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Abstract. The core-mantle reaction proceeds on two scales: the short-scale chemical reaction 
leading to local equilibrium and the large-scale dispersal of reaction products. The second process 
is connected with a growth of the CMB-radius and may be described with application of the 
diffusion equation. The departure from a stationary interface is calculated using the gravitational 
body force as the mechanism controlling the "tension" of the distorted spherical core body. Stability 
analysis with the help of angular harmonics leads to the result that undulations of CMB are stable 
for very long wave lengths only. 

1. Introduction 

The core-mantle boundary (CMB) marks the largest change in bulk composi- 
tion inside the Earth, separating the liquid iron alloy of the outer core from 
the crystalline silicates of the mantle. The processes near CMB play a key role 
in the dynamics and evolution of the Earth (e.g. Young and Lay, 1987). Lab- 
oratory investigations by means of diamond-anvil cells (Jeanloz, 1990; Knittle 
and Jeanloz, 1991; Goarant et al., 1992) have demonstrated that at the relevant 
thermodynamic conditions of the Earth's deep interior liquid iron reacts chem- 
ically with silicates of the lower mantle. The main point of this process is the 
infiltration of liquid iron into the mantle and a chemical reaction with the sil- 
icates producing metallic alloys (e.g. FeO) and nonmetallic silicates (e.g. SiO2 
stishovite). In this way a reaction zone, ~10 to 103 m thick, is created at the 
interface between mantle and core (Stevenson, 1991). A quantitative estimate by 
Poirier and Le Mouel (1992) shows that infiltration can be about 102 m. The 
short-scale chemical reaction is followed by a large-scale dispersal of reaction 
products as shown in Figure 1. 

The purpose of this paper is to investigate the large-scale dispersal of reaction 
products with the help of the diffusion equation in spherical symmetry and to 
perform a stability analysis on such a reaction zone using methods from the 
theory of interface stability (e.g. Delves, 1974). 

2. Model for Large-Scale Dispersal of Reaction Products 

In our simplified model the dispersal of reaction products can be thought of as 
the dissolution of FeO from the reaction zone into the core. In a slow process 
FeO has to diffuse down a concentration gradient from the mantle concentration 
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Fig. 1. Infiltration of fluid iron into the mantle and large-scale dispersal of reaction products. 
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Model for large-scale dispersal of reaction products. 

C ~  to the equilibrium concentration Co for dissolving in the core alloy with 
the concentration C0 (see Figure 2). This dissolution is a STEFAN-problem (e.g. 
Carslaw and Jaeger, 1959) and results in a growing core radius R(t). 

We use the time independent form of the diffusion equation (which corre- 
sponds to the Laplace-equation) for the concentration Cm in the reaction zone 
near CMB: 

DTt~ 
/.2 

1 0 2 ] 
0 r2 0 1 0 sin 69 + - -  Cm = 0, (1) 

Orr ~ + s i n ~  0 0  sin 20 0~ 52 
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where Dm is the diffusion coefficient of FeO in silicates near to their melting 
temperature. The solution of Equation (1) is 

C~ = const, for r < R, (2) 

Cm(r) = C~  + (Co - C~)  R for r > R. (3) 
r 

At the core radius R(t) the conservation condition for dissolving material has 
to be fulfilled: 

DmL Or J~=R ( G - c o ) - d T .  (4) 

Equations (2)-(4) should also fulfil the condition of mass conservation at 
CMB: The flux of FeO down the concentration gradient into the core must be 
also accompanied by a corresponding flux of Fe for keeping Cc = Const. in the 
core. There are at least two ways out of this problem: 

First, according to Knittle and Jeanloz (1991), the reaction at CMB may be 
presented as 

Mg0.gFe0.1SiO3 + 0.15Fe = MgSiO3 + 0.20FeO + 0.05FeSi + 0.05SIO2. 

