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Summary. We study the increase in statistical information obtained by 
adding independent observations, as measured by the LeCam-deficiency 6. 
The main object of our study is the case where the observations follow a 1- 
parameter  exponential law. We show that when the parameter  set is a 
compact, non-degenerate interval and r is a fixed integer, then 

n 
]~/~z e < liminf n 6 (do", o~"+Y) < limsup - 6(do n, don + r) __< 2 ] ~ r c  e 

r r 

where 6(do n, do"U) is the deficiency of g o" with respect to do"U, and do" is the 
experiment consisting in taking n independent observations from do. 

I. Introduction 

We define an experiment as a pair ( (• ,d) ,  (P0: 0eO)) where (~r, d )  is a measur- 
able space, {P0} is a family of probability measures over ( ~ d )  indexed by 
some set O, the parameter  space. 

In order to compare experiments with respect to "content  of statistical 
information" we use the concept of deficiency introduced by LeCam (1964): 

Let do=(~ ,d ,  P0: 0~O), Y = ( ~ , M ,  Qo: OeO) be experiments with a common 
parameter  space O, and let t: O --, [0, ~ ) .  We say that do is t-deficient relative 
to ~ if for any decision space (T,5 P) where 5 e is finite, any bounded loss 
function L: O x T--,IR and any decision rule a (to (T,5~)) in Y,, there exists a 
decision rule p in do (to (T, 5P)) so that 

PopLo<=QoaLo+to IILoH, V0 (1) 

where IlL o II = sup ILo(t)l. 
t 

In (1) we may replace ILL011 by IILIF and we may confine ourselves to non- 
negative L if we replace "e 0 in (1) by ~e 0 . If  8 is 0-deficient rel. ~ ,  we say 
that g is more informative than g (written do>~-) and if both g > ~  and 
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~ > o  ~, g and ~ are said to be equivalent (written ~ ) .  The infimum over 
all constants e>0  such that C is e-deficient relative to ~- is written 6(C, ~ )  and 
is called the deficiency of G relative to ~ The A-distance between 8 and J is 
defined by A(o ~, @) = c~(C, ~ )  v c~(,~, C). The class of experiments which are equiva- 
lent to an experiment E, is called the experiment type of E. The class of all 
experiment types (strictly the class of suitably chosen representatives) form a 
set IF., and (1E, A) becomes a complete metric space (LeCam (1974a)). 

If ~=(f, ,s~,P0; 0eO) and g = ( f , N ,  P0]~; 0EO) where N is a sub-a-algebra 
of s~r and P0IN is the restriction of P0 to N; then obviously E__<~,~ One measure 
of the loss of information when observing only N-measurable events is 6(~, ~) ,  
another is the insufficiency (LeCam (1974b)). It is defined by 

t/(g, Y) = inf sup I I P0* - P0 II 
{P~} 0 

where the infimum is taken over all families {P0*}0~o such that P0* fN=P0]N 
and N is sufficient for {P0*}; H" II is the total variation norm. 

The concept of deficiency has several interpretations, which are natural 
ways of formally defining loss of information. We mention here the following 
theorems (LeCam (1974)): 

(i) Let ~ = ( ~  ~,  P0: 0eO), ~ =(~,, ~,  Qo: 0eO), e: O ~ [0, oo). 

Assume ~ is dominated. Then ~ is e-deficient relative to Y if and only if  to 
every decision space (T,b D) which is a Borel-subset of a Polish space with the 
restricted Borel-a-algebra and to every decision rule a in if, there is a decision 
rule p in E such that IlPop-Qoa[I <eo, gO. 

(ii) The Markov kernel criterion: 
Let o ~ , y  be as above. Assume that ~ is a Borel-subset of  a Polish space and 

N is the restricted Borel-a-algebra. Then C is e-deficient relative to J if  and 
only if there exists a Markov kernel M: N x : ~ ' ~ [ 0 , 1 ]  such that IIPoM 
-Q011 <e0, V0. (A Polish space is a complete separable metric space equipped 
with its Borel-a-algebra. A Markov kernel is a mapping M: N x ~ r ~  [0, 1] such 
that 

(a) M(-Ix) is a probability measure for every x ~  r 

(b) M(BI ") is measurable for every BEN.) 

Assume ~ , ~ e , T , ~  are as in (i), and further that P(.), (2(.) are Markov 
kernels from (O, r where ~ is some a-algebra over O. Let L be a bounded 
and ~ x SP-measurable loss function. Then both Oc-vP o p L o and Or~,Q. o a L o are 
bounded and -if-measurable for all decision rules p and a, and we may define 
Bayes risk by 

b~--- inf 2P p L 
P 

where 2 is a probability measure over (O, #) .  For all constants e> ~(o ~,ff) we 
have, for all a in ~ :  

For some p in 
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Then 

PoopLo<QoaLo+e IlL[I, g0  

b~ < 2Q a L +e []LII. 

1 bE_2QaL)=llLl](b~_b~). (2) 
6(g, ff)_->sup I[Lll ( 

There is a connection between CE-sufficiency ("conditional expectation"- 
sufficiency, i.e. sufficiency in the sense of Halmos and Savage) and deficiency, 
due to Bahadur: 

If 
g =(f , ,~,P01~; 0~0) and ~ = ( f ,  d ,  P0; 0~O) 

where ~ is a sub-a-algebra of ~r then 
(i) ~ is CE-sufficient for g 

implies 
(ii) 6 (&, g )  = 0. 
I f  g is dominated, then (ii) ~ (i). 
In the following we will consider experiments of the form 

g"=(x", d~ P0"; 0 o) 

where g = ( f , d ,  P0; 0~O) i.e. g" is n independent replications of g. It is obvious 
that g"<g" when n<m, and a natural question arises: How much more 
informative than f "  is g "  - what is 6(g",g")? Aside from the theoretical 
interest, knowing 6(&", &m) may possibly be useful in the planning of replicated 
experiments when the exact nature of the decision problem is not determined 
on beforehand. Let K(g) denote the "cost" of performing g and L some loss 
function. Then the "total  risk function" under the decision rule p is RE(O ) 
=PopLo+K(g). Suppose that IIL[I<I. We then prefer g" to g ,+ l  when 
6(g",g"+,I)<K(&"+,I)-K(&"), and g"+) to g" when 6(g", g"+))>K(g"§ 
-K(N").  That g" is better than &m in the above sense means that: To any 
"total  risk function" Rgm there exists a RE, (which is the risk for the same 
decision problem) such that 

RE, < RE~. 

