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Summary. Let P~:LI(R)--.L~(R) be the Frobenius-Perron operator corre- 
sponding to a nonsingular point-transformation (p of the real line R into 
itself and let for each natural number n, P, be the discrete analogue of Po- It 
is shown that under fairly weak restrictions on ~0, the equation f=P~f has 
an unique solution fo such that f o > 0  (a.e.), Ilfoll = 1, and that this solution 
can be approximated in L~(R) in two different ways: (1) by the sequence 

f , where f > 0 ,  Ib/ll =1, and (2) by the sequence {So, } of simple 

functions such that So, = P, (So,). 

1. Introduction 

The purpose of this paper is to establish results analogous to those of Theo- 
rem 1 in [6] and Theorem 1.1 in [7], for a class of transformations of the real 
line R into itself. Our method of approach to this problem is based on some 
ideas due to [6, 12, 7], and also [9]. The main results of this paper are 
contained in Theorem 3.1 and Theorem 4.1. 

The subject of our study are transformations of ~0: R~R, whose Frobenius- 
Perron operator P~ shrinks the variation of functions. Because of this property 
of Po we obtain for any f~L 1 with VRf<oo that the sequence {VRP~kf} is 
bounded. (Here and in what follows the symbol I/)f  denotes the variation of 
the func t ionf  over a closed interval J cR.) 

Unfortunately, in the case of transformations q) of an unbounded interval J, 
the boundedness of {VsP~kf} does not imply the compactness (in L 1) of the 
sequence {Pdf}. (For example, if q)(x)=(nx+l)/(x-n) for xe(n,n+l), n 
= 1, 2 . . . . .  then lira sup Vrl ' ~) p kf < oO for any f eL  ~, V~z, oo)f < oo. At the same 

k~oo  

time, {Pal f}  is without any non-trivial limit point.) However under certain 
additional conditions on the transformations under consideration, this is the 
case. 
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Condition (3.1) guarantees that the desired implication holds. It turns out 
that condition (3.1) not only guarantees the compactness of {Pokf} but also the 
compactness of {P,k(s,)}~= i where P, is the discrete analogue of P~ and s,~L1, 
(see the proofs of Theorems 3.1 and 4.1 (i)). As a result, (3.1) guarantees that 
both the operators Po and P, possess fixed points. (We note that in the case of 
transformations of a bounded interval, the existence of a fixed point of P, 
follows from Brouwer's Fixed Point Theorem.) 

In Sect. 2 we describe a class of transformations which is the subject of our 
study (see Definition 2.1). Then we show that the Frobenius-Perron operator 
associated with any transformation from this class has the property of shrink- 
ing the variation of functions (see Proposition 2.1). Sect. 3 is devoted to the 
proof of Theorem 3.1, This theorem states that transformations which satisfy in 
addition the condition (3.1) are ergodic. In Sect. 4 we introduce the operator 
(for every natural n >  1) which is the discrete analogue of Po' Then we show 
that P, has a fixed point So,, and that the sequence {So, } converges to fo, the 
unique fixed point of ~ (see Theorem 4.1). 

2. Preliminaries 

We start with the definition of the class of point-transformations with which 
we shall be concerned. 

Definition 2.i. Let {Y,},~z be a partition of the real line R such that: 

(2.1) L =  [a~, at+ 1), C1 =infl~.t >0 ,  
r~Z 

where I[r] =at+ 1 - a t  (Z denotes the integers). 
Denote R o =  U It, where I~=(a~, ar+ O, and let q~ be a transformation from 

rcZ 

R o onto R. We say ~o belongs to the class ~1 if it satisfies the following 
conditions: 

(2.2) For each reZ, the restriction % of q0 to the interval I r is a bijective map 
of I~ onto R, and for each x~I~,there exists an a > 0  such that: 

(i) Or is continuous on Ix, x + a), or on (x - a, x] ; 
(ii) the derivative Dq~ of % exists, and is finite, on both the intervals (x, x 

