lim sup v, = 1 - exp ( - 4 (c - z _ 1))] --- 1 (1,5) 

where 
l n - - 1  

v, = n j~4 Z(c' ~176 log log j) 1/2) 
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for any c, 0 < c < l .  Here XA (X) --'= I (0) if xeA (x6A). To obtain these results the 
important tool is the Skorokhod imbedding technique. 

Our aim here is to obtain analogues of these results for "small values" of 
the partial sums under the condition (1.2). To obtain our results we rely very 
heavily on the techniques and results of Donsker and Varadhan [4]-[8].  
However, the exposition here is reasonably self-contained. Before we describe 
our results one more result needs to be introduced, the Chung type law of the 
iterated logarithm. Let 

and for t > 1 6  

A, = max [Sj[ (1.6) 
l<=j<n 

b(t) = [t/log log t] (1.7) 

where [x] = greatest integer =< x. 
It was shown in [10] that under (1.2) there exists 0 < c <  oo such that 

An liminfa(b(n))=c,, a.s. (1.8) 

Although the conditions imposed on G in [10] are more general than in (1.2), 
the method of proof  there does not tell us whether the constant c depends on 

F or just on G. Only under (1.3) it was later shown [11] that c=~/]f8, same 
for all F. In this connection it is useful to mention the analogue of (1.8) for a 
stable process. Assume that G satisfies our conditions and define 

As(t ) = sup [y=(s)]. (1.9) 
8<_t 

Then it was shown by Chung [3] that for c~ = 2 

lira inf A ~  = 7z/]/8, a.s. (1.10) 
,4oo b( t )  

and, more generally, by Taylor [14] that for 0 < ~ < 2  

. .  ~ A ~ ( t )  
lm m i ~ = c G ,  a.s. (1.11) 

where 0<cG<oo .  The result in (1.11) is also derived in [8], but here the 
advantage is that ce is identified in terms of the/-funct ional  of the process (to 
be introduced in the next section). With this introduction we can now describe 
some of our results. 

The sequences a(n) and b(n) have been introduced above. We will denote 

c(n)=a(b(n)). (1.12) 

In the theorems below we assume that (1.2) holds and G satisfies our 
conditions. 
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Theorem 1.1. For c > 0  there exists a constant kc, G such that a.s. 

ln--1 
l i m s u P n  j~oZEO,d(lSjl/c(n))=kc, a, (1.13) 

and for  c > c  a the constant kc, a =  1, where c a is the constant in (1.11). 

Theorem 1.2. Let  A n be defined by (1.6), then 

An lim i n f - - =  %, a.s. (1.14) 
. c ( n )  

where c a is the constant in (1.11). 

This theorem tells us, in particular, that if instead of (1.3) we have 

Sn ~ N(0, 1), (1.33 
nl/21(n) 

i.e. F is in the domain of attraction of N(0, 1) and could have infinite variance 
((1.3) implies that F has variance 1) then 

An 
limn inf b (n) 1/21 (b (n)) - re/I/8, a.s. (1.8') 

This, of course, includes the result of [11] but the methods of that paper do 
not appear to be adequate for the identification of the constant in (1.8'), 

Theorem 1.3. For a > 0  there exists a constant A,,  G such that a.s. 

ln-1 
lira i n f -  ~ ([Syc(n))  a =Aa,G, (1.15) 

n n j = o  

Aa,~ <(c~) ~ in view of  Theorem 1.2. 

It is shown in [8] that A2,~=1/4, if G=N(0,1).  The constant 0 a in (t.4) 
corresponding to a- -2  equals 8/re 2. 

It should be noted that the results of Sects. 3-5 are more basic and the 
above theorems are only their applications obtained in Sect. 6. Theorem 1.3 is 
a special case of Example 6.2 in Sect. 6. The notation introduced here will be 
used throughout; more notation and some preliminaries are given in Sect. 2. 
Sections 3 and 4 contain the basic results leading to theorems in Sect. 5. 

2. Preliminaries and Notation 

We will denote 
0// =Class of real-valued Borel measurable functions 
O < a < _ u < b < o o ,  where a,b depend on u; 
~//1 =continuous functions in d//; 

u on R such that 
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~/2=members of ~//i for which lim u(x) exists; 

~ =members  of q/2 such that u=cons tan t  outside of a compact set; 
q/4 -- infinitely differentiable members of ~'3. 

will denote Borel subsets of the real line R and for xER, AEB, ~(x,A) 
will mean a transition probability function, i.e. ~z(.,A) is a Borel measurable 
function for each A~N, and 7c(x,.) is a probability measure on ~ for each 
x~R. ~ will be called a Feller transition probability function if ~f(x) 
=~f(y)rc(x, dy) is a bounded continuous function whenever f is a bounded 
continuous function. 

If v is a measure on ~ and f is a Borel measurable extended real-valued 
function we will write 

v(f) = ~ f (y) v(dy) (2.1) 

whenever the integral makes sense. Thus we will also write rc(x,f) in place of 
zc f (x). 

Following the notation in [8] we write 

M = Subprobability measures on (R, ~), 

J / /=  Probability measures on (R, N), 

and for ~ a transition probability function and # e M  we denote by /(#) the I- 
functional corresponding to ~z given by 

I(#)= - inf~ l~ (rC-uu-) (x) (2.2) 

As noted in [8], ~ can be replaced by d//1 in (2.2). 
Lemma 2.2 shows that if ~ is Feller then ~// can be replaced by ~ in (2.2) 

and Lemma 2.1 is proved to prove Lemma 2.2. 

