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Summary. A random measure is said to be selected by a weighted gamma 
prior probability if the values it assigns to disjoint sets are independent 
gamma random variables with positive multipliers. If the intensity measure 
of a nonhomogeneous Poisson point process is selected by a weighted 
gamma prior probability and if a sample is drawn from the Poisson point 
process having this intensity measure, then the posterior random intensity 
measure given the observations is also selected by a weighted gamma prior 
probability. If the measure space is Euclidean and if the true intensity 
measure is continuous and finite, the centered posterior process, rescaled by 
the square root of the sample size, will converge weakly in Skorohod 
topology to a Wiener process subject to a change of time scale. 

1. Introduction and Preliminaries 

1.1. Introduction 

The problem of statistical inference in Poisson point processes has a long 
history. A poisson point process is characterized by the intensity measure or 
the derivative of the intensity measure (with respect to certain a-finite measure) 
called the intensity rate function. Thus, statistical inference problems for Pois- 
son point processes concnetrate on methods of estimating and testing the 
intensity measure or the rate function. However, the methods employed are 
parametric in nature in that the intensity measure or rate function is assumed 
to be of some linear or parametric form (Brown (1972), Lewis (1972), Cleven- 
son and Zidek (1977)). This situation has changed considerably with the 
appearance of Aalen (1978). In this article he proposes a class of nonpara- 
metric estimators for the intensity measures of the multiplicative point pro- 
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cesses and shows that they are well behaved asymptotically. However, his 
approach is from a sample theorist point of view. 

Motivated by Ferguson (1973) and Doksum (1974), the object of this study 
is to extend the idea of the gamma conjugate prior when sampling from a 
Poisson distribution to the infinite dimensional case and demonstrate how this 
extension can be used to solve the statistical problems for the Poisson point 
processes from a nonparametric Bayesian point of view. 

The type of prior process used here is the weighted gamma process. It was 
introduced by Dykstra and Laud (1981) as prior process for the hazard 
function and rate function in the reliability model. They show that the pos- 
terior processes are mixtures of gamma type processes. See also Lo (1978) for a 
similar result in a general point process model. In this article, we show that the 
weighted gamma processes are conjugate priors when sampling from the Pois- 
son point process model. 

In Sect. 2, we associate with each finite measure e on a measure space and 
each positive and c~-integrable function /~ a probability on the space of finite 
set functions {v}. We say that v has a weighted gamma probability distribution 
with shape c~ and scale /~, and denote this concisely by v ~ ,  ~. In Sect. 3 we 
demonstrate that if the prior distribution for the intensity measure v of a 
Poisson point process is ~ ,~ ,  then given a sample of size n; N1, N 2 . . . . .  N n 
from the Poisson point process, the posterior distribution for v is ~+ZNi, l+,p" 

In Sect. 4, we further restrict our measure space to the unit q-cube. We show 
that the posterior process converges weakly in D[0, 1] q to a Brownian process 
for almost all sample sequences, if the " t rue"  intensity measure is continuous. 
In Sect. 5 we demonstrate how the results in the previous sections can be used 
to solve the nonparametric statistical inference problem connected with the 
Poisson point processes, 

1.2. Some Preliminaries on Random Measures 

Let X be a complete separable metric space, d the Borel a-field and 12 the 
space of finite measures on (X, d ) .  This f2 topologized by weak convergence is 
a complete separable metric space (Prohorov (1956)). Let ~ be the a-field on 
f2 generated by (weak) open sets. Thus, (•, J//) is a measure space. Note that 
~/~ is the smallest a-field that makes all the projection maps # ~ # ( A )  A ~ d  
measurable. See Matthes, Kerstan and Mecke (1978), Chap. 3. Let N be the 
space of finite counting measures on X. N is a closed subset of ~2. Let the a- 
field ~2 be { N ~ C ;  Ced//}, that is, the restriction of JC{ to N. Note that 
(N, Y )  is also a measure space. 