Example1. Let ~ consist in observing X ~ N ( 0 ,  a) where a is known. Then 
(Torgersen (1972)) 

6(C~ ~ ! l/2/  e. 

If we let K(&")=ko+nk 1, then no=]f l~e /k  ~ is the optimal sample size in the 
above sense. 

Intuitively one may expect that g" gets very informative as n ~ ~ ,  and that 
one additional observation gets more and more unimportant. When O is finite, 
then A (&", JH,) --* 0, where ~/~, is the experiment where 0 itself is observed 
without uncertainty. In fact, 
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n n 

where 

c(N)= max inf ~dP0~-tdpJ2. 
0 1 4 - 0 2  0 < t < l  

(If 01 4=02 ~ P01 +P02, then c(#)< 1.) If O is countably infinite, then 

for some c > 0 and p < 1. However, we need not have convergence at all, e.g. if 
{P~} has a limit point for setwise convergence then 

&(g", JCla)- 2. 

If O is uncountable and ~ is dominated, then 5(g, Jr always. These results 
are from Torgersen (1976). 

Now let C be an experiment with uncountable O such that 0r-,.P 0 is (1-1).  
Since the restriction g"]F of #" to finite subsets F c O  must converge to J/I~[F, 
~/~a is the only possible A-limit for {N'}. If now g is dominated, 

A(g",g m) +-, 0 since (IE, A) is complete. This implies that ~ 6(d ~ 
n ,  r n ~  oo k = O  

g,+k+)) +_~ 0 and furthermore that 
n ~ o o  

liminf(n-~/&(E ", ~"+1)) = 0 

for all ~ > 1. 
The insufficiency fl(g",g"+~) may be used to study 6(g",g"+)) since 

t / ( . )>6 ( . ) ,  but the approximation may be poor: If g consists in observing 
X ~N(O, 1) (Example 1) then 

1 ~ 1 

~ ( N " , g " §  e ~"1/n 

a = 6 ',+ 

LeCam (1974b) has shown this, and also the following result: 

For all n, k > 0 
F ~  

where D, is a dimensionaIity constant for O. 

D, is determined in the following way: The Hellinger distance H(H2(p, Q) 

=I(1/dP-1/dQ) ~ for probability measures P, Q) induces a metric on O: h(O, 0') 
=H(P0,P0, ). Put G=2-(~+)  ~ b~=2-~/2; v=1,2  . . . . .  

For finite S c O, diam S < b~_ ~, let {Az} be a finite covering of S by sets of 
diameter not exceeding G. Say that indices i,j are "distant" if 

sup {h(0, 0'): OeA i, O' ~Aj} > b~. 
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For each i, let C'~ be the number of indices distant from i, and let C s = sup C'~. 
i 

Choose {A~} such that C' is minimal, and put c(v)=sup C s where the supre- 
s 

mum is taken over finite S c O  such that diamS<b~_~. Let K , = I  
vsup{c (v ) :T<n}  and put D ,=161og6K, .  

LeCam also gives an example of an do such that 6(do",do"+.~)+-~0: 

Example2. Let (X,d, 2) be [0, 1] equipped with Lebesgue-measure 2, and O 
={0,1,2 .... }. 

Let Iko be the indicator function of the interval [2-0(2k+1), 2-0(2k+2)]. 
Assume that 

dPo, , ~ 
57tx) = L 2Iko(X) for 0>1, 
~A k=O 

Po=,L 

Let do=(~s~,P0; 0eO). Then 6(do", do"+ l) > l, Vn. In fact, for large enough k, let 

re=k32 ". Then lim a(dol~m, dol~+))>l where O , ,={1 ,2 , . . . ,m+ l}  and do[ore 
m ~ o o  

denotes the restriction of d o to 0 m. 

Torgersen treats the case where do is a translation experiment, and mentions 
the following examples: 

Example1 (Continued). Let do consist in observation of X~Nk(O, ~) where X is 
known and positive definite, and the unknown parameter 0cO =IR k. Then 

2kFk'(k)r 
6(do", do"+~) 

n 

where F k is the cumulative distribution function of the zZ-distribution. 

Example 3. Let do consist in observation of X ~ R  (0, 0], 0eO = (0, oe). Then 

2 r  a(do., do,+ r)~__. 
e n  

In the light of these results, it seems reasonable to guess that 

a(do", do"+)) = c 0  + o(1)) 
n 

for O uncountable and g "nice". Our main result is that in the 1-parameter 
exponential case with O a nondegenerate compact interval 

1/2/~ e < liminf(n 6(do", do,+ 1)) < limsup (n 6(do", do"+))) < 2 l/2/~z e. 

We will be referring to wellknown results about the exponential experiments, 
which can be found in e.g. Lehmann (1959). 
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2. Upper Bounds for 5(g",e~"+l). Multinomial and General Experiments 

In this section we will first consider the experiments g" consisting in observa- 
tion of the i.i.d, variables B 1, ...,B,, where B~ assumes the values 1 . . . . .  s with 
probabilities 01, . . . ,0 s. The parameter 0=(01 . . . . .  0s)~O which is the standard 
simplex in lRS{x~[0,1JS: Z x i = l  }. By sufficiency we get # ' ~  where J~ 
consists in observation of the multinomially distributed variable Z,  
--(X 1, ...,Xs). Xj is the number of B~, i=1  . . . . .  n with value j. 

