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Abstract. Utilizing the topographic model of Jovian moon Amalthea (Stooke, 1994) and supposing 
that its mass density is constant we derived its basic geometrical and dynamical characteristics. For 
calculations the harmonic model of topography of the degree and order 18 was selected. The model 
appears to fit the entire surface to a mean accuracy of a few hundred meters, except in the regions 
localized around longitudes 0 ° and 180 °. On the basis of the harmonic expansion of the topography we 
estimated the volume (V = 2.43 _+ 0.02 km 3) and the mean radius of topography r0 = (79.7 +- 0.2) kin. 
Generalized moments of inertia up to the order 2, principal moments of inertia and orientation of the 
principal axes with respect to the original reference frame were also calculated. The results show that 
although Amalthea has extremely irregular shape it may be treated dynamically as an almost symmetric 
body (B ~ C). Finally, the set of the Stokes coefficients up to the degree and order 9 was evaluated. 
The results are verified by direct numerical integration. 

1. Introduction 

Amalthea (JV) is a Jovian satellite which was observed by the Voyager 1 and 
Voyager 2 spacecraft. On the base of photographic images a detailed topographic 
model of Amalthea was derived by Stooke (1992). The topographic data are 
represented as a set of spherical cartographic coordinates of points lying on the 
satellite's surface. More precisely, the values of radii are given for equally spaced 
intervals (5 ° × 5 °) of longitude and latitude. In the cartographic coordinates the 
longitude is positive in the direction of clockwise rotation about the north pole 
and the latitude is measured from the plane of the equator. 

In this work we use the planetocentric reference frame for the description of 
the shape of Amalthea as well for representation of its geometrical and dynamical 
characteristics. 

According to the IAU convention of planetocentric coordinates the longitude 
is measured positive in counter-clockwise rotation about the north pole (thus 
positive east), the latitude is measured from the equator (positive north, negative 
south). The planetocentric reference frame is right-handed. The body-centered 
position vector r of a point P(x, y, z) on the surface (see Figure 1) is given by 
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Fig. 1. Planetocentric reference frame. 

/cos cos A\ 
r = r  (th, h) / cos th sin A} 

\ sin ~b / 
(1) 

where r(~b, A) is the module of the radius vector r. 
The original data were transformed from the cartographic system to the planeto- 

centric reference frame. 
The shape of Amalthea is highly irregular. Its overall dimension was estimated 

as 270 x 160 x 150 kin. It was stated that the shape of Amalthea is too irregular 
to be approximated well by any ellipsoid (Veverka et al., 1981; Stooke, 1992). The 
overall dimensions are given as maximum dimensions in three mutually orthogonal 
directions, not necessarily constrained to pass through a common point. 

All the calculations we made on the base of an improved version of the topogra- 
phy model (Stooke, 1994). Using improved image processing techniques Stooke 
was able to indentify previously unseen topographic features in many of the 
Amalthea images. Comparisons of these topographic features with the latitude-- 
longitude grid generated from the original model (Stooke, 1992) revealed parallax 
between the grid and the surface in one region. This has been eliminated in the 
revised model (Stooke, 1994), Further improvement may be possible in the region 
around longitude 330 °, where the current model is based on a sheared image. 

The STD errors of the topographic data can be only approximated. Uncertainties 
vary across the surface. The uncertainty of radius is about 5 km STD in the best 
areas, which are described in the revised system of coordinates as being between 
70 degrees south and 90 degrees north, between longitudes 170 ° and 300 ° and 
again between longitudes 0 ° and 90 °. Elsewhere the uncertainty is 2 or 3 times 
greater, worst of all at the south pole. 
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The lack of other reasonable models forced us to assume that the mass distribu- 
tion in the interior of Amalthea is uniform. In all of the formulae presented in 
this paper we use this assumption although they could be written for a radial or 
more general distribution of the density. 

2. Harmonic Expansion of the Topography 

In the case of small, irregular celestial bodies (such as Amalthea) the approxi- 
mation of a shape as a spheroid or ellipsoid (which is done for the big planets) is 
usually fairly unrealistic. For the modelling of dynamical properties of such bodies 
the detailed knowledge of their shapes is essential. For this purpose a discrete 
shape model is also unsatisfactory - one would like to have an analytic description 
of the figure in order to evaluate the dynamical characteristics, which are mostly 
represented by three dimensional integrals over the body's volume. 