Definition 1.1. A finitely additive random measure kt on the measure space 
(X, d )  is a family of random variables {#(A): A E d } ,  indexed by sets in d ,  
such that 

(1) #(A) is a positive real valued random variable for each A e d .  
(2) # (X)<oe  a.s. 
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(3) If {A~, ... ,  A~,} ; i =  1, ..., n, are n collections of measurable disjoint sets 
in d ,  then 

# ~ A  " i = 1 ,  . . , n  ~ ~ A i .  - , . = # ( j ) ,  i = 1 ,  . . . ,  n 
j = l  j 

where ~= denotes equality in law. 
We call a finitely additive random measure # a sequentially continuous 

random measure if it is sequentially continuous1 from above in the sense that 
if A , E d ,  all n and A,~O when n--,oo, then ~ { # : # ( A n ) $ 0 } = I .  According to 
Harris (1968), any sequentially continuous random measure # on (X, d )  has a 
version which is a-additive, i.e., N{#: # is a-additive} = 1, 2 and any sequentially 
continuous random counting measure N on (X, d )  has a version which is a- 
additive. To summarize, we have the following: 

Propos i t ion  1.1. Let # be a sequentially continuous random measure on a com- 
plete separable metric space X with preassigned finite dimensional distributions, 
then there exists a unique probability measure on (~2, Jg) with identical finite 
dimensional distributions. 

Let # be a random measure on X. The Laplace transform of # is defined by 

L , ( f ) = E e  -"(y), f s K §  

where K +. is the family of positive functions on X and 

#( f )  = Sf(x)  #(dx). 

The following result is well known (see for example Kallenberg (1976), page 
16). 

Propos i t ion  1.2. Probability measures on (f2, J/l) or (IN, X )  are uniquely de- 
termined by their Laplace transforms. 

2. The  G a m m a  and W e i g h t e d  G a m m a  Priors  

It is well known that the family of gamma distributions is closed under 
convolutions for the same scale parameter. This property allows us to con- 
struct a prior probability on the space of finite measures. Fortunately, this 
prior probability turns out to be also tractable from a Bayesian point of view 
in the Poisson case. We start with 

Definition 2.1. Let c~ be a finite a-additive measure on (X, d ) .  The random 
measure # on (X, d )  is said to be selected by a gamma prior probability if for 
all disjoint measurable sets A3; j = l  . . . .  , k, {#(A;); j = l  . . . . .  k} is a family of 

1 This term is suggested by Lncien Le Cam 
2 N*{#: # is a-additive} =1 where N* is the outer probability measure if the set is not measur- 
able 
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independent gamma random variables with means c~(A); j = l  . . . .  , k, respec- 
tively and scale parameter unity. 

We say that # is a gamma random measure with shape c~ and scale unity. 
Note that conditions of Proposition 1.1 hold, so there exists a unique probabil- 
ity ~ ,  1 on ((2, rig) with these finite dimensional distributions. We denote this 
by # ~ ~ ,  1. The following two results are clear, 

(a) S # ( A ) ~ ,  l(d#)=c~(A), all A e d  

(b) S {#(A)-~(A)} {#(B)-~(B)} N~, l(d#)=c~(Ac~B), all A, B e d .  

For each positive valued a-integrable fi, the map #~f i#=v ,  where fl# is 
defined by fl#(A)--~fl(x)#(dx), A e d ,  is a measurable map from ((2, J{) into 

A 

(~2, d//). This can be verified easily when fi is an indicator and the general 
conclusion follows from a limiting argument. If #~N~, 1, we denote the induced 
probability measure on the range space by N~,p. Thus, v ~ , ,  and v is a 
weighted gamma random measure. We have the following: 

Proposition 2.1. 
(a') ~ v(A)~,~(dv)=fl~(A), all A e d .  

f2 

(b') ~ {v(A)-flcc(A)}{v(B)-ficc(B)} ~,~(dv)=flzcc(AcnB), all A, B e d ,  pro- 

vided f12 is c~-integrable. 
(c') I f  A;; j = l ,  . . . ,k  are measurable disjoint subsets of X, then v(Aj); j 

= 1 . . . . .  k are independent under ~ ,  ~. 
d') ~ e -~(f) ~ ,B(dv)=e-a( l~247 f]), all feK§ 

Proof (a') is a consequence of the change of variable technique. 
To prove (b'), a change of variable puts the left hand side of (b') into 

S J/~(x) {#(dx) - ~(dx)} y/~(x) {#(dx) - ~(dx)} ~(d#) .  
s B 

Now this is equal to fi2o~(AnB) if fl(x)=a.I{x~c}, when a > 0  and Ceag. We 
can conclude (b') with a limiting argument. 