From this equation we can see that indeed iron from the lower mantle perovskite 
goes effectively (as FeSi) into the core so that (at least approximately) the mass 
conservation can be fulfilled at the condition of constant solute concentration Cc 
in the core and growing core radius R. The other argument consists in the fact 
the reaction between core and mantle concerns only a thin shell of about 10 3 

m thickness which is only a small part compared to the volume of the whole 
(outer) core. 

In the following we will investigate two models for the concentration gradient 
on the left-hand side of Equation (4). 

Model A: As shown in Figure 2, we assume that FeO is transported to the 
CMB only by diffusion. In this case the concentration gradient follows from 
Equation (3): 

loom] (ca - Co) (5a) 
Or ] ~=n R 

Model B: We assume that diffusion of FeO is the only transport mode within 
a diffusional boundary layer near CMB while outside this layer there is a general 
downward flow of material with a prescribed uniform speed U0 and a removal 
in plumes (Stacey, 1992). According to Loper (1992) this uniform speed U0 is 
about 7 × l0 -12 m/sec. So the thickness D of the diffusional boundary layer 
can be found from D = Dm/Uo ~ 102 m if Dm ~ 10 -9 m2/sec (Vitjazev and 
Majeva, 1980). In this case we approximate the concentration gradient as 

[ OC.~ ] _ ( C o o - C o )  (5b) 
Or ] r=R D 
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Fig. 3. Sketch of a bump at the interface, where h = infiltration depth equal to the height of a 
bump; Arm, Nc = number  of FeO particles in mantle and core, respectively; P ~ ,  P~ = pressure in 
mantle and core, respectively; R = core radius; Re = radius of curvature of protrusion; x, x '  and 
a = geometrical quantities used in Appendix A. 

3. Distortions of a Stationary Interface 

Up to now we have assumed that the interface has spherical symmetry and 
is connected with the stationary equilibrium concentration Co. In the Earth's 
deep interior there may be some processes that cause distortions of the interface 
resulting in deviation from spherical symmetry. One example is the entrainment 
of material by overlying mantle convection (Sleep, 1988). For a calculation of a 
correction term A C  to the stationary equilibrium concentration Co we start from 
Figures 1 and 3. We divide the total Helmholtz free energy F into the parts of 
core Fc ,  mantle Fr~ and interface: 

F = F~ + F~,~ + y A~ .  (6) 

The quantity ~, describes the change of free energy with change of surface 
area A c .  In the theory of crystal growth ~, is the surface tension that acts against 
distortions of the interface. Concerning our problem we can calculate this quantity 
~, for the case of gravitational body force acting against distortion of the CMB. 
This can be done in a simple calculation of the change in gravitational energy 
AF  when a "bump" with excess density Ap, volume change A V  and change 
of surface area AA, extends into the mantle with depth h under the action of 
gravity g (see Figure 3 and Appendix A). 

A F  = ~ . A p  . g . h . A V ,  (7) 
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where a is a factor taking into account that the mean elevation of the material in 
a bump is smaller than h. According to our estimation a is in the order of 1/2. 

7rh2[4Rc(3R - 2h) - h ( 4 R  - 3h)] 
A V  = (8a) 

3 . 4 ( R  - Rc) 

[ ~ ( 2 R - h ' ]  J A A = 2 7 c  \ - ~ - - h ~ j  ( R c - R + h ) + ( R - h ) h  . (8b) 

Where R is the core radius and Rc is the radius of curvature of the protrusion. 

A F  
3' = A A "  (9) 

For the definition of a new, nonstationary interface that has distortions as 
shown in Figure 3 we introduce a new equilibrium concentration Ce: 

Ce = Co + A C .  (10a) 

According to a generalized Van't Hoff  relation (Delves, 1974) the relative 
change in concentration A C / C o ,  which corresponds to the relative change in 
molar fraction of the solvent, is proportional to the volume Vmol of core material 
per mole of solute in the core: 

A C  ANFeO 7 / (  
- -  - -  Vmol = F . K .  (lOb) 

Co NFeO RGTCMB 

Table I lists the parameters and working values for variables used in Equations 
(7)-(10b). With the help of these values we can find: 

7 ~ 4 .  1013 d (11) 
rrt2 

AC/Co ~ o.o1, (12) 

F ~ 20 km. (13) 

4. Growth Rate of the CMB-Interface 

Starting from the conservation condition Equation (4) we can introduce the cor- 
rection term A C  given in Equations (10a) and (10b). After a simple transfor- 
mation we arrive at the following formulae for the growth rate of the CMB 
radius. 