A favourable solution of the problem is to use a spherical expansion of the 
topography (Duxbury, 1989). Having a discrete description of the topography one 
can fit smooth harmonic models, varying easily the degree and order of the 
expansion. Under the assumption that the density has a radial or uniform distribu- 
tion there exists an explicit relationship between topographic and gravity field 
harmonic coefficients. The topographic coefficients can be used to evaluate also 
other geometrical and dynamical characteristics of the body, e.g.: its volume, the 
mean radius, the equatorial radius, the mass, generalized moments of inertia, the 
tensor of inertia. 

In the body-fixed, planetocentric reference frame the radius of the topography 
will be described as the expansion in terms of the real spherical harmonics (Bills 
and Ferrari, 1978): 

Go m = j  " 

rt(qb , A) = E E /S/m(sin ~b)[d/,. cos(mh) + 3ym sin(mh)], (2) 
j = 0  m = O  

where (rt, ~b, h) are spherical coordinates of a point of the body's surface. The set 
of coefficients (aim, 3/m) describes the shape completely. 

The functions/5/,,, are normalized associated Legendre functions. The form of 
normalization we used is widely applied (see for example the article of Bills and 
Ferrari, 1978). The functions 

(1 - x2) m,2 d J + m ( x  2 - 1) y 
P ?  (x) = 2j j! dxJ+ m 

are unnormalized associated Legendre functions of degree j and order m. The 
normalized functions are derived from the relation 

Py ,~ (x )  = X j m l : ' ~ j ( x ) ,  

with Njm denoting the normalizing factor: 
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•/ ( j -  m)[ 
N,m= (2-  m0)(Zj + 1)G+ L3i" (3) 

related to unnormalized The normalized coefficients of the expansion (2) are 
coefficients through the following formula 

- l~jr n m a / ' m  

P'im Ofm= PJ b]m 

Often it is more convenient to use the complex form of the expansion (2). It 
has the form (Martine~ et al., 1989) 

rr /= -- j  

rt(6, A) = ~ ~ EjmYjm(~), A), (4) 
j = 0  m=j 

where now Ejm denote complex harmonic coefficients and Yjm(&, ,~) are fully 
normalized complex spherical harmonics 

Yjm(4), A) = Pjm (sin dp)e imA. (5) 

The functions Pjm (sin qS) are fully normalized associated Legendre functions. The 
normalization is the same as widely used in quantum mechanics (Edmonds, 1960). 
If ~ ( x )  denotes the unnormalized associated Legendre function and Pjm(X) its 
real fully normalized form, then the relation between them and Pjm can be written 
a s  

~,,,, / ( 2 j  + 1 ) ( j -  m)! P'~(x) (6) Pjm(X)=(--I) ~ 4-~+m)! 

Pjm(X). ( 7 )  
1 

= (-1)m 47r(2-  6toO) 

The complex, fully normalized harmonic coefficients Ejm have then the form: 

/ 41r(j + rn)! _1_ a- ibjm) (8) 
Ej,n = ( -1 )  m W(2j + 1)(j - m)! (2 - ~mO) ( ] m  - -  

( a i m  - -  i~jm), m >~ 0. (9) 
1 

= (--1)m 47r(2-- 3too) 

Here {aj,~, bjm} and {~jm,/~j,~} denote real unnormalized and real fully normalized 
spectral harmonic coefficients, respectively. Because rt is real, it follows that for 
m~<O: 

Y],-rn = (-1)my~m, Ej,-m = (-1)mE~jm, 

where the symbol * denotes the complex conjugation. Having the expansion (4), 
the k-th natural power can be computed recursively in the following way. 
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First let us compute the square of a radius r t 

d = ~ ~ Ejl ,mlEj2,m2Yil ,rnlYj2,m2 . (10) 
Jl,ml j2,m2 

The spherical harmonics in the above formula have the same arguments, so their 
product can be expanded by means of Clebsch-Gordan coefficients (Landau and 
Lifshic, 1974) 

Yj l ,ml  Yj2,rn2 = 

J1 +J2 ~ ~ /  
E (2jz_+ 1)(2j2_+ 1) 

j=[]l--j21 m=--j 4~r(2/+ 1) 
c J O  [-~jm v 

./'10]'20 ~"~jlmlJ2rn2 * ] m " 

(11) 

Inserting (11) into (10) and changing the order of summation: 

m=j 

~ = E  ~ ~V(z)v- (12) ~jrrt * Jm 
j m = - j  

with the coefficients r(2) computed as: ~ j m  

jm : ' I"~jlOj20 "-"jlmlj2m2 z-'jl,ml , 
A. lj2, 2 

(13) 