The Markov kernel criterion is a useful tool for finding upper limits for 
deficiencies. In our situation a Markov kernel may be found in the following 
way: 

Bnr takes on the value i with probability 0~. An estimate for 0~based on 
Z,  is Oj=X]n. We may predict Bn+ 1 by letting the predicted value B,+ 1 equal 
i with probability 0~. This corresponds to using the Markov kernel 

1 
m(y[X)=nXi~ when yj=xj 'q-f i j  , Vj 

= 0 otherwise. 

(Here 61j is the Kronecker-delta.) 
Let Po be the law So(Z,) of Z, under 0 and let Qo be ~ o ( Z n + l ) .  Then Po M 

has the density w.r.t, counting measure 

fo(Y) = ~ m(y I x) Po ({x}) 
x 

= 2 y ~ - I  n! Of'... Of'-1... Of,. 
i:y~,o n yl [ . . . ( y i -1 ) ! . . . y s  ! 

If we write qo for the density of Qo we have 

fo(Y)qo(y) - 1 qo (Y). IIPoM-Qol[ = ~ Ifo(y)-qo(y)l = 
Y Y:qo(Y)* 0 

This may be written as an expectation (where (YI~ .-., I1,+ 1) has the distribution 

Qo): 

Y~(~- 1) 
IIPoM-QoN--Eo l - ~ n ~ n +  1)0 i (3) 

where the summation is over the set S o of ie{1 ... .  , n+  1} such that 0~q=0. 
The r.h.s, of (3) is 

nO~ II 
~-i . -) (4) 

<E~ ~ 7 ~ 1  (n+l)Oi 

The last member of (4) is 
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The first member is 

Yi(n + 1 - Y,.) Ydn + 1 - Y~) E0 s2o = E0 
= ~ l - 0 1 < s - 1  

so n + l  = n + l "  

1 <~Eo ~-Oi (n+ \n + 1 i/ (n 1) 

"-<2 leo Y-" 2 2 +=So ~ [Oi(1--Oi) 1----Oi -]�89 
so ' ~ -1 -  (n+ 1) OiJ 

~ 1 - 0  i s - 1  
= ~ n + l  < �9 = n + l  

It follows that in the multinomial case 

s - 1  
6(•", 60"+. 1) < 2 n + 1' (5) 

This must also hold for all experiments 8 where the o-algebra has at most 2' 
elements. This condition is equivalent to the o-algebra being generated by at 
most s atoms (see Neveu (1965)). The indicator variables for these atoms have 
a s-nomial distribution, and since every function from the sample space must 
be a function of these indicator variables, they must be A-sufficient for the 
original experiment. 

One may attempt to approximate more general experiments by multino- 
mial ones in order to extend the deficiency result above. However, we have the 
following example, which shows that letting s increase introduces complica- 
tions" 

Example 2 (Continued). g[om has a sufficient o-algebra cg generated by the 
partition Bm={[0,2-m}, [1-2-" ,  2 ' 2 - " }  ... .  } since Po(X) only depends on x 
t h r o u g h  I[o,2-m), . . . .  Then card(Cg)=22m, so that 

6(g~ g ,+ l  iota) <= 6(Jd, ~d  + 1) 

where ~m is the 2m-nomial experiment. Since 6(6~"]o~, E'lo~+l),~o 1, we see that 

if g, is s-nomial, then 

sup 6(g:, g~+ 1) > 1. 
s 

The above calculations (leading to (5)) were first carried out for s=2,  and 
Torgersen noted the validity in the general case. 

The idea behind the Markov kernel method for the multinomial case can 
be applied to more general experiments. 

Let g = ( X , d ,  P0; 0~O) where {P0} is a homogenous family dominated by 
some o-finite measure #. Let fo=dPo/d#, and let X~ . . . . .  X, denote the observa- 
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tions from g". We will now construct a Markov-kernel  from d o" to do"+), in the 
following intuitive way: We first estimate a density f for P0 and draw J( 
randomly according to this density. We then draw an Ie{1 . . . .  , n +  1}, and use 
Xt . . . .  , X1 - l, J(, X,__ ~, ..., X ,  as a new set of observations. The last step "dis- 
tributes the error among the components"  of do"+ ~. This method is an analogue 
of the method for the multinomial  case, except that in general we cannot use 
reduction by sufficiency. 

Let us denote the following condition by A: 
(i) ~ contains all singletons {x}, xeSf  

(ii) There exists a nonnegative function 

f :  X"+ I --+ IR 

which is simultaneously measurable and such that 

~ f(y; x)d#(y)=l for all xE~". 

Define the Markov  kernels 

M,.: ~,,+1 x:~"--> [0, 1] 

by 

M , . ( . I x ) = f x ,  x .. .  x &x,_l  x ~ r ( . I x ) x  &xr x ... x f x ,  whe re  f ,  

is the one-point (Dirac) measure in teX,  x = ( x  i . . . .  , x , )  and 

M ( A l x ) = ~ f ( y ;  x)d#(y),  A e ~ .  
A 

We see that Mr(~7"+,llx)=l, V x  and that, for all B e ~  "+i 

Mr(B Ix) = ~ I , ( x  i . . . .  , x~_ i, Y, x~,. . . ,  x,) f ( y ;  x) d#(y) 

which is measurable in x by the Tonelli theorem. Put 

1 n + l  

M = - -  ~ M ~  
n + l r = t  

which obviously is a Markov kernel. 
I f R = R  1 x ... x R , +  1 is a rectangle in ~ , + t ,  we get 