Lemma 2.1. Suppose rc is Feller. Let a be a fixed constant. Then given e>0,  
there exists K compact such that sup ~z(x, K c) < e. 

Ixl-<a 

We always write A c to be the complement of the set A. 

Proof Let K, TR, K, compact, and let f ,  be a (pointwise) decreasing sequence 
of continuous functions such that 0 < f ,  < 1, f ,  = 0 on K,,  f ,  = 1 on O~, where O, 
is a bounded open neighborhood of K,. Then ~f ,$0 pointwise and since rcf, is 
continuous, the convergence is uniform on compacts. Therefore sup nf, o(X)<e 

Ixl__<a 
and so suprc(x,O~,o)<e for some n 0. 

Ixl<=a 

Lemma 2.2. I f  ~ is Feller, then for #eM 

/~r 1/\ 

u~o//3 \ u  I 

Proof Let I'(#) denote the right side in (2.3). Clearly I(#)>I'(p). To see the 
reverse inequality, let c > 0  and suppose that I (#)>c.  Wewi l l  show that then 
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I '(#) >c.  By definition of I(#) there exists u 0 ~ '  1 such that 

- ~log ( u-u~ ] (x )# (dx)>  c. (2.4) 
\u0  / 

Hence there exists a > 0 such that 

- 5 log ( nu-~ (x)#(dx)>c. (2.5) 
t:q_<a \ Uo / 

If O < a  1 __<u o < b  1 < 0% we can pick a larger so that 

-51og(n~Uu~ (2.6) 
Ixl_-<a 

NOW define u 1 such that Ule~ u,(x)=uo(X ) for Ixl<~, where y > a  will be 
picked suitably, and al < u I < b 1. Then 

[nUo(X)-nul(x)l<2b 1 ~ n(x, cly). (2.7) 
lyl>~ 

For  [xl<a, by Lemma  2.1, we can pick 7 so large that the right side in (2.7) is 
small enough so (note that u, (y)= uo(y ) for l yl < a) that by (2.6) 

- f log (nu--k l(y)#(dy)>c+logbl#[lyl>a] 
lyl<=a \ ul I al 

which shows that 

- f log (rt U l ] (y) #(d y) > c. 
\ u  1 / 

We also define the / - funct ional  for the stable process y=(t) with infinitesimal 
generator L as in [8]. This will be denoted by I a. For  # e M  

I G ( # ) = -  inf y (~-) (x) #(dx ). (2.8) 
1/g 0//4 

If h > 0, let 
rc (h)(x, A) = P [x + y~ (h) e A] 

=P~[y~(h)eA]. (2.9) 

Then n (h) is a Feller probabili ty transition and Ih(#) will denote the / - func t ion-  
al given by (2.3) corresponding to n (h). The dependence on G will be clear from 
the context and will be suppressed. 

Finally, on M we will use the topology of vague convergence under which 
)~,--,2 means ~ f d 2 , ~ f d 2  for each continuous function f with limits 0 at 
+ 0% and on ~ the topology of weak convergence under which 2 , ~ 2  means 
~fd2,--+~fd2 for each bounded continuous function f Vague (weak) neigh- 
borhood of a member  of M ( ~ ' )  will have the obvious meaning. 
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3. An Asymptotic Upper Estimate 

The main result of this section is Theorem 3.2. Theorem 3.1 may be of some 
independent  interest;  it facilitates the p roof  of Theorem 3.2. 

Theorem 3.1. Let (k.) be a strictly increasing sequence of integers and for n > 1 
let y(o"),y(~ "), ,,(") be a Markov process with state space R and stationary 
" " " " ~ Y k n  - -  1 

transition probability function z,. Assume 

rc, is Feller, n__>l; (3.1) 

G(x ,  .) ~ re(x, "), xeR,  where rc is again Feller; (3.2) 

if u ~6//3, z ,  u(x)---,rc u(x)uniformly in x; and (3.3) 

lim (zru/u)(x)= 1 for u~lla. (3.4) 

For  A ~ ,  define 
1 k ~ - I  

L.(~, A) =E_ y~ zA(Y}")(co)) (3.5) 
n j = O  

and for B a Borel subset of M (vague topology) 

Q,,~ (B) = P~ [L,  (co,.) ~B]. (3.6) 

Then, if C is a vaguely closed subset of M, we have 

1 
lira sup - -  log supQ,,x(C ) < - infI(2), (3.7) 

n k n 2~C 

where I denotes t he / - func t iona l  of rc defined by (2.2). 

Proof Let ued//3 and let 

V,=zc, u, e x p ( - W , ) = u V ,  -1. 

W, is a real bounded  cont inuous function on R. Using induct ion and the 
definitions we have 

EX [V,(Yk~_ 1) exp { -(W,(Vo(n))-k ... + Wn(Yk(~) 1))}] = u(x). 

F rom  this we conclude that  for all x e R  

[Lexp - W,(Y) ")) < c <  o~ (3.8) E ~ 
j=O 

where c depends only on the bounds of u. This inequali ty is the same as (recall 
(2.1)) 

E~ [exp { -k ,L,(co,  W~)}] < c. 
Therefore  

E ~ [(exp { - k. L.  (co, IV.)}) Z[Ln((o, ")~C]] ----~ C 
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and we get 
Q,,~(C) [exp { - k, sup 2(%)}] < c. 