(c') is true because if Ac~B=O, fi#(A) is measurable with respect to the a- 
field generated by the family {#(A~ C); C e d }  while fi#(B) is measurable with 
respect to the a-field generated by the family {#(Bc~ C); Cea/}.  The assertion 
follows because these two families are independent. 

(d') One first verifies this equality when f is a simple function, then a 
limiting argument via the dominated convergence theorem concludes the 
proof. D 

Next, we show that the weighted gamma random measure also preserves 
the convolution property in the following way. We denote fi# where # ~ ,  
by fl#~. Let {c~j;jeZ+.} be a family of finite measures on (X, ag) such that 

~)(X) < oo. We define 
J 

c~(A) = ~ aj(A), all Aeag. 
J 
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It is clear that  c~ is also a finite measure  on (X, sJ). 

Proposition 2.2. For each positive valued a-integrable fi, fi# ~ ,  fi#~j, 
summands are independent. 

Proof I t  suffices to show that, for fl~K+. 

where the 

L~u~(f)=HL~,,j(f); all feK+,. 
J 

Note  that  by a change of variable,  the above is equivalent  to 

L~.(ffi)=[I. Lu~j(ffl); all fi, f~K+,. 
J 

Thus, we only need to show 

L~.(g) = I~ L,~j(g); all gEK+.. 
J 

But then this is equivalent  to showing that  #~ ~= ~ ~ ,  where the summands  
J 

are independent .  Tha t  this is indeed the case follows f rom the convolu t ion  
p roper ty  of  g a m m a  r a n d o m  variables. [7 

3. The Posterior Random Measures 

Associate  with each v~2 ,  there is a Poisson point  process N={N(A); Aed}  
with distr ibution denoted by ~ .  No te  that  sets of  the form {N: N(Az)=kz; I 
=1,  . . . ,  s} where klsZ+,; / = 1  . . . .  s and {Al; l = 1 ,  . . . , s}  is any measurable  par-  
t i t ion of X form a determining class for ~ and 

~ { N :  N(A1)=k;/=1, . . . ,  s} = 12I Vk~(Al~) e -~(A~). 
l = l  kz! 

We call v the intensity measure  of  the Poisson point  process. Thus, for each 
ve(2, ~ is a probabi l i ty  on (IN, rig'). No te  that  ~ e N(h)~(dN)=e-~(l-e-h), all 

N 
heK+.. The p roo f  is the same as the p roo f  for Propos i t ion  2.1 (d'). Let  ~ be 
the produc t  probabi l i ty  on (IN x IN x . . .  • N,  W | 1 7 4  |  W ' )  and 
denote  N = ( N  1 . . . .  , Nn). Let  ~ be a probabi l i ty  on (~2, ~ ) ,  then 

(i) for each A = { N :  i _ i. N,.(A,)-k, l = l  . . . .  , si, i = 1  . . . .  , n } e W ' ,  where for each 
i, {AI; / = 1  . . . .  , si} is a measurable  par t i t ion  of X, we have ~"(A)  is a measur-  
able function in v; 

(ii) there exists a ~ -nu l l  subset  of O such that  for each v outside of  this ~ -  
null set, ~ "  is a probabi l i ty  on (IN', W' ) .  

Let  ~2 be defined as follows: 

~ 2 { A x B } = ~ ( A ) ~ ( d v ) ,  all AE~/" ,  B ~ J g .  
B 
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Let Q be the marginal probability distribution of N~ . . . . .  N., that is 

Q(A) =~2(A x ~2), A6dV'". 

Let ~ = ~ , ~  i.e., the weighted gamma distribution and denote the marginal 
distribution Q in this case by Q~, ~. 

Definition 3.I. We call a nonnegative real valued function P on IN"• ~g a 
posterior random measure given N~ . . . .  , N, if 

(i) for each N=(N~ . . . .  , N,)eN", P(N, .) is a probability on ~/{; 
(ii) for each B e ~  P(., B) is a measurable function of N=(N~, N~ . . . . .  N,); 

and 
(iii) for all A~W", B ~ ,  

~2(A x B)= S P(N, B) Q~, p(dN). 
A 

The ~3 probability measure disintegrates into the prior and the model 
distribution on one hand, the marginal and the posterior distribution on the 
other. Specializing to the Gamma-Poisson family, we have the following disin- 
tegration lemma in the case of n = 1. 