+ a) and (x - a, x); 
(iii) there exist (finite or infinite) the limits 

limD(pr(y)=Dq~r(x +O ) and limDq~(y)=Dcpr(x-O); 
y,Lx y'[x 

(iv) inf{lD(pr(x +0)1, ]Dq)r(x-O)l: xEI~,r~Z} = Cz>0 .  
For any r~Z, let a~: R ~ [ 0 ,  C21] be a mapping associated with q~r in the 

following way: for each xeR we put err(x)= 1/ID (pr(%-J(x))] if D %(q)71(x)) 
exists, or a,(x)=l/tD+ q~r((p~-i(x)) otherwise (from (2.2i)-(2.2iii) it follows that 
for any x~I~, there exists at least one of the right- and the left-hand derivatives 
D+ (fir(x) and D %(x), respectively). 
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(2.3) For  each reZ, the mapping o r has the following properties: 
(i) if Ar={x:D%(x+O)4=D~or(x-O)}=r , then o r is locally Lipschitzean, 

and 
C 3 = sup sup(lDor(x)l/~rr(x)) < o% 

rEZI x~R 

where Z 1 = {reZ:  A,={b} ; 
(ii) if Ar # r then o r is of bounded variation, and 

C4=supVRGr < oo, 
r~Z2 

where Z2=(reZ:  A~4:r 
(iii) C 5 = 1/C 2 + C 4 < 1. 
Now we recall the definition and basic properties of the Frobenius-Perron 

operator (F.-P. operator). 

Definition 2.2 (see [10]). Let (R, Z, m) be a measure space where Z is the or- 
algebra of all Borel sets of R, and m is the Lebesgue measure. Let (L 1, ][" I]) be 
the space of all integrable functions defined on R. The F.-P. operator P~ 
(associated with a given nonsingular transformation ~: R ~ R )  is defined by the 
following formula: 

(2.4) SP~fdm= ~ fdm, for any feLI  and Be2 .  
B ~ ~(B) 

It is known that P~ is a linear positive isometry of L * into itself. Hence in 
particular P~(G)c G, where G is the set of all densities (all f e e  1 such that f > 0  
and I[fll = 1). 

Another important property of P, is that if P~f=f  for some feG, then the 
measure dv=fdm is "c-invariant (i.e., v(r-l(B))=v(B) for each BeZ) and con- 
versely. 

In the following we shall need an explicit formula for the F.-P. operator P~, 
associated with q~e~ 1. It can be checked that Po may be written explicitly in 
the following form: 

(2.5) P~f(x) = ~ gr(x) (a.e.); where for any reZ, 
fE Z  

(2.6) gr(x)=f(~o71(X))Or(X) for any xeR.  

Henceforth we shall write P instead of P~ for ~0e~31. 
Now we want to show that roughly speaking P has the property of 

shrinking the variation of a function. The following result is the precise 
statement of this property. 

Proposition 2.1. I f  f eL 1 and VRf < ~ ,  then 

(i) vRpkf<C~VRf +(C~--I+. . .+Cs+I) C6[If[[ 

for k = 1, 2, ..., where C 6 =max  {C3, C4/C1} consequently; 

(ii) l imsup VRPkf<= C7 llfl[, where C 7 = C 6 / ( 1  - C5) .  
k ~ o o  
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Proof. Let  us fix an arbi t rary number  N > 0 ,  and let - N  
= x  1 < x 2 < . . .  < x , < x , + ~  = N  be any finite number  of the points of the interval 
J N = [ - N , N - I .  A part i t ion of arN into the intervals Jz=[x l , x2 )  . . . . .  J , - i  
= [X,_x,X,), J , = [ x , , x , + l ]  will be denoted  by n. 

Fo r  any r~Z let us form the following three sums: 

(2.7) v(g~, n)= ~ Igr(xj+ ~)-g~(x3)[, 
j = l  

(2.8) 

(2.9) 

Bl~(rc ) = ~ a~(xj+ 1)]f(cP~- 1(x i+ 1)) - f(~o~- 1 (xj))l , 
j = l  

Be~(Tr)= ~ If(qo71(xj))l Io-~(xj+i)-~,(xj)l. 
j = l  

n 
(2.13) B3~(n) = ~ (sup lf(~of 1 (x))l sup ar(x)) (x k + 1 - Xk)" 

k= 1 x~Yk xEdk 

Let  us now choose for n = 1, 2 , . . . ,  any two parti t ions 

2__{j2:  /=1 ,  . . , j ,} ,  1 {a,lk:k=l . . . . .  i,} and r c , -  77; n 

(2.12) 

where 

F r o m  the formulas (2.5) and (2.6) it follows that  these sums satisfy the follow- 
ing inequali ty 

(2.10) v(g r, n) < Bit(n) + B2r(n). 

