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Abstract. The second zonal and the second sectorial Stokes parameters of the Moon's gravitational 
field and/or the polar and equatorial flattenings of the lunar triaxial level ellipsoid have been 
explained by the tidal and rotational distortions due to the Earth. The Epoch at which the Moon's 
figure formation was finished has been estimated as 1.6 x 10  9 y B. P. when the Earth-Moon 
distance was about 168 400 km and the orbital/rotational period of the Moon about 8 days. 

1. Introduction 

There are about forty synchronously orbiting satellites in the Solar System from 
the total number sixty one, and twenty of them at least are triaxial (Davies et 
al. 1991). The triaxiality of bodies orbiting in 1/1 rotational/orbital resonance is 
rather a rule than an exception in the Solar System. The topic will be treated in 
detail as regards the Moon. The question to be answered is as follows: In which 
extent is the Earth responsible for the triaxial figure of the Moon? By the way, 
the parameters of the triaxial level ellipsoid of the Moon will be derived. 

2. Defining the Moon's Basic Equipotential Surface (Selenoid) 

The basic equation for the solution is the selenopotential W at arbitrary point 
P (p, ¢, A) at the lunar surface; p is selenocentric radius-vector, ¢ selenocentric 
latitude, A selenocentric longitude reckoned to the East. The plane of the prime 
meridian A = 0 passes through the Earth's mass center ®, the librations will not 
be taken into account. 

W - GM¢ 1 + ~ (J (~k )coskA+ S~k)sinkA)p~k)(sin¢)+ 
P n=2 k=0 

+3  q[1 - Pz(°)(sin ¢)] + 

G M  e (___p_._p).+1 P-t°)(sin "nt°)tsm + E - - -  6 ~ ) . - , ~ ,  ¢ )  
4 GMq n=2 \ Z ~ @ q  /I n k=l 

sin  cos , A- Ao,] } 
k=l ( n ' +  k)! 

q -  GM~ - GMq = 7.5731 × 10 -6, (2) 
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G M ~  = (398 600.4405 ± 0.001) x 109 m 3 S -2 ,  (3) 

GM(I = (4902.799 + 0.003) x 10  9 m 3 S -2 ,  (4) 

J(~), S(~ k) are the Stokes parameters of the Moon's gravitational field in the 
conventional definition scaled for a0 = 1737 km, not normalized, of degree n 
and order k; p(k) is the Legendre associated function, also conventional, not 
formalized; 6 e is the selenocentric declination of the Earth's mass center, A® (I 
the distance of the Moon's and Earth's mass centers; 

a~ = n = 2.6616995 x 10  - 6  rad S -1 

is the angular velocity of the Moon's rotation equal to its mean motion n. In 
Equation (1) the Earth's gravitational field model giving rise to the tides on the 
Moon is spherically symmetrical. Note that, the indirect tidal influence of the 
Earth, as regards the zero-frequency tides on the Moon, is included in the Stokes 
parameters j(k), S(k) as determined from artificial satellite orbit dynamics. 

Imposing W = constant, the lunar equipotential surface is defined. However, 
the problem to be solved requires surface 

w = Wo (5) 

be defined as best fitting (representing) the boundary surface defining the lunar 
body. We impose the condition as folows: the integral mean value of the radius 
of surface Equation (1) be equal to that of lunar topography Pt. 

In the linear approximation, i.e., neglecting terms q2, j(zO)q, (J2(0))2, it then 
holds that 

(1) TWo - G M q 1 + 
Pt ~q . (6) 

On the basis of lunar topography data by Bills and Ferrari (1977) 

Pt = 1 737 530 m, (7) 

one gets 

W0 = 2 821 727 m 2 s -2, (8) 

and the selenopotential scale factor 

Ro - GM(I - 1 737 517 m. (9) 
W0 
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3. Parameters of the Best Fitting Triaxiai Level Ellipsoid of the Moon 

The surface of the selenoid defined by Equation (1) and Equation (5) is not 
stationary because 6® and A e (~ are functions of time. However, the inclination 
of the plane of the Moon's equator to the ecliptic is small, about I = 1 ° 32'01" 
+ 7" (Kopal 1966). That is why, 6® = + I  and we put 6 e = 0 in the model. 
Distance Bo(  I varies about (356 400 - 406 700) km and we adopt, in deriving 
the Moon's elipsoid, 

A m = 3 8 4  400km. (10) 

When @ = 0, the tidal terms vanish if n or (n - k) is odd: (n = 2, k = 1), (3, 
0), (3, 2), (4, 1), (4, 3) etc. We neglect (3, 1) and all terms n > 3. 