2~C 

This last inequality is the same as 

Q,,x(C) < c exp {k, sup 2(W,)}. (3.9) 
,~sC 

Since the right side in (3.9) does not depend on x and W,=log(zc, u/u), we get 

log c o 
log sup Q,,~ (C) < ~ + sup ~ log (Tz, u/u)(y) z (d y). (3.10) 

x n 2~C 

Now using (3.3) we get 

l imsup 1 ~logsupQ,,x(C)<-sup~log(~u/u)(y)2(dy ). (3.11) 

Since the left side in (3.11) does not depend on u, we can take the inf in ueq/3 
on the right side. We thus obtain for a vaguely measurable subset C of M 

1 
l imsup ~ log sup Q,,x(C) < ,~ou3inf sup~log(rcu/u)(y)x~c 2(d y). (3.12) 

k 

If C c  ~ Cj, then the left-side in (3.12) is dominated by 
j=l 

1 
max lim sup - -  log sup Q,,:,(Cj) 

i <j<_k n k n 

and therefore the right-side in (3.12) can be replaced by the expression 

infmax inf sup~log(zcu/u)(y)2(dy), (3.13) 
1 <j<=k u~~ AaCj 

where the first inf is over all measurable C 1 . . . . .  Cg whose union contains C. 
Denote the integral in (3.13) by H(u,2). For u~ll3, log(~u/u) is a continuous 
function and by assumption (3.4) it tends to 0 as [ x [ ~ ,  therefore for a fixed 
ue~/3 the function H(u, 2) is continuous in 2. If C is compact, then we will 
show that the expression in (3.13) is dominated by 

sup inf H(u, 2) (3.14) 
. ~C  u ~~ 

and this will prove the theorem via Lemma 2.2. Let the quantity in (3.14) equal 
l<  Go (otherwise there is nothing to prove). Let e>0, then by the continuity of 
H in 2, given 2 there is a neighborhood Nx of 2 and a ux such that H(u~,v)<l 
+e  for v~Nx. Using compactness of C we conclude that there exist Nxl, .... N~, 
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k 
open subsets of M, such that ~) N~j = C and 

j = l  

max inf sup H(u,2)<l+e, 
l- <=j~k u~~ 2~N.zj  

which is what we had to show. 
In the following d(n).~ oo and k(n)7 ~ denote positive integer sequences 

and 
r (n) = d (n) k (n). (3.15) 

One should think of d(n) as the block size and k(n) as the number of blocks. 
For  AeN,  we define 

1 r ( n ) -  1 

L~(co, A) = ~  ~ Za_~(Sj(ce)/a(d(n))), (3.16) 
rtn) j =  0 

where a(n)= n 1/~ l(n), as before. For  x = 0  we simply write L~(co, A). 

Theorem 3.2. Let X~, X 2 .... be i.i.d, random variables satisfying (1.2). Then for a 
vaguely closed subset C of M we have 

1 ~'x 
lim sup 77,7 log sup P [/5, fro, -)~ C] < - infix(2) (3.t7) 

n /G,n) x ~eC 

where IG(2) is given by (2.8). 

To prove the theorem we will need the following lemma. 

Lemma 3.3. I f  ueag,3 and tt, ~ t4 I~,, I~ in ,l/g, then 

Su(x +y) ~~ y)-~ j u(x + y) ~(dy) 
uniformly' in x. 

Proof of the Lemma. Since u is bounded and/~, ~ #, it is enough to show that 
for a > 0  

] ~ u ( x + y ) # , ( d y ) -  ~ u(x+y)p(dy) l~O (3.18) 
b,[__<~ tyl<_-~ 

uniformly in x, and a can be picked so _+a are continuity points of #. Let c>a 
be so large that for ly]<a, u(x+y) is constant for Ixl>c(ue~#3). It is thus 
enough to consider Ix[<c. Let e > 0  be given. Since u is uniformly continuous, 
[ - c , c ]  can be partitioned - c = x o < x ~ < . . . < x N = c ,  N depending on e, so 
lu (x '+y)-u(x"+y) l  <e  for x', x" in any closed subinterval of the partition and 
all y. If x ~ [x i, xi + 1 ], then writing I = [y: I Y] _-< a] 

l~u(x + y) ~.(dy) - j  u(x + y) u(a y)t __< I j(u(x + y) - u(x, + y)) ~.(d y)l 
1 I I 

+ IS u(x, + y) ~,.(d y ) - S  u(x, + y) ~(d y)t + IS(u(xi + y ) -  u(x + y)) u(d y)t. 
I I I 
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Each of the first and the last terms on the right is < ~, and the middle term 
tends to 0 as n~oe.  Therefore there exists n o depending on N (hence on 
only) such that for n > n o the right side < 3 e. This finishes the proof. 

Proof  of  Theorem 3.2. Let h > 0, and define 

and 

Also, let 

d'(n) = [hd(n)], k'(n) = [r(n)/d'(n)] + 1 

d k (n) = [j: (k - 1) d' (n) < j < k d' (n)3. 

Yk(")(i)= ~ Xi+j/a(d(n)) , l<_k<_k'(n)-l, i>O, 
j~Jk(n) 

and for n >= 1, let 

For x ~ R  we have 

(3.19) 

rc,,(x, A) --- P [x + Yt ~ (0)~A]. 