PoMr(R) = S 6xl(e1) "' "( f f (Y;  x) d~(y)) . . .Sxj in+ 1) dPo"(x) 
~ R~ 

= ~ fo(YO...f(Y~; Yl . . . . .  Y~- 1, Yr+~ . . . .  , Y,+ 1)...fo(Y,+ ~) d# "+~ 
R 

by Tonelli's theorem. It follows that 

dPonM 1 "+l f ( y , ; y  1 . . . .  ,yr i ,Y,+l , ' "  Yn+ a ,+l  
(Y) = ~  ~i= fo(Y~) ", lJ l~ fo(Yi) d # n +  1 

1 
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and that  

n+ll n+li 2~ 1 r ,  f(Yr; Y1 . . . . .  Yr 1, Y~+I,. . . ,Y,+I) 
[[Po" M -  Po"+) ll = go 

where (Y1 . . . .  , I1,+ 1) is distr ibuted according to P0 "+ 1. 
We have t h u s p r o v e d  

Lemma 1. I f  N is an experiment and f a function, satisfying condition A, then 

cSC, do~+l,<s u 1 n + l f ( Y ~ ; Y  1 . . . . .  gr-l'Yr+l'""Yn+l) 1 
( ' "J=o~ pE~  n + l  ~ )c0(g ) (6) 

where I11, Y2 . . . .  are i.i.d, with law Po. 

3. Upper Bound for 6(0 ~", o~n+)) when {Po} is a 1-Parameter 
Exponential Family 

Let  g = ( (~ ,  ~ ) ,  (Po: 0~O)) where OcIR and 

dP~ - A( O) e~ h (7) 
d# 

where # is some o--finite measure on (W, d ) ,  T and h > 0 are r andom variables 
and A" O - ,  IR. The set of 0's such that  (7) defines a probabil i ty measure for a 
suitable A, is the natural  parameter  space of {P0}, and must  be an interval I. In 
the interior I ~ of I, the function A is analytic. For  all 0, A(0)>0,  and we can 
without  loss of generality assume 0~I  and write 

dP~ - e  c(~176 0~O. 
dPo 

We can now formulate  the following result: 

Proposition 1. Let g = ((W, d ) ,  (P0: 0~O)) where 

dP~176176 OEOcIR.  
dPo 

Let 0 be a bounded set, and assume that an endpoint 0 o of the natural parameter 
set is a limit point of  0 only if  c has continuous one-sided derivatives up to and 
including 4th order in 0o, and that c"(Oo)~= 0. Then 

limsup(n 6(g n, g" + 1)) __< 21/2/~ e. 

Since 6 is a pseudometr ic  and thus obeys the triangle inequality, we get the 
following trivial 
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Corollary 1. Under the conditions of Proposition 1 and if r is a fixed integer, 
then 

n 
limsup r 6(g", #"+ ~) <= 21/2/~ e. 

Examples. The conditions above are fulfilled when # consists in observation of: 
(i) X ~ bin(l, p), p ~ [-Po, Pl] where 0 < Po < Pl < l. 

(ii) X,-~ Po(2), 2~A where A is bounded away from 0 and oo. 
(iii) X ~ N ( 4 ,  a), with a known, 4EO which is bounded. 

The exact deficiency is (Torgersen (1972)) 

~(#", g"+ l)~ 21/~/n ( -  0.48/n) 

and this holds even for unbounded O. It is seen that our method gives a 
bound that is 2 times too large, but with correct rate, and we have to assume 
an unnecessary boundedness condition for O. 

Proof of the Proposition. We use Lemma 1 in the proof. The estimated density 
f(y; x) is obtained in the natural way from the maximum likelihood estimate 
for 0. To facilitate the use of maximum likelihood estimation we first repara- 
metrize the experiment. The expression (6) is then simplified by a Taylor 
expansion and evaluated. 

We may assume that O is a compact interval. Furthermore, T is sufficient 
for g, so if ~ consists in observation of T, then 6(~", o~"+.1)=6(# ", #"+)). We 
can accordingly assume that ( ~ d ) = ( I R ,  N) and put fo(t)=(dPo/dPo)(t) 
=exp(c(O)+Ot), 0~0. For 0~I ~ we have EoT=-c'(O), var0T=-c"(O) .  If c'(O) 
= 0 for some 0, then all P0 must be concentrated in 0. In that case g ~ ~/~ (the 
totally non-informative experiment) and obviously g"~g"+). Assume therefore 
that e"(0)<0 for 0~I ~ If I ~  then O is just one point, so that g"~g"+), so 
we may assume that I ~  0. It is convenient to reparametrize the experiment as 
follows: Define 4: I ~  by 4 (0 )= -c ' (O)=Eo  T. Then 4 is a diffeomorphism 
from I ~ onto its image jo,  and can be extended to an open interval I ' =  O if O 
contains an endpoint 00 of I as indicated in the proposition. Since the deficien- 
cy between experiments stays unchanged under (1-1)- transformations of the 
parameter set, we can view # as an experiment over N where N is the image of 
O under 4 and thus a compact interval. Put -c = 4 - 1  co = c o 4 - 1  defined on an 
open interval J '  such that N c J ' .  We can thus assume that g is given by the 
densities 

For ~EJ ~ 

and 

f e ( t )  - -  dP~(t)  _ e ~ , ( o + , ( o t  ' 

- d P ~ o ( t  ) - 
4~N. 

o ' ( 4 )  

varr  T =  - c " ( z ( 0 )  = ( - c '(v(4))) '  1 
z ' ( 0  z ' ( 0 "  
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co and z are analytic in jo, and if 40=4(0o) is an endpoint Of J=~(I ) ,  then, 
since 4 ~3) is continuous in 0o and 4'(0o)40, z and co must have continuous 3- 
order derivatives in 4o. If c (4} is continuous in 0o, then A = exp o c must be too, 
but for 06I ~ A(4)(0)=~ T4e~ o =A(O)Eo T4, so that Eo T4 is bounded near 00. 
Fatou's lemma then gives 

EooT'* < liminf E 0 T 4 < oo 
0~0o 

so that EoIT I" is bounded when 0 ~ 0  o for r<4 .  Since Or-'.]Tl~e ~ is convex in 0, 
we have for 0 between 0 o and 01, 01~I ~ 

ITI  ~ eor ~ ITI r e ~176 v ITI" e O1T. 