Lemma 3.1. Let  g be a positive valued measurable or quasi-integrable (with 
respect to ~2) function defined on (~2 X IN, Jr174 then 

Proo f  It suffices to show that the equality holds for g(v, N)=I{(v,N)~BxA}, where 
B s ~  and A~JV:. But then because of Proposition 1.2., this is equivalent to 
showing, for all f h e K  +, 

EE~ e -  v(f)-- N ( h )  = E E  u e -  ~(Y)- N(h) (2.2) 

where Ev is the conditional expectation given v and E N is the conditional 
expectation given N. To show (2.2), we note that E e - ~ ( f ) = e  -~d~ when 
v ~ , p ,  and E~ e-N(h)=e ,(1-e ~) because given v, N is a Poisson point pro- 
cess with intensity measure v. Thus, EE~e  -~(~) N(h)=e--~d~ h)]). O n  
the other hand, Ee--N(h)=e-~(l~ is the Laplace transform of the 

marginal point process. If given N, E N e-~(f)=e-(~+N)O~ f]), then 

E E  N e -  ~ (f)- N(h) = E e N(h) EN e -  v (f) 

=Ee-N(h) e- (~+ N)(l~ F1 + 1 ~  f]) 

=e-a(logFl+~+flf])Ee-N(h+logrl+j~flf]) 

= e-~(log[l+ 1J+~ f]) .  e-~(Iog[l+e{1-eZ(h+l~ 
=e ~(l~ f)(l+fl{1-e-h l~  

= e _ a ( l o g [  l + f i{  l + f _ e h}]) 
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which we recognize as the joint Laplace transform, so that (2.2) is true and the 
lemma is proved. I7 

Remark. This proof via Laplace transform was communicated to me by Lucien 
Le Cam. 

The following theorem says that weighted gamma priors are conjugate 
priors when sampling from a Poisson point process. 

Theorem 3.1. Let v ~ , ~ ,  and given v, N t . . . . .  N, is a sample of size n from a 
Poisson point process with intensity measure v, then the posterior distribution of v 
given N1, N2, ... , N, is 

~ +  ~ 
1 N~, l + n f l  

Proof. Since the posterior distribution of v given N 1 is Na+NI, i/? by Lemma 
+/? 

3.1, we can use N /? as the new prior and observe N 2. The posterior 
~+N1, - -  

1+/~ 

distribution given N 1 and N 2 will be 

~+N~ + N 2 , -  ~+N~ +N2, - -  
fi 1+2/? 

1 + - -  
1+/? 

This procedure generalizes to n, and the proof is completed. D 

We use the following example to illustrate the idea. 

Example 3.1. If fl(x)= 1, where 0>0,  we have a gamma random measure with 

shape parameter e and constant scale 1/0. It is easy to see that the marginal 
point process is defined by 

Q{N:N(A,)=kg'I=I, s}=fi r(a(A,)+k,){ 1 ~(A,)( i/Olk, 
. . . . .  r(~(A,))k,! \~ 1/ \~ 11 

where k~eZ+.; I--1 . . . . .  s and {A~; l = l  . . . .  , s} is a measurable partition of X. 
This is an independent negative binomial point process. Its Laplace transform 
is given by 

Ee-N(h>=e-~(1og[1+ ~ ~-~]). 

The posterior random measure after n observations is again a gamma random 
1 

measure with shape parameter e + N 1 + . . .  + N n and scale n +~" 
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4. The Limiting Posterior Distributions 

Investigation into the consistency of posterior distribution has a rather long 
history. A general proof of this phenomenon is given by Doob (1949) who uses 
martingale methods to obtain the results that the posterior distributions con- 
verge to the distribution degenerate at the true parameter under which the 
sample is drawn, for almost all true parameters. Stronger results replacing the 
almost surely parameter set by the support of the prior probability were 
obtained by LeCam (1953), Freedman (1963), Fabius (1964) and Berk (1970) 
under various assumptions. 