We now break up the rest of this p roof  into four steps. 

Step I. For  any r~Z, Blr< C f  1 V~f. 

Proof. F r o m  the definition of a r and the condi t ion (2.2iv) it follows that  for 
any r eZ ,  a r < I / C  2. This inequality, together  with equality (2.8), implies the 
required inequality. 

Step2. For  any r~Z1,  VRgr<=C~iVeJ+C3~l f ldm;  and for any r~Z 2, 
Ir 

VRgr~ C21Vi.f+ C41f(y,)l, where 

(2.11) y~sI~, and If(x)l<lf(yr)l  for each x6 I , .  

Proof. Let  us begin with the case r 6 Z l = { r ~ Z :  At=0} .  By condi t ion (2.3i) we 
have for k = 1, 2 . . . . .  n, 

l a~ (xk + 1) - a,  (Xk) l < C 3 (sup a~ (x)) (x k + 1 - Xk)" 
xEJk 

These inequalities together  with the equali ty (2.9), yield the following in- 
equality:  

B2r(To) 5 C3 B3~(n), 
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of the interval JN such that, 

(2.14) max IJ,]l ---' 0 
1 <-1 <=in 

B3r(7z2) ~ _~ Igrl dm 
JN 
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as n - ,  oo, 

as n ~ 0% and consequently 

as n ~ o o ;  

where v(gr, rc~) and B3r(Tc~) have been defined by formulas (2.7) and (2.13), 
respectively. 

Next we take into account the partition ~z 2 consisting of the intervals J3k~ 
=J~kc~J~ (omitting those J~kz which are empty). Since 7z~ is finer than re, 1 and 
~ ,  one has 

l)(gr, ~1) ~ C 2  1 Vrj  + C3B3r(n~), 

by (2.10), Step 1, and (2.12). 
Finally, we obtain the required inequality by passing to the limits (in the 

last inequality) and taking into account (2.14), and the following fact: 

3 B3r(Tzn)~.(lg~ldm<~lf[dm, as n ~ o o .  
JN Ir 

Let us now consider the case r~Z2={r~Z:  A~#r From condition (2.3ii) 
and (2.9) it follows that, 

B2r =< C4lf(Yr)]. 

This inequality and the inequality (2.10) imply the required inequality. Step 2 
has been proved. 

Step 3. For any Z o c Z ,  

[f(y~)l<VRf +C? ~ ~ ~lfldm, 
(2.15) r~Zo ~Zo I~ 

where y~(r~Zo) satisfies (2.11). 

Proof. Let us choose for each r~Zo, a point z~elr such that, 

If(z~)l _-< ILl-1 ~ Ill dm. 
IN 

By this inequality and condition (2.1) we have 

[f(Y~)l < ~ (If(Yr)-f(z~)l + C; ~ ~ Ifldm) 
r~Zo r~Zo IN 

<VRf+C; ~ ~ ~ Ifldm, 
r~Zo Ir 

which is what we set out to prove. 
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Step 4. VRPf<=CsVRf +C6llf[[. 

Proof The required inequality follows immediately from the equality (2.5), and 
Steps 2 and 3. Step 4 has been proved. 

We are now ready to finish the proof of Proposition2.1. To this end let us 
observe that for k = 1, 2, ..., one has 

VRPkf <= C5 VRPk-i f + C6 II f II, 

by the preceding step and the equality Ilpkfll--Ilf[] (k= l, 2, ...). This finishes 
the proof of Proposition 2.1. 

A corollary of Proposition 2.1 is the following: 

Corollary 2.1. For any f e L  1 with VRf < 0% there exists a subsequence {pkjf} of 
{pkf} and g6L 1 which is the pointwise limit (a.e.) of {pkjf}. 

Proof By Proposition 2.1(i) and Helly's Selection Theorem, {pkf} contains a 
subsequence {pkjf} such that, l impkjf=g (g is defined as the pointwise limit 
(a.e.) of {pk~f}). j ~  

Since, IIg[[ <liminfl[pkJfll = ]lfl], by Fatou's Lemma, then geL 1. 
j~oo  

3. The Ergodicity of Some Transformations From �9 1 

As was already mentioned in Introduction, the boundedness of {VRPkf} in 
general does not imply the compactness of {pkf}. Hence the function g from 
Corollary 2.1 need not be the Ll-limit of {pkjf}. 