It follows from Lebesgue's dominated convergence theorem that 

S ]Tlre~ ~ ]Tlre~176 

which entails that EolT[ r is continuous in 0 o for r__<4. 
We may assume that g" consists in observing the first n from the i.i.d. 

sequence 

r l ,  r2,---  

where T~ is distributed according to P0. This common probability space simpli- 
fies the notation in the proof. 

1 "  
a reasonable estimator for ~ is ~',=~,(T1, ..., T , ) = n ~  T~. We see that E S ,  

=4  and varS,--(n-c'(~))-1 for all ~eN. If N =  [a, b], let 

. . . .  ,r.)=Co, C. N 
=a ,  ~n<a 

=b,  ~n>b. 

To use Lemma 1 we put 

f(t;  tl .... ,t.)=f~o(O 

which obviously is measurable in (t, ta,.. .  , t,). Let 

If 4, 4 + A ~N, then 

r = ( log fr = z ' ( ~ ) ( t -  4) 

~,~(t) = f f  (O/f~(t). 

f~+A--f~ _A~) _t_I A2@ _t_A3 B 
ire - ~'~ (8) 

where B~,~=~f~))/f~ for some 4' between ~ and 4+A. Obviously, B~,a(t ) is 
measurable in (t, A). We see that 
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Put 

n 

~, = ~ + ( ~ ' ( ~ ) ) -  ~ )2 r162 
1 

r . 1 ,  r . 1 ,  .., r +l) 

in+l 
= ~(T~) 

j:#i 
A,i = ( , i -  ~ = ~J~'(~).  

Let ~>0, and let N ' = N c ~ ( ~ - ~ ,  ~+@.  
The expectation in the r.h.s, of inequality (6) from Lemma 1 can be written 

1 "+~ + 1-IN,((.i)). E~ ~ ~1 f~(Ti)-l(f~i(Ti)-fr ( 9 )  

Introducing (8), we see that the above expression (9) is less than or equal to 
(we suppress the dependency upon ~ and n and write ~bi=~b(Ti), 0i=~J(Ti) 
where convenient) 

[ 1 " +  - 1 n + l  
E ~ ~1'1(~(T/) ~/i +E  ~ ~ 0(T/)(@)2 

1 n + l  

+E n+ l ~ B~'(Ti)A~IN'(~i) 

1 ~+~ IN,(~) ) + e  ~ (f~- (T,) f~(T,)- 1 -  1)(1 - 

=A, I (~ )+ . . .+A, , (~ ) - -AI+ . . .+A 4. 

Let 4, ~ ~ in N. If we can show that 

nA~(~,) --~ gi(~), i = 1, 2. 

then the convergence must be uniform, so that 

sup n A,i( ~ ) ~ sup g~(~). 
~EN ~ N  

Assume therefore that A,~ and A,2 are evaluated under the parameter value 
~ :  

nA 1 = n A ,  I(~,)=IE[B~[ 

where 
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1 n + l n + l  

Bn--n_}..1 Z 21Oi~j i=lj= j,i 
1 (n+ 1 n+ 1 n+ 1 2\ 

--gl +1 \i~=1 j~=l ff)i~)j- i~=10i ) 

(10) 

Now 

IB.I<=C.=U.2 + V. 

1 
E C , - n +  1 E ( ~  q~iq~j) + n ~  E(~  q52) = 2z'(~,). 

We recall that ~ E r  r is continuous and therefore bounded for r < 4. 
Then 

(~r162 = T -  4. 

has zero expectation and bounded 3. order moment.  It follows 
Lyapunov's theorem that 

from 

u.~u 

where U is N(0, (z'(~))}). 
Ecq~ is continuous in ~, and varcq~ is bounded. Then obviously 

1 n + l  

n + l  ~1 (42-Eq~)&0 

(11) 

which entails 
P 2 , V~--,Er162 =~ (r 

We see that 

E(U 2 + ~'(~))= 2z'(~) = lim EC,.  

This implies (see Lo6ve (1963), 11.4.A) that C, is uniformly integrable in the 
sequence of distributions of (U,, V,). Then IB, I is also uniformly integrable, so 
that 

_ ix2 E IB, I---~ E IU2_.c'(~)]=.c'(~) ~ S I x Z _ l l ~ s  2 dx 

= z ' (~) (2 /~  ep .  

We have thus showed that 

limsup sup n A 1(~) < ]/2/~z e. 
n r 
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To show that nA.2(4.)--~ 0, we need to know that 

1 n + l  
E g(O,) P - , F~r g ( O ~ )  

n 1 

and 

n-~  1 1 - -L  
- g(O~) 4,7 o 

where g(x) denotes either x or [x[. 

for r = 1 , 2  

We have Or = qSg (t) + z"(4)(t- 4) - z'(4) so that 

I~Pe(T)I ~ "C'(4)2 ( T  - 2 4 T +  4 2) + 1"c"(4)1(I TI + 14 [) + "c'(4) 

(12) 

(13) 

which has continuous expectation w.r.t. 4 under pc. 
Since g(Or162 pointwise, it follows from the (generalized) Lebesgue 

dominated convergence theorem that 4r~Ecg(0r is also continuous. Also, 
varr g(0r must be bounded, so that 