If the problems on the consistency of the posterior distributions are more 
or less settled, the search for the limiting posterior distribution has been 
successful only in the parametric case, typically, the parameter space is a Borel 
subset of the Euclidean space. See Le Cam (1953) and (1958) or more recently, 
Walker (1969) and Dawid (1970). Johnson (1970) derives an asymptotic expan- 
sion for the posterior distribution, having the normal distribution as the 
leading term. Weak convergence, while more or less set for the classical 
statistics based on the empirical distribution, remains incompleted in the 
nonparametric Bayesian case. Nevertheless, the weak convergence of the pos- 
terior Dirichlet processes, centered and rescaled is recently proved in Lo 
(1978). The limiting Gaussian process is the Brownian bridge as expected. In 
that same article, the D[0, 1] weak convergence of the posterior weighted 
gamma processes, centered and rescaled, is also established under the con- 
dition that the true intensity measure is continuous and finite. This latter result 
is now being extended to the following: 

Proposition 4.1. Let c~ be continuous and with support equal to [0, 1] q. I f  the true 
intensity measure go is continuous, then for almost all sample sequence, the 
posterior processes, centered and rescaled by the square root of the sample size 
converge weakly in D [0, 1] q to the Wiener process W with zero means and second 
moments EW(A) W(B)= go(Ac~B), for all measurable A, B c [0, 1] q. 

Proof Because the posterior processes are independent "increment", to show 
finite dimensional distributions converge is equivalent to show that for each 
measurable A c [0, 1] q 

where 
a.s. [~vo], Xn(A) ~ N(O, go(A)) 

_ I ~ T ~  gNu(A) l + n ~  

with No(A)=~(A ) 

- - -  N(A)}: 

where the equility in law holds because of Proposition 2.2 which also implies 
the summands are independent random variables. Thus the central limit theo- 
rem for triangular arrays (Lo6ve (1963)) applies and we conclude that 
X,(A) ~N(O, a 2) a.s. [Nuol, where a 2 is the limiting posterior variance Xn(A ). 
To evaluate a 2, note that the posterior variance of X,(A) is 
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( [] )2 ( n t i S 2 1  
i=o \ l+nf i ]  ni=o 

which tends to po(A) a.s. [-Nuo] as n ~ o e  via an argument using Egorov's 
theorem, see Lo6ve (1963), page 595. 

To check tightness, we use Theorem 3 of Bickel and Wichura (1971). Using 
their notations, it suffices to check conditions of Theorem 3 there with 
(X,, #)ecg(fil, 7) replaced by (X,, #,)~cg(fl,, 7) and #, converges weakly to a 
continuous measure # on [0, 1] q. See the remarks following Theorem 3 of 
Bickel and Wichura (1971). But then a necessary condition for (X,, #,)ecg(fl> 7) 
is 

2 2 Eu{X,(B)X,(C)}<#,(B)I~,(C ), with fi=2, 7=4  

where B, C are neighboring blocks. 
Because 

2 2 EN{X . (B) X. (C)} = EN{X~(B)} EN{X2.(C)} 

= ( n f i  ]2 1 Ni(B ) Ni(C ) a.s. [~.oJ 
\ l+nf l ]  hi_ n i 

( n fl 1 
NI(A ) which converges weakly to a we only need to set /~,(A)= \ l+n f l !  n i=o 

continuous #o(A), the true intensity measure and thus tightness is in force. 

When q--1, the above result specializes to those in Lo (1978) and we have 
the following: 

Proposition 4.2. I f  the true intensity measure is continuous, then a.s. [~oJ,  

{ (u-Zk2)2~ 
P{ sup IX,(t)[<2}~ 1_ ~ ~ (--1)kexp du, 

O ~ t < l  -- " ]/2~/,o(1 ) - ~  k=-o~ 2#o(1) 3 

P{ sup X , ( t ) > 2 } ~  1 exp 2~o(1) du, 2>0,  
o-<t__<l ]/2~Z#o(1 ) 

where/,o(1)=#o([0, 1]). 

Proof These are standard consequences of weak convergence. D 

5. Applications 

In this section, unless otherwise specified, we assume (X, ~4)= (R, ~)  where R 
is the real line and ~ is the Borel a-field. Generalizations to R q amount to a 
change of notation. The statistical decision problems we consider are those 
connected with the intensity measure ~ of a Poisson point process. Let # ~ , ,  
and given N1, . . . ,N, ,  a sample of size n from ~ ,  / l ~ + E N  " ~ . We shall 

l +nfl 
first find the Bayes rule for the no sample problem and update the prior 
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random measure to the posterior random measure. Then we give the Bayes 
rule for the n sample problem. 