Remark 1. The quadruple sum extends for infinite number of terms. In practice 
we have to use a finite number of coefficients of the topography radius expansion. 
The procedure for computation of the coefficients (13) consists of four loops over 
the indices jl, j2, ml, m2. To a coefficient E}Zm ) contribute only the terms which 
fulfil the condition ji + j2 ~ j ~< ~1 -  j2] with 0 <- j  ~ j m a x .  AS was pointed out in 
the paper of Chao and Rubincam (1989), numerical computation of the sum (13) 
can be extremely tedious. For example, in the case of the topography model with 
j,~a~ = 18, the sum describing one coefficient (13) contains about 1.3 × 105 coupling 
terms. 

Remark 2. The formulae for numerical computation of the Clebsch-Gordan coef- 
ficients can be found in the book of Landau and Lifshic (1974) or in the article of 
Pe6 and Martine6 (1989). For tests we used excellent procedures of the MATHE- 
MATICA system (ThreeJSymbol and ClebshGordan). 

Now, generalizing (12), the k-th power of the radius of topography can be 
written as 

~t t=  ~ ~ ~]l,mlF (k-- 1) E('l)]2,m2 Y j l r n l Y j 2 r n 2 = - ~ E j ( k r n )  Y ] ' r r t , ,  , k > l  , (14) 
j l ,ml j2,m2 j m 
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F(~ -1) ~90) ~ Ejm. The where .j,,, are expansion coefficients of the (k - 1) power of rt, - jm 
general form of the coefficients is the same as (13): 

E(*) = • E , / (211+ 1)(2__]2_+ 1) ,,-yo g'~jm ]CT'(k--1) j~(:l) (15) 
Jm ]l ,ml  J2,m2 ~ 4~r(2j + 1) t"jl0]2 I-']lmlJ2m2 "t~jl,ml ~ J 2 , m 2  

3. Numerical  Integration 

If one knows the shape of a body and its internal density distribution then the direct 
method of numerical integration can be used for evaluation of its gravitational and 
dynamical characteristics (Sagitov et al., 1981; Chao and Rubincam, 1989). Most 
of them can be described as integrals over the body's volume. In the spherical 
coordinates system such a characteristic can be described as 

f£~ fr=r(d~,A) 
I =  r~ (gb, h)p(r,  ~b, A)f(gb, A) dr dYI, 

(4~,A) J r=0 
(16) 

where (r, ~b, A) denote a point in the body, p is the density at this point and f is 
a function of angular variables only. For example, the moments of inertia and the 
Stoke's coefficients of the harmonic expansion of the gravitational potential have 
the form of (16). 

Now let us assume that the density of the body is constant (we put p = pc = 
const). Then the three-dimensional integral (16) can be reduced to a two-dimen- 

sional one. Performing the integration over r we obtain 

1 
/ = pc 7~--~+ 1 r~+l (¢, Z ) f (¢ ,  Z) da .  

n 1 Jn(~,~) 
(17) 

For numerical calculation of this integral we choose, after some tests, the 10- 
points Gauss-Legendre quadrature as a kernel of the integration procedure. 

The idea we applied is as follows. The problem of two-dimensional integration 
is easily reduced to evaluation of one-dimensional integrals. We divide successive- 
ly the interval of integration and apply for any of its part the Gauss-Legendre 
quadrature. Finally, the value of a one-dimensional integral is computed with the 
help of polynomial extrapolation constructed on a base of, say n divisions of the 
initial interval of integration. If the relative results of the n-th and (n - 1)-th 
approximations differ less than a predetermined accuracy e, the procedure is 
stopped. In practice we observed that the maximal number of divisions n was of 
order 30. The value of E was of the order 1.0e - 5. 

The procedure of evaluating the two-dimensional integrals is adopted from Press 
et al. (1992). 
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4. The Moments of Inertia 

The moments or product of inertia affect rotational and orbital motion of planetary 
bodies. Thus knowledge of them is essential in studies of motions. 

Let us introduce the generalized moments of inertia. The integral of inertia 
(generalized product of inertia) of order (i, ], k) with respect to a body-fixed 
reference frame is defined as (Paul, 1974) 

Miyk = fvxi/z k dM, (18) 

where (x, y, z) are Cartesian coordinates. It was shown (Duboshin, 1974) that the 
gravitational potential of a body can be represented in terms of the integrals (18). 
In the paper of Paul (1974) a similar representation for the mutual potential 
between two graviting bodies of finite sizes is constructed. The result is worth 
mentioning because an alternative representation of the mutual potential in terms 
of spherical functions (Slidlichovsk~,, 1978) is very complicated and difficult to use 
in applications. 