Tf, n(X, ") ~ ~(h)(.x,, ") 

(3.20) 

(3.21) 

E~[exp { 1 .,(,,]-1 /k'(,,)-i X) a 
d'-(n) ,~o t,--~o W"(Z:")(i)))~I 

[ 1 a'(.)-i { k'(.)-i "~1 
<E" [d~ i~o exp , -  .=~o W.(Z:"'(i))~J <c. 

Since W. is a bounded function and the incomplete block consists of no more 
than d'(n) terms, we have 

EX[exp{ -d ,~ (W, (So /a (d (n ) )+ . . .+W, (S , ( , )_ l /a (d (n ) ) ) } ]<=e  1 (3.22) 

By Jensen's inequality 

where 
rc (h) (x, A) = px [y, (h) ~ A]. 

The transitions re, and n (h) are easily seen to satisfy conditions (3.1), (3.2) and 
(3.4) where rc (h) plays the role of n. Lemma 3.3 shows that condition (3.3) is also 
satisfied. Now let ueq/3 and let exp(-W,)=u/rc ,  u. As in the proof of Theo- 
rem 3.1, for i > 0, n > 1, we have (Y0 ~"~ (i) = 0) 

[ { E x Lexp -- + . . . +  <c  

where c depends only on the bounds of u. Since this holds for all x, we can 
replace x by x + (S]a(d(n)) to conclude that 

EX [exp { k'(.)- 1 )1 - Z w.(z~"'(o)U <-c 
r=O ) J  - -  

where we write 
z~"~ ( i) = S , , ,  ~,) + i /a(d(n)) .  
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where c 1 again depends only on the bounds of u. Let ~o(n)=r(n)/d'(n). Then 
(3.22) is the same as 

E [exp { - ~0 (n) L~ (co, W,)}] < c l. (3.23) 

Now following the proof of Theorem 3.1 we get 

1 ~'x 
h lim sup ~ log sup P [/_5, (co,.) e C] < - infI  h(2), (3.24) 

n Ki t / )  x ,t~C 

where I h is given by 

We have thus shown that for C a closed subset of M, 

(3.25) 

1 
limsuP k~n)-logsupP[f_~(co,.)EC]< -limsuph~0 ~cinf(Ih(2)/h)" (3.26) 

If ue~ and L is the infinitesimal generator of the process y~(t), then 

~(h)u = 1 + hLU + o(h) 
bl U 

where o(h) is uniform in x. From this we get 

l ilog 

where o(1) is uniform in 2 as h~0.  Taking the sup over ueC#3 on the left side 
we therefore get 

Ih(2)/h >= -- S (~-)  (x) 2(dx) + ~h(u) 

for every ueq/4, where Zh(U) depends on u and tends to 0 uniformly in 2 as h--.0 
(u fixed). Therefore, 

sup inf(Ih(2)/h)> -- inf~ (~.u I (x) 2(d x) lira 
h ~ 0  ,~EC 2~C \ U  / 

for all ueq/4. Since the left side does not depend on u, this implies 

limsupinf(lh(2)/h)>=-infsup~(Lu~)(x)2(dx). 
h ~ 0  ).~C uEq/4 2eC 

(3.27) 

This and (3.26) give 

lim s u p , ,  ~-logsupP[/5,(co,-)eC] < inf sup~ (x)2(dx). 
n K{rt) x ue~a4 x~C 

(3.2s) 
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k 
If C ~ U c;,  c j  closed in M, then the left-side in (3.28) is dominated by 

j = l  

1 
max lira sup k ~ l O g  sup P [L%(co,.)e Cj] 

l<j<=k n 

and then by (3.28) we get 

1 r 
lira sup k~n) log sup P [I5, (co,.) e C] 

. tn )  

inf max inf sup  (3.29) 
�9 uEq14 2eCj C c  U cj  l < J < k  

j=l 

Let H(u,2) denote this last integral, which is continuous in )L for each ueq/4 
because (Lu/u)(x)~O as Ix[~oo. The rest of the argument is the same as in the 
proof of Theorem 3.1 except that we should take N/s  to be closed neigh- 
borhoods to show that 

inf max inf sup~(L~t(x)2(dx)<__sup inf~(L~)(x)A(dx) ,  
l <j<=k u~ll4 ,~Cj  \ / 2eC uE~a 

k 
C c  U Cj 

j=l 
Cj closed 

and since the right side equals - in f ix(2) ,  this together with (3.29) implies 
(3.17). ~ c  

4. An Asymptotic Lower Estimate 

Let d(n) and k(n) be nondecreasing positiv e integer sequences tending to o% 
and let r(n)=k(n)d(n) as in (3.15). The main result of this section is Theo- 
rem 4.1 which is an analogue of Lemma 2.12 of [8]. 

Theorem 4.1. I f  fl is a probability measure on R such that fi{x: Ix[ <a} = 1 and V 
is a weak neighborhood of fi in J/g, then for a'> a > 0 we have 

1 
lim i n f k ~ l o g  inf P [L~(co,-)eV; Ix +(Sj/a(d(n)))] <=a', 

Ixl<-a 

0 < j  < r (n ) -  1] > - I G ( f i ) ,  (4.1) 

where L~ is defined by (3.16) and 1~ by (2.8). 
The proof of this theorem depends on the following theorem which is a 

restatement of Lemma 2.12 [8]. First we need a notation. 