M o ~ l A . "  

dR D.~ 
dt - R [C~  - Co - (2CoF/R)][C~ - Co - ( 2 C o F / R ) ]  -~,  (14a) 
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TABLE I 
Nomenclature and working values for some used parameters and variaSles 

Symbol  Definition Working value 

Ap density difference 5 × 10 3 kg/m 3 
g gravity 10 m/s z 
h infiltration depth 103 m 
R core radius 3 x 106m 
Rc radius of curvature of protrusion 105 m 
Wol volume of the core per mole of solute (equal 1.4 × 10 -5 m3/mol 

to molar mass of FeO divided by Ap) 
Ra gas constant 83 J/K/mol 
TCMB temperature at CMB 4 X 10 3 K 
K curvature ~ 2/R 0.7 × 10 -6 m -1 

Model  B: 

d R  D m  
dt - D [ C ~  - Co - ( 2 C o F / R ) ] [ C c  - Co - ( 2 C o F / R ) ]  -1 .  (14b) 

Using Cc = 0.30, C ~  = 0.15, Co = 0.05 and parameters already given in 
previous chapters we calculate the growth rate of CMB for the present CMB 
radius of about 3 x 106 m. We find that this growth rate is in the order of about 
meters per billion years (model A) and about 100 km per billion years (model 
B), respectively. The value of the growth rate of model B is a maximum value 
not taking into account the removal of material by other processes. 

5. Stability Analysis of a Growing CMB with the Help of Angular 
Harmonics 

Our starting point is the Laplace Equation (1) for the distribution of reaction 
products (FeO) in the reaction zone near CMB. We consider that any small 
disturbance of the spherical CMB-interface can be analyzed with the help of a 
sum of angular harmonic terms. The angular harmonics Ytm(@, ~) are labeled by 
the two integers 1 and m. We write the radius of the slightly perturbed sphere as 

r (O,  ¢, t) = R( t )  + YZm(O, ¢)~(t), (15) 

where R( t )  is the spherical radius of the interface and 6(t) is the amplitude of 
a small perturbation corresponding to the height h from Figure 3. Using the 
well-known property of spherical harmonics: 

[ 1 0 s i n O  0 0  oe)0 sin-20 ~ ] 1 0 2  ] sin O-x---x~ + l~m = - l ( l  + 1)1~m, (16) 
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we can find the following solution for the concentrations in the mantle and 
the core: 

R 
Cm = Coo + (Ce - Coo) - -  + (17) 

r r l l ,  

Cc = const + Yzra&ZBc(t),  (18) 

]~m and Be have to satisfy the boundary conditions. Furthermore, we have to 
introduce the curvature of a slightly distorted sphere 

K -  R + \ ~ -  , (19) 

which is independent of m. 
The evaluation of the conservation condition Equation (4) for the slightly 

perturbed concentrations Equations (17) and (18) at the slightly perturbed radius 
Equation (15) requires the following conditions. 

M o ~ l A :  

d_8~ = 8(l  - 1 ) D m  [ ] 
dt R2 • (Cc - C~) 1 (Coo - C~) - (l + 1)(IR + 2)FCo . (20a) 

Model  B: 

dt  R D  • (Co - Ce) ~ (Coo - Cc) - (l + 1)(IR + 2)FCo . (20b) 