In order to ensure the compactness of {pkf}, we impose on ( P ~ I  the 
following additional condition: 

Definition 3.1. We say that a transformation ( p ~ l b e l o n g s  to the class ~b I if it 
satisfies the following condition: 

(3.1) lim Ca(N)=0, 

where Cs(N)=sup[Irl  ~ ardm, 
r~Z JN 

JN={xeR" Ixl >N}. 

We wish to show that under this condition cp is an ergodic transformation. 
In order to prove this however we need an auxiliary result. 

Proposition3.1. I f  ~o~q~ 1 then for any f ~ L  I with Vaf < ~ ,  and for any N >0, 

Iekfjdm<Cs(N) C9l]fH for sufficiently large k, 
JN 

where C 9 is a constant (depending on f). 
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Proof. From formulas (2.5), (2.6) and condition (3.1) it follows that 

S [PI] din<_ c 8 ( g  ) ~ [Ir[-llf(y~)[, 
JN f e Z  

where C s and f(Yr) have been defined by (3.1) and (2.11), respectively. Next 
combining this inequality with (2.15), we get 

(3.2) S [P f] din< Cs(N)(C~ ~ VRf + C~ 2 IIf II). 
Jlv 

This inequality together with the inequality (ii) of Proposition2.1 implies that 
for a large enough k, 

IPkf[ dm< C8(N ) C 9 [If II, 
JN 

where C 9 = (C71 Co 7 + C[ 2), and Co7 is any number greater than C 7. This proves 
the proposition. 

Now we show that ~1 consists of the ergodic transformations. This result 
generalizes some previous results of J.H.B. Kemperman [4, 5], F. Schweiger 
[11], M. Jabloflski, A. Lasota [3] and P. Bugiel [1]. 

Theorem 3.1. I f  q ) ~ l ,  then there is precisely one solution foeG of the equation 
P f = f  such that: 

(1) f0 > 0 (a.e.), Vgf o < C 7 for some constant C 7 >0, and (in consequence) qo 
is an ergodic transformation with respect to the (q~-invariant) measure d# 
=fo din; 

n - - 1  

(2) for each feG,  fo = lira 1/n ~ pk f  
n~oo  k ~  O 

Proof. Existence: From Corollary2.1 and Proposition3.1 it follows routine 
argumentation that for any f ~ L  1 with FRf< oO the sequence {pkf} is relatively 
compact. This fact implies, by Yosida-Kakutani Ergodic Theorem, the exis- 
tence of some fixed point of P. 

Uniqueness: We now show that there exists in G, exactly one fixed point of P. 
We do this in stages. First note that for any f ~ L  ~ the sequence {Snf} where 

n 1 

S,--1/n ~ pk converges in L 1. Indeed, since for any fEL  1, VRf< oO the se- 
k = 0  

quence {pkf} is relatively compact, and since the set of the integrable func- 
tions of bounded variation is dense in L ~, the convergence of {Snf } follows 
from the Yosida-Kakutani Ergodic Theorem. 

Secondly we show that for each feG,  the limit function of {S, f}  is of 
bounded variation. Note that for each f~G with VRf< oO we have 

n - - 1  

(3.3) VRSf< C7, where S =  lim 1/n ~ pk, 
n ~ o o  k = O  

by Proposition 2,1(i) and Helly's Theorem. 
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Now we can extend inequality (3.3) to the whole of G in the following way. 
For any f~G let {f,} be a sequence such that f, ea, l /~f ,< oe and lira IIf.-fll 

n~tx3 

=0. By inequality (3.3), Helly's Selection Theorem and Fatou's Lemma, the 
sequence {Sfn } contains a subsequence {Sf,~} such that, 

(3.4) limSf, j=g (a.e.), where g~L 1 and VRg<C 7. 
j ~ c ~  

By Proposition 3.1 we get 

S Sf, jdm<Cs(N) C9, for j = 1 , 2 , . . . .  
J N  

From this, (3.4), and the equality lira ILSf,-Sf]l =0  it follows that g=Sf. Thus, 
. ~ o o  

each density satisfies the inequality (3.3). 
Thirdly, we show that if g~G and Pg=g, the set H = {x: g(x)>0} is equal 

(a.e.) to the whole real line R. 
As we have seen g is of bounded variation, thus in particular there exists 

an interval JcH.  So that from the definition of <b~ it follows that for a large 
enough k, (pk(J)=R. These two fact, together with the equality ~o(H)=H (see 
[8], Lemma2.3), imply that H=R which was to be proved. 