1 t 
Lt(o,A)=t!Xa(y~(s,  co))ds, A~r162 (4.2) 
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Theorem 4.2. I f  fl is a probability measure on R such that/~{x: [xl __<a} = 1 and V 
is a weak neighborhood of fi in ~t, then for a ' > a > 0  we have 

lira inf 1 log inf P~ [L t (co,.) ~ V; l y~ (s) l ~ a', o ~ s ~ t3 ~ - I o (fl). 
t ~  t IxJ<=a 

What we actually need is the following corollary of Theorem 4.2. 

(4.3) 

Corollary 4.3. For fl and V as above and 0 < a < a' we have 

lim inf-1 log inf PX[Lt(co, .)eV; lye(s)[ <a' ,  O < s < t ;  
t ~ o o  t Ixl=<a 

lye(t)[ <a] > -iG(fl). 

Proof  of Corollary. Without any loss of generality we may take 

(4.4) 

V= {veo/r f~f~dv-~f~d fl[ <e, 1 < i < k } (4.5) 

where f~, 1 < i < k, are uniformly continuous bounded functions on R. Then 

[Lt-1 (co,fl) - Lt (co,fY <2  II f, II o o  

t - 1  
(4.6) 

and the upper bound tends to 0 uniformly in co as t ~ o o ;  it follows that there 
exists t o (independent of co) such that Lt_ l (co , . )eV  1 implies Lt(co, .)sV, when- 
ever t > t o, where 

vl = { v e ~ :  ISf~ d v-Sf~ d/~l <~/2, 1 __<i=< k}. (4.7) 

Therefore, if t>to,  then by the Markov property the probability in (4.4) 
dominates (a < a" < a') 

PX[Lt_ l (co, ")eVa; ly~(s)l < a", O <-s<-t-1].  

inf P~[ly~(s)l <a' ,  0 < s <  1, lye(l)] <a] .  
[zl<=a" 

(4.8) 

The second quantity in (4.8) is positive since G has strictly positive density. 
The corollary now follows from (4.8) by applying (4.3). 

Proof of Theorem4.1. Let V 1 be given by (4.7). For 6 > 0  we pick a large 
positive integer h so by Cor. 4.3, with a < a " < a '  

inf p X [ L h ( c o  , ")eVl ; [y~(s)l <a", O<=s <h, 
Ixl<a 

[y~ (h)[ < a] > exp { - h(IG(fl) + 5)}. 
Let 

d'(n) = hd(n), k'(n) = [r(n)/d'(n)3 + 1. 

(4.9) 

(4.10) 
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The idea is to work with blocks of length d'(n), so there are k'(n) blocks, the 
last one being possibly incomplete. The event 

0 j S f i  x+ -~fi <e, l<i<k;  
r = 0  

< d ' ( n ) - l ,  x-~ S(r+l)e'(") < a ]  x . ~  <a',O<m a(d(n)) 

is contained in the event A, ~ which occurs in (4.1). Therefore, by using the 
Markov property we see that inf P(A~) dominates 

IM_-<a 

~ i n f p r ]  1 a,(.)-i Sj -Sf d  

Srtl  t x + ~  <__a,O<m<d'(n); X+a@d~ < a ] }  k ("). (4.11) 

We now claim that the quantity within curly brackets in (4.11) has l iminf  
larger than the quantity on the left side in (4.9). Assume this claim for the 
moment. Then 

1 x 
lim i n f ~  log inf P [A,] __> - h(IG(fi) + 6). 

n K I ,n)  Ixl<__a 

Since hk'(n)~k(n) as n--* oo, we get 

1 
l iminf ,~:7__ , log inf PEA. ~] > - (IG(fl) + 6) 

n K~,n) Ixl<a 

and 6 >0  being arbitrary, the result follows. We now establish the claim made 
after (4.11). 

Define Yn(0, 0 < t =< h, n > 1, as follows. 

Y.(t)= Sj J ~ "  < t <  j + l  O<j<hd(n), 
a(d(n)) ' d(n) = d(~ ' = 

_ Sa'(n) 
Y.(h) - a ( d ( n ) )  " 

The sample paths of Y, lie in D [0, hi and each Y, is a process with independent 
increments. By Theorem 5 [9], p. 435, it readily follows that 

Y. ~ y~ (4.12) 

in the sense of weak convergence of measures in D E0,h]. By a theorem of 
Skorohod [12] we can construct a probability space on which Y,, n>  1, and y~, 
D E0, hi-valued random variables, are defined with the distribution of Y,(y~) the 
same as that of Y(")(y~) and such that as n ~  oo 

Y.-~ y~, a.s. (4.13) 
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The convergence in (4.13) is in the Skorohod metric in D[0,h]. Since 3~ is a 
stable process without fixed discontinuities, we assume that 3~ is a.s. con- 
tinuous (from the left) at h. It then follows from (4.13) that 

Y,(h)~2~(h), a.s. (4.14) 

The following lemma will now be useful. 

Lemma 4.4. With Y, and ~ as above, f a bounded uniformly continuous function 
on R, as n--* oe 

h h 

~f(x+ ~,(t))dt--,jf(x+L(t))dt, a.s., 
0 0 

and 

(4.15) 

(4.16) sup Ix+ f',(t)l-~ sup Ix+37~(t)l, a.s., 
O<t<_h O<_t<_h 

where the convergence is uniform in x in (4.15) and (4.16). 