The selenocentric triaxial level ellipsoid E is defined by four parameters to be 
determined: a (the longest semiaxis), a (polar flattening of meridian containing 
a), oq (equatorial flattening), Aa (longitude of meridian containing a). The radius 
vector of E is function of the above parameters: 

PE = pE(a, C~, al ,  A~). (11) 

After inserting p = PE in Equation (1) we get selenopotential WE on E and the 
basic condition can be imposed as 

WE =Wo. (12) 

Then all the harmonics in WE should equal zero. 
These conditions yield the unknowns in Equation (11) as functions of the 

parameters of the actual Moon's field. However, only four of the parameters can 
be adopted. The best solution is, the four be selected as follows: 

7(0) f~0, d 2 , q, J2,2 "= [(J2(2)) 2 + (S(2))2]  1/2. (13) 

However, in that case, if n > 2 

r(k) E j(k) S(k). -n ) ¢ n ,  (s k))z ¢ (14) 

The solution is laborious, only the final formulas will be written here, and neglect- 
ing terms 10 - 9  in order of magnitude and smaller, for brevity: 

1/]2j(0) 3 -3 __7 4~r(oh 2 3 u4j(o)o ~ + 
a = P~0 1 - ~ 2 +3/ /20r2 ,  2 + 7 / /  q + 4 0  ~ ~-~'2 J - ~ 2 2,2 

1033u4,~ x2 13 -1 T(0) . 457 1 461 -6 2] 
+ 70   ,2,2j - "2 q *  - 5 g " -  J2,aq + gg6 " q ] ,  (15) 



268 MILAN BURSA 

3 2r(0) 3u4rl(0)-~2 69u-1--(0) 
ce = - - - ~ v  a 2 + 3 v 2 J Z , Z + 2 v - 3 q - -  8 ~"Z J +~-~ a2 q+ 

+~v94(0)0r~ J2,2 + ~-~54v4(J2,2)2 3 1 +  - ~ v -  J2,2q - ~8 v-6q  2, 

3 -3 15 -1T 9 -6 z Oq = 6/.'2,]2,2 + -~l; q + -ff-l: d2,2q -- 66//4(']2'2)27 + 8//  q ' 

tan 2Aa = "q~=) (18) 

(16) 

(17) 

dards 1989) 

J2(°) = - 2 0 2 . 1 5 1  x 10 -6, 

J2 (2) = 22.302 x 10 -6, 

is as follows: 

a = 1 737 830 m, 

1/o~ = 2 596, 

1/oq = 6 889, 

Aa =0 .  

(22) 

S~22) = O, (23) 

(24) 

(25) 

(26) 

(27) 

The corresponding parameters of the Moon's level rotational ellipsoid (J2,2 = 0) 
come out as 

= 1 737 710 m, (28) 

1 / ~  = 3 142. (29) 

The Stokes parameters rz > 2 of the selenopotential normal model defined by the 
level triaxial ellipsoid Equations (15)-(18) are functions of the four arguments 
in Equation (11), e.g.: 

(j(o)) E = 9 4g1(0)~2 15 -6 2 15//-10r(0),~ ' 
5 "  '~'2 J + 2-8// q - 7 2 u (20) 

5 _lj2,2q + 3//4j(0)j. 11 -6 2 (J(2))E = - - ' ~ / /  ~ 2 2,2 -- ~-6V q , (21) 

etc. 
Numerical solution based on parameters Equations (2), (9) and (IERS Stan- 

ao v = - - .  (19) 
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4. Tidal Distortions Due to the Earth 