(a) Estimation of the Intensity Measure. Let the space of actions of the 
statistician be the space of all finite measures on (R, N). Let the loss function 
be 

L(g,/~)= ~.[ {g(t)--g(s)--fi(t)+ fi(s)} 2 W(dt, ds). 
{s < t} 

Where W(dt, ds) is a given finite measure on (R x R, ~ ® N ) .  The Bayes rule 
for the no sample problem will be the rule which minimizes the quantity 

which is 

EL(g,/~)= j'~ E {#( t ) -  g(s) -  I~(t) + ~t(s)} 2 W (dt, ds) 
(s<=t} 

t 

p(t)  - 9 ( s )  = e {g ( t )  - g ( s ) }  = S/~(x)  ~ (dx).  
$ 

Thus the Bayes rule for the n sample problem will be the rule which minimizes 

Thus 

EL(g,/~)= j'~ E {g(t)-- #(s)-  ~(t) + ~(s)} 2 W (dt, ds) 
{s~_t} 

= f~ EEn{g ( t ) -# ( s ) -~ (  t)+~t(s)Iz W(dt, ds). 
{s<t) 

9( t )  - ~ ( s ) =  EN {g ( t )  - g ( s ) }  
n 

- i  fi(x) ,~oNi(dx), where No=~ 
1 +n~(x) .= 

t| 

-i i , l+nfl(x) ~ l+nfi(x) 

In particular, if fi(x)=--l/O, 0 > 0  a constant, then the Bayes estimate for the n 
sample problem reduces to 

0 ~{(s,t]} n 1 " 
O+n ~ +0+~ n ~=~ N{(~, t]) 

a convex linear combination of the prior guess and the sample emp i r i ca l  
intensity, In the case that s = 0, we have the estimate of the intensity function, 

0 ~(t) n ~?( t )=!  ~1 
O+n 0 ~ ' ~  iV(t), where Ni(t ). 

i =  

In the sequel, we assume f l (x)-  1/0, 0 > 0 for simplicity. 

(b) Estimation of the Moments of the Intensity Measure. Suppose the statis- 
tician is interested in the r th moment of the intensity measure. 

m~=E{~ x~ N (dx) l u)  = S x~ g(dx)  • 
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Using a quadratic loss function of the form 

^ 2 L(mr, mr) = (mr - mr) , 

the Bayes rule for the n sample problem is 

OS r L Ni(dX)-oOno1 Sxr~(dx) n 1 L i=0 -~-~ni~l S xrNi(dx)' 

which again is a convex linear combination of the prior guess of the r th moment 
and the r th sample moment. 

(c) Estimation of the Factorial Moment Measure. Let 

ME~](A ) = N(A) (N(A) - 1) (N(A) - 2)... (N(A) - ( r -  1)). 

Then 

E { MIni (A) [ #} = #r (A) 

is called the factorial moment measure for the point process N. Let the loss 

function be S (#r(t)--/~r(t)) 2 W(dt) where W(dt) is a finite measure on (R, d). 
-co 

Then the Bayes rule for the no sample problem is 

E#r(t)= (~) r F(c~(t)+r) 
r(~(t)) 

Therefore the Bayes rule for n sample problem is 

F (c~(t)+ L Ni(t)+r) 
( 0 ~ n )  r i=1 

r 0~(t)-{-i_~ 1 N ( t )  

(d) Estimation of the Convolution Intensity. Suppose there are two inde- 
pendently distributed Poisson point processes. *N, N having intensity measures 
/~, # respectively. The statistician is interested in the convolution intensity 
measure, i.e. 

#(t) =E{S N ( t -  x) N (dx) [ [,, #) = ~ [z(t- x) #(dx). 

We assume ~ , 0  and g ~ , 0 -  Moreover, /~ and # are independently distrib- 
uted. Let the loss function be of a quadratic nature as before. Under this set 
up, the Bayes rule for the no sample problem will be 

~(t- x) #(dx)= ; S ~(t- ~) ~(d~) E 

and the Bayes rule for the (n, m) sample problem, where _N, . . . . .  N, is a sample 
of size n from N, and N 1 . . . . .  N,, is a sample of size m from N, is then 
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n 

(0 + n)(O + m) i = (0 + n) (0 + m) "= 0 i ~ o j = o  

where /Q0  = & No = c~ as usual .  
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