Proof of the Lemma. Let F be the set of all continuous, increasing, functions 2 
on [0, 1] such that 2(0)=0, 2(1)= 1. Then 

Isup Ix+ L ( t ) l - sup  Ix+L(t)ll =]snp Ix+ •(2(t))l-sup Ix +L(t)l] 
t t t t 

< inf sup [(x + Yn(;4t)))-(x + y~(t))] ~ 0  
.~eF t 

as n~oe ,  uniformly in x, which proves (4.16). By (4.13) we have a.s., 2n(co)~F 
such that 

sup [ 17~ (t, co) - y~(,~n(t), co)] ~ 0  (4.17) 
t 

(4.18) 
and 

sup lS~n(t)-t]~O. 
t 

Therefore 

h h 

! f ( x  + Y~(t)) d t -  o ~f(x + y~(t))dt 

h h 

<= ~ I f (x + f~,(tl) - f  (x + :~.(2.(t)))l dt + I [ f (x + y~(A, (t))) - f  (x +)~ (t))l d t, 
0 0 

since f is bounded and uniformly continuous, each integrand on the right 
tends to 0 a.e. (t) boundedly (note that )~ is continuous a.e.), so each term 
tends to zero; the uniformity of convergence in x is clear. 

Now let 
h h 

fA~h,~(co, A ) = h - l I Z A ( x +  L(t l)dt  and Lh(co, A)=h-l~)iA(Y~(t))dt. 
0 0 

By Lemma 4.4, (4.14), and the fact that )~(h) has a continuous distribution, we 
conclude that if a < a"< a' and V 1 is given by (4.7), then 

lim inf inf -x _ _ P[Lh,n(w, ")~V; Ix+ i~.(s)l<a', O<_s<h, Ix + ~.(h)l<a] 
n Ixl_-<a 

> inf PX[Lh(cO , ")~Vi ; lyAs)l <=a',O<=s<h, IL(h)l ____a]. 
f x l < a  
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This is clearly the claim we made, because 

_ 1 h 
Uh,,(o,f) =~ ! f ( x  + Y,(t)) dt 

= -  ~ d(n)-l f x +  
h j=o 

This establishes Theorem 4.1. 
We now use Theorem 4.1 to prove the following analogue of Theorem 2.15 

[81 

Theorem 4.5. Let fi be a probability measure on R such that fi{x: Ixl <a} = 1 and 
Ia(f i )<l .  Let V be a weak neighborhood of fl in J/L Then for a'>a 

where 

P [ L , ( c o ,  ")EV; max IS/c(n)l N a ' ;  i.oO = 1, 
ONiOn 

(4.19) 

and c(n) is given by (1.12). 
We need the following 1emma for the proof of this theorem, Let 7> 1 be 

such that 7IG(fl)<l and let 

and 
j ,  = [exp (n~)], (4.21) 

(p (n) = b (j,) [j,/b (j,)]. (4.22) 

Lemma 4.6. We have 

l im( max ISjl/c(j.))=O, a.s .  (4.23) 
n 0 < j<~o(n- -1 )  

Proof. By a lemma of Skorohod (Lemma 3.2 [2], p. 45) we have for e > 0 

where 

P [ max 
o <j__< ~0(n- L) 

ISjl>2ec(j,,)]< 1 P[iS~( ,_l) l>ec( j , ) ] ,  
1 - - C  n 

c, = max P [IS;I > e cO,)]. (4.25) 
0 =<j_--<c,(n-- 1) 

(4.24) 

If 0 < ~ ' < a  (the stable index is c 0, then by Theorem 6.1 [1] 

lim E IS,/a(n)f =E [y~(1)f < oo. (4.26) 
n 

Since ~o(n)~j,, a(~o(n-1))/c(j,)---,0, and (4.26) easily implies that c ,~0 .  There- 
fore it is enough to check that ~P[ISe( ,_  1)[ > e c(j,)] < oo. By (4.26) we have by 
12eby~ev's inequality 

P[]S~o(, ,_,)[ >e c(j,)] -< const. ~-a(~ (n -- 1))'~ ~' 
- ( ~cl/.) J "  

L,(e),A) 1"-1 - -  - n  j=~ ~ ZA(S yc(n)), (4.20) 
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This upper  estimate is easily seen to be summable in n. The Borel-Cantell i  
l emma then implies (4.23). 

Proof of Theorem 4.5. We take V as in (4.5), and let 

B, = [L,(co, ") ~ V; max [Sj/c(n)[ < a'].  
O<=j<n 

If j ,  is given by (4.21), we will show 

P[Bj. i.o.] = 1. 

To  make the events independent,  let 

9(.)- i  

-- ~ )~A((Sj--S,(n-1))/C(jn)), Ljn(co , A) q)(H) j=(p(n--1) 

where q)(n) is given by (4.22), and define 

JBj. = [Lj,(co, -) e v 1 ; max [(Sj - So( ._  ,))/c(j,)l _-< a"] ,  
q,(n - 1) _<j< q,(n) 

where V 1 is given by (4.7) and a < a" < a'. Since O (n) ~ j ,  and ((p (n - 1)/~o (n)) ~ 0 ,  
by L e m m a  4.6 we conclude that for almost  all co, n sufficiently large, i f /} j ,  
occurs, then Bj, occurs. Therefore,  it suffices to prove that 

P[ /}j .  i.o.] -- 1. (4.27) 

The events /}j ,  are independent,  so by Borel-Cantetli  it suffices to prove that 

2 P(Bj.) = oc.  (4.28) 
n 

N o w  p(~j~)=p[1 ~o(n)- q~(n- 1)-  1 ] 
2 ~(.)(Sj/c(j.)) ~ V1; m a x  ISj/c(L)I <= a" . 