The indirect tidal effect due to the Earth is included in the second sectorial Stokes 
parameter Equation (23) of the Moon 

6 j 2 ( 2 ) = l k  GMe { ao ) 3 p 2 ( 2 ) ( s i n @ ) = ( 7 . 5 0 x 1 0 _ 6 ) k ¢  ; (30) 
12 g GM(I k , ~ J  

k(i is the secular tidal Love number of the Moon. It means, about 1/3 of the 
actual value Equation (23) can be explained in this way. Note that k(r --- 3 /2  
for homogeneous model; ks < 3/2  for models with increasing densities in the 
deep interiors. It is quite different from the second Love number of the Moon 
k2 = 0.020 (Kaula 1968), k2 = 0.0222 (IERS Standards 1989). The actual value 
Equation (2) is too small. Hence stresses within the body of the Moon are not 
hydrostatic. 

However, the triaxial figure was formed in the past, when the Moon was 
orbiting closer to the Earth. Let us compute orbital parameters Ae(  I , n = co for 
this case: ()3 GMo ao n2a3 4J i  2) 

~ - ~ - ~ -  - ( 8 . 9 2  x 10-s)/k([ (31) 

Z e (  I = (168 408 km)x~/k(i (32) 

gx/k(i  = (9.135 x 10 -6) rad s -1, (T /x /~q  = 7.96 d); (33) 

T is orbital]rotational period of the Moon. 
Time At  can be estimated as (Kopal 1978) 

/ 

/ 
/ 

d~e(I _ 6[G(M®+M~)]I/2 GM~I ( a® )5 
dt 

G Me ao )5 ]. 
(~---~q (k2e)~i , (34) 

a~ = 6 378 136.5 m is the mean equatorial radius of the Earth, k2 is the Love 
number, e the phase lag angle. Because the orbital/rotational resonance 1/1 is 
supposed to exist also in the past (time At  B.R), (k2e)q = 0 and after integrating 
Equation (34) one gets (at kq = 1) 

A13/2 -a-13/2 
At= 1 ~'eq -- zae~l GMe 1 = 1 . 5 9 5 x  109y, (35) 

39 a5(k2e)® GMq [G(M. + Mq )]1/2 

if (he)@ = 0.0123 = present value = constant. 



270 MILAN BURSA 

That is why, the origin of the triaxial figure of the Moon can be explained by 
the tidal distortions due to the Earth. The rough estimation can be refined after 
specifying secular tidal number k q at Epoch At B.R 

Note that at At  the direct radial tidal effect exerted by the Earth 

G M  e /)4 - 154.95 m, (36) 
- 3  
A e ¢  

is about 12 times larger than that at present 

G M e  /94 - 13.03 m. (37) 

Also the direct tidal effect in a l  Equation (17) was much larger at Epoch At 
than at present. Equatorial flattening at At  was about 

1/c~1 = 3740; 

50% of value oL1 is due to J2 (2) and 50% due to direct tidal effect exerted by the 
Earth. 

As regards the polar flattening of the Moon, it is partly due to the Moon's 
proper rotation, partly due to the Earth's zonal tide. At Epoch At, about 2/3 of 
value oL was due to the Moon's rotational deformations, 1/3 due to the Earth's 
zonal tidal deformation. 

5. Conclusions 

(1) The actual figure of the Moon can be explained by the tidal deformations 
due to the Earth and the rotational deformations due to the lunar proper rotation 
in the past. 

(2) The Epoch at which the Moon's figure formation was finished, may be 
estimated as about 1.6 x 109 y B.R 

(3) If the secular Love and tidal number of the Moon is about unity, both 
the second zonal Equation (2) and the second sectorial Equation (23) Stokes 
parameters can be explained by the tidal and rotational deformations at Epoch 
1.6 x 109yB .R  

(4) The distance of the Earth's and Moon's centers at Epoch above may be 
estimated about 168 400 kin, the rotational/orbital period of the Moon about 8 
days. The distance at Epoch is inside the Earth's gravitational sphere of influence 
which is about 260 000 kin. 
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