Computations of the generalized moments of inertia can be straightforward (by 
numerical integration) if the mass distribution as well as the geometrical shape of 
a body is known. In the case of Amalthea we use the approximation of uniform 
density, thus the integrals (18) can be described in general in the form of (17). 

On the basis of the generalized moments of inertia one can compute the principal 
axes and the principal moments of inertia of the body. In matrix form the moment 
of inertia of a body model with density distribution p(r) is given by: 

fv  \{YZ + Z 2 -xy -XZ ) (19) 
I = p(r) | -xy  z a + x 2 -yz  dV. 

-xz  -yz  x 2 + ya 

In terms of the generalized moments of inertia the inertia tensor (19) reads 

/Mo2o + Moo2 -Ml~o -Mlm (20) 
I =  [ -Ml lo  M2oo + M0o2 -MoH | "  

/ ! 

\ -Mlol  -Mol~ M2oo + Moo2/ 

The orientation of principal axes and the inertia moments associated with them 
can be obtained by solving the eigen-problem for the matrix (20). 

4.1. THE M O M E N T S  OF I N E R T I A  V E R S U S  T O P O G R A P H Y  

On the basis of the harmonic expansion (4) the generalized moments of inertia 
can be expressed analytically. 

The moment of the order (0, 0, 0) describes the mass of a body 

M -= M0o0 = p(r) P cos q5 d e  dh dr 
d ~  d r = O  
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Assuming the constant density p(r) = pc, inserting the expansion (4) of rt into the 
above formula and integrating over the full solid angle we obtain: 

M = pc__~E(3o)2 =_ pcV, thus V = 2 .  /-- .~. : V  7 r E ~  j , (21) 
3 3 

where V denotes the volume of the body. 
The moments of the first order measure the offsets of the center of mass of the 

body from the origin of the coordinates system. With the assumptions as above, 
the analytical integration gives 

/ - ~  ~,:~ iG.,(4) mmo = - P c  ~ / 6  ']~L'll ~ 

f _ ~  ~(4) Molo = Pc ~ / 6  ~ ' 1 ~  , (22) 

1 x / -  ~,(4) 
Moo1 = ,Oc ~ v ~" ~,~o. 

Dividing the moments by the expression for the mass (21) one gets the offsets: 

1 ~ / 3  cO~(4)~',~ 11 1_ fB_~E(14) % E ( ~  ) 
2 = - -  ' Y =  4 ~.(3) 2 2 E~) ) 2 ~/2 E(o~ ) ' z~- ,~,oo " 

(23) 

For computing the inertia tensor it is enough to evaluate the generalized mon- 
ments of inertia of the second order as in (20) 

2 ~ v J ~ { 1 E ( S ) - 1  ~ ( s ) ~ 5 5 9 / E ( 2 ~  ) )  M2oo:  oc 7 , ~3 oo ,~2o + 

Mo2o = pc \3  ~00 f - ~  "~20 - ~'"-' 22 ] 

2%7~{1E(S) 2 E(S) ) 
M ° ° 2 = & 5  ~,3 oo + ~ - ~  20 , 

Mllo = - Pc ~ ~ f ~  ~vF~E(2~ ) , (24) 

= -Oc 2 , / 2  
5 ~ 1 5  
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K-_ 
2 

Moll = Pc 5 
v 1 5  

Thus the inertia tensor reads: 

2/~.(5 ) 1 E(2{)) - ~o~ . (5 ) ) ,~ - (3 )  
I , , /M = + V lO /, oo 

2 {~.(5 ) 1 ~.(5) + ~//-3i_d g~E(252) )IE~ ) I22/M=Tk~oo + ~ 2 o  

2 (E~)  - 1 (5)) 3) 133/M = ~ ~-@ e2o / E~o 

2 112/M = I'-" W~(5)/L-(3) 
- 5 ~ / 1 0  - - ~ 2 2  , - ~ 0 o ,  

(25) 

2 ~ 1 ~  f~ ' i [7(5)/1~(3)  I13/M = 5 ~,,,~21 ,,~oo , 

123/M = 2 ~ ~E(S)~,:.(3) 
5 "~ 1 0  ~ 21 " L ' 0 0  • 

Remark 3. The terms 111, 122, 122 are not principal moments of inertia as is 
suggested by the paper of Martine6 et al. The off-diagonal elements, given by 
(25), do not vanish unless the appropriate topography coefficients have non-zero 
values. Generally, the original reference flame does not coincide with the flame 
of principal axes. 