1 n + l  
- ~ (g(~,)-Er P ,0 
n 1 

which proves (12). By the general Markov inequality we get that, for all 5>0, 

r n + l  r 1 1 r n + l  

P(ln-~-g ~ g(O,)4),l>el<-Eln- -~ ~ g(O,)q571 
1 g" 1 

r 

~ -  n-~ E lgOp~) q671~ O 
C, 

since the last expectation is bounded, and (13) is verified. 
Let 

and 

D. n + l  ~ ~Pl 

F,-n~_l ~ [~i[ �9 

Using the notation introduced above, we may write D, and F, as 

.+~(~,)_2 ~Tf Zg(r (1/.+1~)~ 

-2(1/~i-~) (n & Z g(*,)'~)+~ E g(r162 
with 

n + l  

6 =.-~ 2 r 
1 

(14) 
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We see that nA.2=E[D.], EF.= ,2 E[OilE(UJz ) , where U. is given by (10), so 
that 

EF. =Er I~'~, cnl/~'(~.)--' Er 1~'r 

Reasoning as before we see that, because of (11), (12), (13) and (14) 

F,, -~ , Ue Er162 2 

which has expectation E I~'1/~', and 

P 
D, , E~ ~ = 0. 

This implies that E IO, I---' 0. 
Now drop the assumption that 4, ~ 4. 
We have 

nA.3 (~) <=nE IB~(T~)I IA~I 3 I< . . . .  >(Ai). 

Since z is ( 1 - 1 )  and 0 c--. exp(0 T) is convex, 

er(r ~ eZ(r r § et(r 

for ~'~[~1,~2] =N' .  Also, 

I f~,3)l =fr IqS~, + 3 qS~, qS~, + qS~; I. (15) 

Because qS, ~b' and qS" are linear in T with coefficients continuous in 4, the 
second factor of (15) must be bounded by M(IT[3+ 1) for all choices of ~EN. If 
we put 

e~(~l) T § eC(r T 
Hr162 3 § e~(OT+o(O , 

we see that 

and that 

x ~,( r f f~,3)l/ fr =< He 

E~ He <M'(E~I [TI 3 +Er ITI 3) 

which is bounded on N. 
Now He(T/) is independent of A i, so 

nA 3 <= n(EH)(E [A~[ 3 ) =<1 (EH)(E[T-- 4] 3) ~ sup nA.3 (~) -~ 0. 
n r 

To conclude the proof of the proposition, we note that 
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A 4 = E(1 - IN,(~i) ) + E(~, (T~)fr (T~)- *(1 - I~'(~i))) 

=P(~'iq~n')+ ~ f~(ti) l~f~(tj) dP 
[~iCN'] j#-i 

=2P(~,r 2P(IAil__> ~) =<2 ~ -~ E(A~)__<2~-~ n-~ E IT -  ~?. 

Then obviously sup nA~4(~ )--* O. 

4. Lower Bounds for 6(~", O ~n'l ' l )  

Let E, f f  be experiments over O and let 2 be a prior distribution on O. Under 
certain regularity conditions we may interpret 6 (g ,~)  as the maximal differ- 
ence in achievable Bayes-risk. To bound the deficiency from below, we shall 
use inequality (2) for a certain decision problem. In some important special 
cases this bound actually coincides with the deficiency. However, it may be of 
some interest to note that this bound may be derived from an alternative 
measure of information with a certain intuitive appeal. This gives another 
interpretation of the deficiency (in some cases): 

An informative experiment must give rise to posterior distributions that are 
"concentrated" (on the average). A measure of this property is the con- 
centration function (see e.g. Hengartner and Theodorescu (1973)): 

Let # be a Borel measure on IR. The concentration function of # is defined 
a s  

Qu(l)=sup#[x- l /2 ,x+I/2];  l>O 

=0, /<0,  

i.e. Q~(l) is the "maximal concentration of/~ on a closed interval of length l". 
Acdording to the above reference Qu is a right-continuous distribution function 
and the supremum is achieved, in say xo(l ). Now choose l,$1 and r, Ol~, 

rr_'  ,+ ' , , l  _- rXo ,  ' , ' - '  r .~xo(l  ) such that 0 L" 2 '  2J [ - 2 ' x ~  

Then 

where 

[r _ 5  l, Q . ( l ) = # [ x o ( l ) - ~ , x o ( l ) + ~ ] = l i m # [ .  2, rn+~] 

< lim R~(l.) < lim Qu(l.) = Q~(l) 

[ '] R~(1)=sup# r - ~ , r + ~  . 
reQ 

If now #(" [x) is a (f, ,d)-measurable Borel probability measure, then for a 
fixed l > 0, Qu(-Ix)( l)-- lim R,(. i x)(/n) which is d-measurable  since R~(. i x)(ln) must 
be. 
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Assume that o ~ and Y are experiments with common parameter set O clR, 
consisting in observing the r.v.'s X and Y respectively. Let 2 be a prior 
distribution on O and let the concentration functions of the posterior distri- 
butions be Q~( l lX)  and Q~( l lY ) .  Then a plausible measure of information 
distance would be 

sup (EQ~( l l  Y ) - E Q ~ ( I I X ) ) .  (16) 
l 

Returning to the task of finding lower bounds for deficiencies, we will need 
the following observation: 

Let g=(X,~C, P0:0~O ) where O is a Borel subset of IR, and Or'~Po(A ) is 
measurable for all A. Let the decision space (T, 5 ~) be the set of closed intervals 
of IR with length l (with the obvious o--algebra induced from IR2). Let the loss- 
function be 

Lo(t ) = - 1, Oct 

= 1, OCt 

and let 2 be a prior distribution, with 2(" Ix) as posterior distribution. Then the 
posterior Bayes-risk equals 1 -  2 Qx(.ix)(1) and the Bayes-risk 

bx = 1 - 2 2 PQ~(.  i ~)(/). (17) 

This is seen as follows: 
Let p be a decision-rule. We can, according to Lo6ve (1963; 27.2 B) specify 

2(" Ix) as an d-measurable  measure over O, where 

,~ P p L = S (~ Lo(t) ~(d01x))(~ P • p) (dx  • tit), 

but 

so that 

inf~ L o(t) 2(dOlx) = 1 - 2 Qx(. I x)(l) 
t ~ T  

b~ = ~(1 - 2 Q~<. ix)(0) ;~ P(dx) .  