(t)(/'/) j=O O~j<(p(n)--~o(n--l) 

Let 

gz={VeJ~: l~fdv-yf~dfll<e/4, i=l,  ..., k}. 

If k(n) is chosen to be [n/b(n)J, then (p(n)-~o(n-1)-1 ~(p(n)~k(j',)b(j,)~j,. It 
follows that for n sufficiently large, writing r(n)= k(n)b(n), we have 

P(BJ.)>--P Ir~.) r(j")-1 ] )~(.)(S/c(j,))eV2; max ]S/c(j ,) l<a".  (4.29) 
1=0 O<=j<r(jn) 

We now use the estimate of Theorem 4.1 given in (4.1), with b(n) playing the 
role of d(n) in this estimate, to conclude that if 6 > 0  is picked so 7(IG(fl) 
+ 6 ) <  1, then, for all n sufficiently large, the right side in (4.29) dominates  
exp { - k(j,)(IG(fl) + 6)} ~ n -  ~aG(~)+ ~). This completes the p roof  of the theorem. 
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5. Important Corollaries 

We use the topology of vague convergence in M. Closures in M will be with 
respect to this topology. 

Theorem 5.1. Let CG={fl c m : IG(fl) < 1}. Let L.(co,-) be defined by (4.20). Then 
for almost all co 

O cG (5.1) 
rg /=  1 n-->rtl  

Proof. With d(n)=b(n), k(n)=[n/b(n)] and x = 0  we define s  as in (3.16). Since 

sup [L,(co, A) - L,(co, A)] < 2 (n - r(n)) 0 
~ r(n) 
A e ~  

(note that r(n)=k(n)d(n)~n) ,  the set of limit points of {L,(co, .)} is the same as 
that of {L,(co, .)} for each co. Therefore, it suffices to prove (5.1) for L,. 

We first prove that the left side in (5.1) is contained in the right side. Let 
N~ be an open neighborhood of C G. Since I G is lower semicontinuous on M, 
we have inf IG()t) = 0 > 1. Let 0 < 7 < 1 be such that 0 ? > 1 and let j ,  = [exp (n~)]. 

Let e>0  be such that 7 ( 0 - e ) >  1. By Theorem 3.2 

P [s e N~] < exp { - k(j,)(0 - e)} (5.2) 

for all n sufficiently large. The right side of (5.2) summed on n converges. 
Therefore, by the Borel-Cantelli lemma 

This means 

P[Lj.(co, " )eNf  i.o.] =0.  (5.3) 

P]-~ U {Lj.(CO,')}~/~I]=I- (5.4) 
ra n ~ r n  

Now, if J,-1 < P ,<J , ,  then c(p,)/c(j,)--*l, consequently for any continuous f 
with compact support and coef2 

lira Is f )  - Lj~(co, f)[ = 0. 
n 

Therefore {Lv.(co, .)} and {Lj~(co, 9} have the same vague limit points and 

P[-0  Q) {~(co, ")} = N a ] = l -  (5.5) 
?n n > r n  

oo 

Since we can pick N j = ~ + I ,  Nj open, j > l ,  such that ~ N j = C G ,  (5.5)implies 

that the left side in (5.1) is contained in the right side. J=l 
To see the converse, by Lemma 2.16 [8], the set D of probability measures 

fi with compact supports and satisfying IG(fi)< 1 is dense in CG, so there exists 
D1 ={fia, f12 . . . .  } c D  which is dense in C G. By Theorem 4.5 the left side in (5.1) 
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contains D 1 a.s. and since the left side is a closed set it must  conta in /51 ,  hence 
C G �9 

The following theorem is an immediate  corollary of Theorem 5.1. 

Theorem 5.2. I f  �9 is a functional on M which is lower (upper) semicontinuous 
on M in the vague topology, then 

lim sup o(L,(co, -)) > sup O(fl), a.s., (5.6) 
n (<) f l eCG 

where L, is defined by (4.20) and C v = { f l e M :  IG(fl)< 1}. 

This has the following corollary. 

Corollary 5.3. I f  ~b is a continuous functional on M in the vague topology, then 

lim sup 4~(L,(co, . ) )=  sup ~b(fl), a.s. (5.7) 
n fleCG 

6. Applications 

We now turn to applications similar to those in Sect. 4 I-8]. As before 

C~=(p~M:  I~(/~) < 1}. 

Recall that c(n) = a(b(n)). 

Example6.1. Let  V be 
Ix[--* oo, then 

a cont inuous function on R such that  V(x)--->O as 

l imsup  1 " i  1 - V(Sjc(n))= sup S V(x)dfl(x). (6.1) 
n j = o  /~eC~ 

Proof. For  f lEM, O(fl)=~ V(x)dfl(x) defines a cont inuous functional on M and 
(6.1) follows from Cor. 5.3. 

Example 6.2. Let  V be a cont inuous function on R such that  V(x)~oo as 
Ixl~oo, For  fleJC/, let 

O(fl) = ~ V (x) d fl(x), if the integral is finite 

= o% otherwise. 