We are now ready to finish the proof of the uniqueness of the solutions for 
the equation Pf=f. Take arbitrary g~eG such that Pg~=g~, for i=1,2.  If 
g~<g2 on a set BsS with re(B)>0 then, by Lemmas2.2 and 2.3 in [8], the 
density g = ( g 2 - g 0  1JIl(gz-gl)1BII is a fixed point of P (1B is the characteris- 
tic function of B). Thus B=R (a.e.) i.e., g~<g2 (a.e.). This last inequality, 
together with the equality Ilga [I = IIg2]l implies g~ =g2 (a.e.). 

The uniqueness part has been proved, and the proof of the theorem has been 
finished. 

4. Approximation for the Invariant Measures 
by the Fixed Points of P.(n= 1, 2, ...) 

In this section we wish to show that fo, the unique fixed point of P, can be 
approximated (in L 1) by a sequence {So, } of fixed points of P,(n= 1,2, ...), the 
discrete analogous of P. 

Definition 4.1. Let ~n={I,r}~Z, n=l,2 . . . .  , be a partition of R on nonover- 
lapping equal intervals such that: 

(4.1) a,=m(I~r)~O as n--~oo, al<__C1; 

(4.2) ~, is finer than ~,_ 1, for n = 1, 2 .. . .  

(here, for each n, 1,o contains zero). 
Let Z, be the smallest ~-algebra containing all atoms of ~,, and let L1, be 

the space of all integrable functions over (R, Z,, m) which are multiplied by 
a~-1, thus every s,~L1, can be expressed in the following form: 
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s.=a21 ~ a . ~ l , . . ,  where ~ la.~l<ce. 
r~Z r~Z 

Now, for any s.~L~., let us put 

(4.3) P.(s.) = a; 1 2 bnr ll~r' 
r~Z  

where 

and 

(4.4) 

b.~= ~ a.~P~,j~, 
j e z  

P.,~ =a21 ~ I±. P l~.jdm. 

These above last three formulas define an operator of L1. into itself. It will 
be called the discrete analogue of P. 

Since P. is a positive linear isometry the set G. of all densities of LI. is 
invariant under P,,. 

Note also that the k-th iterate of P. can be represented by the following 
formula: 

(4.5) p k(S.) = a;~a ~ ,.(k) 1 
~'~Z 

where 

c(nk)r = 2 anj(tS"k)jr' and /],~ is the k-th 
jeZ 

iterate of the matrix/]~= [P..~]j,,-~z. 
We now state the basic properties of P. (assuming in what follows that P is 

associated with ~oerb~). 

Lemma 4.1. For any N > O, the following inequality holds true: 

sup( ~ P~,~j)<2(Cla.)-ICs(N) (n=1,2  ....  ). 
r~Z [jl>>_N 

Proof Since a~< C I (see (4.1)), then for each reZ  there exists exactly one k~eZ 
such that, I . ~ I k u I k , . +  ~. From this and formulas (2.5) and (2.6) it follows that, 

P 1,.~(x) < 1~...(~o£ 1 (x)) ak~(X ) + l~.~(q~; 1+1 (X)) ak~ + 1 (X). 

By this inequality, formula (4.4) and conditions (2.1), (3.1) we get 

P,,,~j <aff 1 ~ (Gk~+~rk~+ l)dm< 2(Cl a.) -1Cs(N ), 
lJl __>N J~ 

for each r~Z, and n =  1,2 . . . . .  The lemma has been proved. 
In what follows the conditional expactation operator E( ' IS . )  of L 1 into L1. 

plays a very useful role. It is well known that it is a positive linear isometry. 
The following properties of E('IN,~) will be also used: 
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Lemma 4.2. 

(i) For each f e L  1, IIg(flZ,)-fll--'O as n--*oo" 
(ii) VRE(flS,) < FRy; 
(iii) for each sn~L~,, E(es,IS,)=P,(sn). 