Equations (20) are the main equations of the present paper. They describe the 
time derivative of a small perturbation 8. If this quantity is negative, the interface 
is stable. Any perturbation decays with time. On the other hand, if dS/dt  is 
positve, any small perturbation of the interface grows. In this case the original 
(spherical) interface is unstable. It is very interesting that the stability of the 
interface depends on the two terms inside the square brackets of Equation (20). 
The first term is the driving force for instability, coming from the concentration 
gradient in the mantle and the second term, resulting from the restoring effect of 
gravitational body force on a bumpy interface, drives stability. This stabilizing 
term depends on the degree I of the angular harmonics. Therefore the problem 
of interface stability is related to the length scale of the perturbation via 1. Figure 
4 shows the result of our stability estimation with 8 ~ 103 m. The interface is 
only unstable for long-wavelength perturbations with components 2 < 1 < 15, 
with a maximum instability at 1 = 9. 
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Fig. 4. Growth rate of a perturbation 6 in dependence of the degree l of a spherical harmonic 
expansion. 

6. Conclusions and Discussion 

Chemical reactions at CMB are connected with processes of short-scale infil- 
tration and large-scale dispersal of reaction products. The second process cor- 
responds to an outward growing of the outer core radius. If gravitational body 
force acts as the tension against distortions of a growing CMB we find growth 
rates in the order of dR/dr ~ m/Ga and dR/d t  ~ 100 km/Ga for our models 
A and B, respectively. The interface is always Unstable for perturbations with 
2 < l < 15. Therefore our mechanism, if real, may be an explanation for the gen: 
eration of  large-scale undulations of  CMB. The local distribution of undulations 
cannot be calculated from our model. We assume that processes in the mantle, 
as for example entrainment of  lower mantle material by overlying convection, 
provide favoured regions for the development of instabilities of  the reaction zone. 
It is interesting to note that from an analysis of the Earth's external gravitation- 
al field and from geomagnetic data Hide and Horai (1968) have already found 
that topography of the CMB should have such a structure that 4 < l < 8 is 
realized, although the used geoid coefficients are different from those accepted 
now. Garland (1957) explained lower harmonics of the gravity field (1 = 3, 4, 5) 
by bumps and valleys of CMB. A simple estimation (Melchior, 1986) provides 
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small heights of about 200 m but large surface extensions in accordance with our 
results. Vogel (1960) already suggested an irregular shaped CMB of low-degree 
harmonic components on the basis of earthquake waves reflected at the CMB 
in good agreement with results of modern tomography (see e.g. Morelli and 
Dziewonski, 1987) and also with our estimations as shown above. Concerning 
the importance of our model for other terrestrial planets the application to Venus 
is evident while in the case of Mars it is not clear up to now if the transition 
pressure to the silicate perovskite stability field is really reached in the Martian 
mantle (Severova, 1991). 
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Appendix A 

Based on Figure 3 we first calculate the volume of a spherical cap of height x: 

71-37 2 
V1 = - - f - (3Rc - x). (A1) 

Using geometrical relations we can express x with the help of given quantities: 

/~2  __ ( R c  - -  X)  2 = a 2, (A2) 

( R  - -  h )  2 - -  ( R  - -  h - :;el) 2 = a 2, (A3) 

x ~ = x - h, (A4) 

h (2R__-- h ~ (a5)  
z = \ R  - 

This gives for VI: 

7rh 2 ( 2 R -  h) 2 ` 6 R R  
V1 = 2 ~ 3 ~ 4 (--R------R~-) g[ ~ - 6R2 - 2 R h  + h2). (A6) 

Next we calculate the volume of a spherical cap of height x~: 

7r X t2 

V2 = ~ - - [ 3 ( R  - h) - x']. (A7) 



290 SIEGFRIED FRANCK 

Using similar relations as in (A2)-(A4).we find: 

, h (2Re - h) 
X -- 

2 (R - Re) '  

7vh 2 (2Re - h) 2 (6R2 + h2 _ 6 R R c  - 6 R h  + 4 R c h ) .  
172 = 2 : 3 : 4  (R - Re) 3 

The volume change A V ,  caused by the protrusion is given by 

A V  -- V I  --  V2, 

7rh2[4Re(3R - 2h) - h ( 4 R  - 3h)] 
A V =  

3 . 4 ( R  - Re) 

(A8) 

(A9) 

(AIO) 

(Al l )  

which is used in the main text in Equation (8a). 
In a similar way we can calculate the surface area of spherical caps of height 

x and x', respectively: 

A1 = 27rRcx,  (A12) 

A2 = 27r(R - h)x ' .  (A13) 

With the help of Equations (A4) and (A5) we find for the change in surface area 
AA, caused by the protrusion: 

AA = Al - A2, (A14) 

A A  = 2~  \ - R - - - - R ~ J  (Rc  - R + h)  + ( R  - h ) h  , (A15) 

which is used in the main text in Equation (8b). 