If we insert (17) into inequality (2), we get a lower bound for deficiencies 
which coincides with 2 times the measure (16). Also, we can utilize the well- 
known fact that posterior distributions often are asymptotically normal to find 
estimates of this lower bound. 

5. Lower Bound for 6(~", o ~"+r) when g is a 1-Parameter 
Exponential Experiment 

We will use the technique outlined in the preceding section to prove: 

Proposition 2. L e t  g = (X,, J ,  Po: O~ O) and let 

dP~176176 0 ~ 0  
dt 2 
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where # is a-finite, h > 0  and T are random variables, and 6 ) ~  IR contains a non- 
degenerate interval. Le t  r~ be a sequence o f  integers such that 0 < r, < n B for  0 
< f i <  1. I f  0 is identifiable or equivalently, T is not a.s. constant, then 

liminf n cS(d~, ' E~+r~)_>_]/2/n e. 

Otherwise, 3(g~, E "+r~) =0.  

Under the hypothesis of the above proposition, with 0 identifiable, and 
when in addition O c K c I ~ where K is compact and I the natural parameter 

of {P0}, then liminf and limsup of n3(o~", 8 n§ must lie in the interval space 
F 

I - ~ ,  2 ~ e ]  

(Here r is fixed). The lower bound is known to be sharp, cf. Example 1. 

Proof  o f  the Proposition. We choose a suitable sequence of prior distributions 
and compute the difference in Bayes risk between E n and d ~ for the special 
decision problem of the previous section. This is done by approximating the 
posterior distributions by normal distributions, and showing that the error 
thus introduced is of order o(r/n). 

If 0 is non-identifiable (i.e. 0 4 = 0' =~ P0 ~ P0,) then T must be a.s. constant so 
that g is the totally non-informative experiment P0--P, so that gn~  gn+ 1. 

In the case of identifiability we may assume without loss of generality that 
0eO ~ Introduce the new parameter h (not to be confused with the r.v. h 
appearing in dPo/d#) in E m, m = 1, 2 . . . .  by 

0 = h/l /~.  

Then 

We may write 

dP0 
~oo = exp {c(0) - c(0) + 0 T} .  

h , h 2 . 

where A(h/l/n)=c(a)(O')(h/1/n)3/6 for sufficiently small h, for some O' between 
0 and 0. This makes 

m m h  2 + h  ~(Ti+c,(0)  ) zt h dPh = exp -- c"(0)) + m . 
dPo m / ;  

Let the prior distribution 2 n have density w.r.t. Lebesgue-measure 

- n A /  h \ h2 ) h 
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where 

c,=cn q, c > 0  and 0 < q < l / 6 .  

We see that ~ O ~ n - - [ - c , , c J c  for all n>N for some N. It is easy to see that 
the posterior distribution function H,(t]X,,) in g "  (where Xm=(Xml ..... X,,~) 
is the vector of observations from #") is given by 

H,~.(tlX,.)=C..,(Xm) _i exp{ <. ( h -  #'nn)2 2 Omn 2 

for Itl < %  with 

2 _Ira 1 1 \  1 
, 

2 1 

1 
72 2 -  _ _  

- c " ( o )  

= - c '(O).  

We may as before regard T 1, T 2 . . . .  as being defined on the same probabili- 
ty space. However, their distribution depends on n (through 2,). We proceed to 
prove that Hr~ . is approximately normal. 

First, note that c (3) is continuous and bounded so that 

( h _>O 
0 8 )  

uniformly in Ihl < %  
By the way, this shows that 2,, converges weakly to the N(0, ~c)-distribution. 
We will need the following 

Lemma2.  Let fg~Ll( lR  ) be non-negative and such that the Ll-norms Ilfll, 
Ilgll > o .  

Then 

f iif~gl[ . fg  < 2  I I f - f g l [  < 2  IIf-fgll 
Ilf]l - N f l l v l l f g l l -  Ilfll 

Proof of the Lemma. Assume first that IlflE--> Ilfgll. Then 

f g  

)+ (irml ,77, llJl  
+ l lSg l l  Ilfll Ilfglll =<llSiSgllllSii + IlSgli~llllfll --<211S-Sgllllsll 

The case IISII < I l fg l l  is treated analogously. 
Let, for fixed Xm, the Ll-functions fm~, g,n, be given by 
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1 { (h-#m.)2~ 
fmn(h)=g 2 ~Z am exp 2 %.  J 

Applying the above lemma to f,~., g,.. we see that the difference between the 
distribution functions H,.. and 

Fm.(tlXm)= i fro. 
- - 0 O  

satisfies 

where 

Writing 

and using the relation 

L~ L.g,.~ <=f.,~ IFm.(tlXm)-H~.(tlXm)l~ -~i IIf~.gmnll 

<2A,.. +2Bin., 

Am= ~" le('-")~(~)_lldfm.(hlX., ) 
- -  C n  

B,..= F,~.(--c. IX,.) + I -- Fm.(c.]Xm). 

[e"-ll=lule v, Ivl~lul 

we find that when m < n, A,. n is bounded by 

IV} 2 K. exp K . .  

When re=n, A m = 0  and when m - n + r . ,  (18) entails that 

It will be proved later that also 

Let Q,.n and R.,. be 
spectively. Then 

g/ 

the concentration functions of Hm. 