Proof. (i) Property (i) follows from the martingale convergence theorem of 
Doob ([2], p. 319) and the following inequality: 

(4.6) ~ Ig(fIZ,)ldm< ~ tfjdm, for any N > 0 ,  n > l .  
d~r JN 

(ii) The proof of this property for fs l)(R,m),  does not differ from the proof 
in [7] of an analogous property for fsD([O, lJ, m) (see Lemma 2.6), and 
therefore it will be omitted. 

(iii) From the definition of g('lSn) and the formulas (4.3), (4.4) it follows 
that for any s, = a 2 ~ ~ an, l~,r, the following equalities are valid: 

r~Z 

E(Ps.LX.)= 2 (a~ ~ ~ Ps.dm) 1~  
i~Z ln i  

=a; ~ E ( E  G~P.,~,)I~,=P.(G)" 
i~Z r~Z 

This proves the lemma. 
The discrete analogue of Propositions2.1 and 3.1 is the following" 

Proposition 4.1. I f  s,r then 

(i) VRPk(s.)<= k k-l_}_ C5YRS-~-(C 5 . . .+Cs+l )  C6l]s,I [ for k = l , 2  ....  , con- 
sequently 

(ii) lira sup l/gPf(s,) < C 7 II s, [I, 
k~oo  

(iii) ~ IP) (s . ) l  am < 2(61 a,) -1 C8(N ) Iisnll for k = 1, 2 .. . . .  
JN 

Proof. (i) The required inequality follows from Lemma4.2(ii)-(iii), Proposition 
2.1(i), and the equality IqP)(s,)/I = I/s, ll. 

(iii) From (4.5) it follows that for k =  1,2 . . . . .  N > 0 ,  

Y [P.k(S.)[drn<E la.,] E (pk-~),~ E P.,~s. 
JN i e z  f e z  IJl > N  

Now the required inequality follows from this inequality and Lemma4.1. The 
proposition is proved. 

We are now able to prove the following approximation theorem" 

Theorem 4.1. 

(i) There exists, for each natural number n> l, a density Son~G , such that, 
so, = P~(s0,); 

(ii) the sequence {So, } of the fixed points of P, converges to fo, the unique 
fixed point of P. 
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Proof (i) Put  Snk=p,k(Sn), for s,~G,, By Proposi t ion  4.1(i), Helly's Selection 
S ~ oo Theorem and Fatou ' s  Lemma,  there exist a subsequence { ,kj}j=l of  {S,k}k =1 

and some ~0n~G which is the pointwise limit (a.e.) of  {S,kj}. 
F r o m  Proposition4.1(iii)  it can be easily seen that  go, is the Ll-limit of 

{Snkj}. This and the fact, that  G~ is convex, and closed in L 1 it follows (by Yosida- 
Kakutan i  Ergodic  Theorem) that there is a fixed point  s0, of  P,, and that So,eG .. 

(ii) By Proposi t ion 4.1(ii), we have 

(4.7) V g So, < C 7 for n = 1, 2 , . . . .  

Next  by L e m m a  4.2(iii) and inequalities (4.6), (3.2), (4.7) we have 

so, dm<Cs(N)Clo for n = l , 2  . . . . .  
J N  

where Clo=(C[1C7+C~2). This inequality together with (4.7) implies the 
existence of  some limit point  s o for {Son } . 

Finally from the inequality [Iso-Psoll <2[ISo-Sonll + IIE(PsoIZn)-Psoll, and 
Lemma4.2(i)  it follows that, Pso=s o. Hence s0=fo .  This completes the p roof  
of (ii) and Theorem 4.1. 

Final Remark.  Let ~ be a class consisting of  the t ransformations ~oe~51 such 
that for each r~Z,  the mapping  ~o r is differentiable at every point  of I r (i.e., A r 
=~). It can be shown (by using different methods than that  used in this paper) 
that  for such t ransformations the main  results of  this paper remain valid under 
the following (more general) condit ion:  

(4.8) there exists ZocZ such that for every y~R. 

inf( ~ %ar(y) wj (. ajdm)>O, where wr=lI~1-1. 
j~Z rsZo I~ 

This and some other  things (for instance, exactness) will be elaborated in 
a subsequent paper. 
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