References 

Carslaw, H. S. and Jaeger, J. C.: 1959, Conduction of Heat in Solids, 510 pp., Clarendon Press, 
Oxford. 

Delves, R. T.: 1974, 'Theory of Interface Stability', in B. R. Pamplin (ed.), Crystal Growth, 672 
pp., Pergamon Press, Oxford, New York, Toronto, Sydney. 

Garland, G. D.: 1957, 'The Figure of the Earth's Core and the Non-Dipole Field', J. Geophys. Res. 
66, 486-487. 

Goarrant, E, Guyot, F., Peyronneau, J., and Poirier, J.-R: 1992, 'High-Pressure and High- 
Temperature Reactions between Silicate and Liquid Alloys in the Diamond Anvil Cell, Studied 
by Analytica Electron Microscopy', J. Geophys. Res. 97, 44774487. 

Hide, R. and Horai, K.: 1968, 'On the Topography of the Core-Mantle Interface', Phys. Earth 
Planet. Interiors 1, 305-308. 

Jeanloz, R.: 1990, 'The Nature of the Earth's Core', Ann. Rev. Earth Planet. Sci. 18, 111-129. 



INSTABILITY OF A REACTION ZONE AT THE CORE-MANTLE BOUNDARY (CMB) 291 

Knittle, E. and Jeanloz, R.: 1991, 'Earth's Core-Mantle Boundary: Results of Experiments at High 
Pressures and High Temperatures', Science 251, 1438-1443. 

Loper, D.: 1992, 'On the Correlation between Mantle Plume Flux and the Frequency of Reversals 
of the Geomagnetic Field', Geophys. Res. Letters 19, 25-28. 

Melchior, P.: 1986, The Physics of the Earth's Core, 256 pp., Pergamon Press, Oxford, New York, 
Beijing, Frankfurt, S~o Paulo, Sydney, Tokyo, Toronto. 

Morelli, A. and Dziewonski, A. M.: 1987, 'Topography of the Core-Mantle Boundary and Lateral 
Homogeneity of the Liquid Core', Nature 325, 678-683. 

Poirier, J. P. and Le Mouel, J. L.: 1992, 'Does Infiltration of Core Material into the Lower Mantle 
Affect the Observed Geomagnetic Field?', Phys. Earth Planet. Inter 73, 29-37. 

Severova, E.: 1992, 'Phase Transitions in the Mars Mantle', Earth, Moon, and Planets 56, 83-91. 
Sleep, N. H.: 1988, 'Gradual Entrainment of a Chemical Layer at the Base of the Mantle by 

Overlying Convection', Geophysical Journ. 95, 437-447. 
Stacey, E D.: 1992, Physics of the Earth, 513 pp., Brookfield Press, Queensland, Australia. 
Stevenson, D.: 1991, Thermodynamics and Fluid Dynamics of the Core, Union lecture given at 

XX General Assembly of IUGG, Vienna, 11-24 August 199l. 
Vitjazew, A. V. and Majeva, S. V.: 1980, 'Simulation of the Earth's Core and Mantle Formation', 

Phys. Earth Planet. Inter. 22, 296-301. 
Vogel, A.: 1960, 'Uber Unregelm~ifSigkeiten der ~iul3eren Begrenzung des Erdkerns auf Grund von 

am Erdkem reflektierten Erdbebenwellen', Gerlands Beitr. Geophysik 69, 150-174. 
Young, C. J. and Lay, T.: 1987, 'The Core-Mantle Boundary', Ann. Rev. Earth Planet. Sci. 15, 

26-46. 