Ln gm/l 
I[L.g,..l[ 

sup IQm.(llXm)-Rm.(llXm) I <2sup IHm.(tlXm)--F~.(tlXm)l 
I t 

and 

(19) 

(20) 

Finn re-  
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for all X~. It is obvious that  F~,, 
intervals of length 21 in the interval 

so that 

97 

will achieve maximal mass over closed 

Here q5 is the cumulative normal  distribution function 

@(t)= } (b~ qb(t)=(2~r)-ke -~t~ 
- o o  

It is easily seen that when m =  n + r 

2 c r2 ~ ~ /1  + 1 ~ - '  

1 1 1 r 

O'ran O'nn 2 ~ "2 2 Fl 

and that  (Taylor's formula) 

(21) 

n 2 -c2 ]~nn 

and 

(Rm.(2 I ) -  R. .(2 l ) ) ] / ~ ! ~ ( 1 ] / ~ )  _ 1]/~ ~b(ll~) 

The function t4(t) achieves its maximum for t = l .  Also, we may choose ~c 
arbitrarily large. This entails that  for l =  c~ 

n 1 

sup~ limsup r(Rm. (2 l) - R. .  (2 l)) > (2 lr e) ~. 

By the inequality (2) and by (17) we get, with m-=n+r 

Rmn(21)- R,,,,(2 I)= 2 

where 1 rT,~ j G fin < 1 r~  1, So that 

where G is between r - a m  n - 1 +  sc-2 and c~, so that %--> ~. Accordingly, by the 
mean value theorem 
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n n 
-6 (~" ,  E"+~)_>2 E~, ,p . , [Q, , , , , (21lXm)-Q, , . (21lXn)  ] 
r r 

n n 
> r [Rm.(2 II X,.) - R . .  (2 llX,~)] - r  E ]Q~.(2 llX,.,,) "Rm, , (2 / [X~)]  

FI 
- - E  ]Q..(2 l l X , , ) -  R.~(2 Zl X.)l, 

y 

The two last members  tend to zero by (19) and (20). Thus, if we can show (20), 
the propos i t ion  will be proved. 

We may  write F m . ( - c .  lXm) and 1-F, , ,n(GIX,.  ) as 

where 

e('~;,d ( % .  - ~.)) 

m 

1 

and u denotes n -  ~ or - n - ~ .  
Assume that  m is either n or n + ~;,. Put 

x ~  = n ~ ( ~ , . . ~  ( w i n .  - c . ) ) .  

N o w  O < X , , < n  so that  for all e > 0  

E X n = E X, ,  Itx" <= ~1 + E X,,  Itx" > ~1 < e + n P(X, ,  > e) 

and 

where 

m 

(22) 

v~=u(~-~). 

It is seen that we may  use a " large deviat ion"- type argument.  By the general 
M a r k o v  inequality applied to the distr ibution P0 m of T 1, T 2 . . . .  given 0, we get 

Po > d  n < e - d ~ E  exp = 0 

V 1 . . . . .  V m are now independent,  so that  the last expectat ion is 

( E o eV) ". 

We have 

E o u T =  -- u c'(O) 

Eo euT = ~ echO)+ (O+u) T d p  ~ = ec(O)-c(o+,,) 

for all 0 in a suitable ne ighbourhood  of  0, for sufficiently large n. 
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Now, by using Taylor 's  formula twice 

c(O) - c (O + u) = - u c'(O) - �89 u 2 c " ( 0 3  

: - - b I c ' ( O ) - - I A O C " ( O )  1 " A2 ~ (3 ) (A"]  1 " 2  r"t(gJ ']  

where [O'l, IO"l<cnn -~. Then 

(E 0 eV) m :- exp ( +mn  1 h) exp { - � 89  1 c"(O') +_ m n -  3/2h2 c(3)(0"))}. 

The second factor above is easily seen to be bounded when [hi <c , .  It follows 
from (18) that for suitable K' 

[. e xp (+_mn- lh )2n (dh )<K ' ~ exp(2]hl- �89  
-oo 

which is finite. Accordingly, 

2,,Ph" >d  n < K e  -e'. (23) 

Since the normal distribution has moments  of any order, 

Ixl 2/q ~ ( x )  . . . .  ~ 0. 

For  all e>0 ,  there is an M~(0 ,  oo) such that for x <  - M  

2 

2 

-q~ ~(~lxl-~)<lxl. 

Putting x = - r l  q/2 we see that for large enough n 

Together with (21) this implies that 

% .  q~- 1 = o(c.) as n ~ o o .  

By (22) and (23) we now see that 

E~.v,.(n Bran ) ~ 0 

which finishes the proof. 

1. Comments 

As mentioned before, we may expect that 6(d~ "+ 1 ) ~ r  for a wide class of 
experiments E, and it would be natural to try to extend our results. One 
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direct ion which is likely to be successful is to mul t iparamete r  exponent ia l  
families. Ano the r  is the class of experiments fulfilling certain "Cram6r- type"  
regulari ty condit ions.  To establish our  upper  b o u n d  we have essentially used 

(i) that  the density can be expanded in a Taylor  formula where the coef- 
ficients have b o u n d e d  momen t s  up to a certain order. 

(ii) The existence of a "n ice"  es t imator  ~" such that 

~nn 0 l o g f  (T_.~ 
1 

In  rather  general  situations,  s imilar  est imators exist, e.g. "the m a x i m u m  like- 
l ihood estimator.  

The proof  for the lower b o u n d  also essentially uses (i). Torgersen has 
suggested that  when S is a t rans la t ion  experiment,  it may be simple to 
establish (i) and  (ii). In  that case, we may hope to avoid the boundedness  
condi t ion  for O. 

Of course, an interest ing ques t ion  is whether our  upper  b o u n d  can be 
improved. This seems to call for a new method  of proof. 

Acknowledgement. This paper is a cand. real. thesis written under the guidance of Erik N. 
Torgersen, and the author is grateful to him for suggesting the problem, simplifying the proofs and 
for his advice throughout. 
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