Define O(f l )=oo on M - J C L  Then 

ln-1 
l i m i n f -  ~ V(S;/c(n))-- inf S V(x) dfl(x). (6.2) 

n g/j=O fl~CGcaJl 

Proof. It is easily seen that q~ is lower semicontinuous on M. Let  q)~ be a 
continuous,  nonvanishing, function on ( - o %  oo] such that  I(0=(x)-x] <E for all 
x and (p=(x) = x  for Ixt >e.  Then  69=o 4~ is lower semicontinuous and (~o=o 4~) -1 is 
upper  semicont inuous on M. By Theorem 5.2 we get 

,,t lim inf~o~ ~ V(S/c(n  > inf ((o= o q~)(fi), a.s. (6.3) 
n j=0  fleCG 
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Therefore 
n - - 1  

l iminf  -1 ~, V(S/c(n))> inf ~(/3)-2e.  (6.4) 
n H j = O  ,g~CG 

Since ~ ( f l ) = ~  on M - J / / ,  the inf on the right in (6.4) can be taken over 
Cac~ J L  

We now prove the inequality in the opposite direction: Let /3 be a proba- 
bility measure on R such that /3{x: Ix] <a} =1 and IG(fi)<l. By Theorem 4.5 
this /3 is a limit point of L,(co, .) along sequences where L,(co, .) is supported 
by l --a ' ,  a"] a.s. Therefore 

n - - 1  

lira inf -1 ~ V(S/c(n)) < J V(x) d~(x) (6.5) 
n F / j = O  

a.s, for each such /3. As observed in the proof of Theorem 5.1, let D 1 be a 
countable set of such ffs dense in C a. Then the right side in (6.5) can be 
replaced by 

inf j V(x) d/3(x). (6.6) 
fleD1 

Now suppose that /3~Jgc~ Ca, and ~ V(x)d/3(x)< oo. Then if/3,cD1, /3~/3, we 
have 

j V(x)a/3~(x)--, j V(x)d~(x), 
[a, b] [a, b] 

where a, b are points of continuity of/3. It is thus clear that 

lim inf J g (x) d /3,(x) > ~ V (x) d /3(x). 
n 

Therefore the quantity in (6.6) is the same as the right side in (6.2). This 
finishes the proof. 

If we take V(x)=lxl  a for a > 0 ,  we get Theorem 1.3 of the introduction. For 
a = ~ = 2, the constant on the right side in (6.2) is identified in [8] to be 1/4. 

Example 6.3. For c > 0 let 

�9 ~(/3)=p{x: Ixl ~c}, 
and 

~;(/3) =/3{x: Ixl <c}, 

the r is upper (lower) semicontinuous. If Ia(/3)< o% then /3 is absolutely 
continuous with respect to Lebesgue measure [5], hence 

sup ~c(/3)= sup q'c(/3)=kc, G. (6.7) 

It is clear that for fixed G, the limit distribution, kc. a increases in c. Let c~ be 
the smallest c such that k~, G = 1 for c > c G. The existence of such a % is pointed 
out in [8]. It is also shown there that if ~ = 2  (i.e., G is N(0, 1)) then cG=8-1/azr 
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(this cor responds  to s tandard  Brownian  motion).  This Constant c a is identified 
with the constant  of  (1.11) in [8]. 

By Theo rem 5.2 appl ied to ~c and ~'c we get 

ln~ 1 
l i m s u p  - ZEo,~(lSjl/c(n))=kc, G, a.s., (6.8) 

g/j=o 

and for c > c a the right side equals 1. 

Example 6.4. This example  is T h e o r e m  1.2, and we now give its proof. Suppose 
c < % ,  then by (6.8) we have 

n - - ' l  

l i m s u p  -1 ~ )~O,cj(lSjl/c(n)<l, a.s. (6.9) 
n n j = O  

Therefore  a lmost  surely there exists e > 0 such that  for all sufficiently large n 

n - - 1  

XtO,cl(ISjl/c(n)) < (1 - ~) n (6.10) 
j=0 

and this implies 

lim inf(A,(o))/c(n)) >_ c, a.s. (6.11) 
n 

It  remains  to prove  the opposi te  inequality. Let  % < c < c ' .  Suppose  there 
exists a fl~ ~//t such that  fi{x: Ix[ <c}  = 1 and IG(fl)< 1, then by T h e o r e m  4.5 we 
have 

lim inf(A,(co)/c(n)) < c', a.s. 
n 

It is thus sufficient to show that  for any c > c a such a fl exists. By the definition 
of c a, there exists a sequence {ft,} such that  f l , ~ C a ,  so ft, is absolutely 
cont inuous  with respect to Lebesgue measure,  and ft ,{x: ]xl<c}-- ,1 .  It follows 
that  a long a subsequence ft, s i l  o and rio{x: [x] <c}  =1 ,  and  since I a is lower 
semicont inuous,  Ia(flo) < lim infla(/~,) < 1. N o w  let 0 > 1 and define 

n 

fl(A) = flo (0-1/~A), A ~ 2 .  (6.12) 

Then  by the scaling p roper ty  

OIa(fi) =I t ( r io ) .  (6.13) 

If  Cl>C, then 0 > 1  can be picked so fl{x: I x ] < c l } = l ,  and by (6.13) we have 
I a ( f i ) < l .  The  cons tant  c a is identified with the constant  of  (1.11) in [8]. This 
finishes the proof. 
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