Remark 5. The integrals describing the generalized moments of inertia can also be 
computed easily in the cases when the density distribution is radial (not necessarily 
uniform). The problem is reduced to evaluation of integrals which have the follow- 
ing form: 

I q s j m  = xq(1-x)Sp'jn/(x)dx, q>-O, 2s=k,  kisinteger. 
1 

This can be done by application of the idea described in the book of Antonov 
(Antonov et al., 1988). The integrals can be computed recurrently, on the base of 
recurrent relations for the associated Legendre functions. 
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5. Stokes Gravity Coefficients 

In a body-fixed, right-handed Cartesian coordinate system the external gravi- 
tational field U at a point (r, ~b, A) is given by the standard formula 

U(r,q~,A) =GM ~ Pjm(sinqb)(CjmcosmA+ Sj,~sinmA), 
F j = O  rn=O 

(26) 

where G denotes the gravitational constant, M is the mass of the body, ro denotes 
a reference radius. The dimensionless coefficients of the expansion are taken here 
in the real, normalized form. 

In a general form the coefficients are given by integrals (Chao and Rubincam, 
1989) 

Sjm (2] + 1) Mr~ o(r'ch'A) dPP"(sinqh)c°smAdV'sin mA (27) 

where the integration is performed over the volume V of the body. If the density 
P = Pc =- const then the coefficients depend on the topography only. In this case 
the formula (27) has the same form as the integral (17) and explicitly 

~( cos mA d~. (28) Cjm : 1 r(/+3)([1)( Pjm(sin ~b) stoma 
Sjm (2j + 1)(j + 3) V4 ~) 

On the basis of this surface integral the Stokes' coefficients can be computed by 
numerical integration. 

Under the same assumptions the Stokes coefficients can be expressed analytically 
by the harmonic coefficients (15). The external potential (26) written in the com- 
plex form (Martine6 et al., 1989) is: 

: ~ Aim Yjm (11), (29) 
r j m=--j 

where the coefficients of expansion are complex and fully normalized in the 
complex sense. They are expressed by the integrals over the volume of the body: 

4~r f( f r=rt(~') - r 0+21 (~1) p(r, [1) Y*  (f~) dr dl ) .  (30) 
Aim (2j + 1) Mr~ n) ~,=0 

If the body is homogeneous then the three-dimensional integral (30), after perfor- 
ming integration over r is reduced to surface integral. Now we can replace a power 
of rt by its complex expansion (14). Finally, using the formula for the volume (21) 
one gets: 

6~v~ E~3)  (31) 
Aim = (j + 3)(2j + 1) ~0o=(3) 
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This represents the relationship between the gravity and the topography. The 
formula is exact. A discussion of applications of this formula can be found in 
papers of Chao and Rubincam (1989) and Martine6 et al. (1989). It should be 
noted that in the case of highly irregular bodies one should not utilize the first 
order approximation of (31), as it was done in the paper of Duxbury (1989). Such 
an approach gives unrealistic results. 

6. Numerical  Results 

6 . 1 .  H A R M O N I C  E X P A N S I O N  OF T H E  T O P O G R A P H Y  

For the expansion of the normalized coefficients of the topography we applied the 
straightforward method of least squares. The model is defined by the expansion 
(2) truncated on some value j = jmax. It is linear with respect to the unknown 
coefficients. This allows to use the linear method of least squares. For compu- 
tations we adopted the procedure LFIT taken from the book of Press et al. (1992). 

The problem of a proper choice of the value J'max arises here. As a test indicating 
goodness of the fit one could use the behaviour of the reduced )(2 (Bevington, 
1969), computed for a number of models with increasing degree jmax. As shown 
in Figure 2, the choice of jm~x is formally almost obvious--the higher order the 
model is, the better the fit seems to be. However, because of the final goal - 
computation of the Stokes gravity coefficients and the generalized moments of 
inertia on the base of the expansions - the model of shape should be of as small 
degree and order as possible. This conclusion could be argued from Remark 1 of 
Section (2). 

Finally, as a compromise forced by the problem remarked before, we used the 
model with ]max -- 18. The choice is based on numerical observation of the behav- 
iour of characteristics, which can be derived from the topography expansion and 
their dependence on the maximal degree of a model. The results are presented 
on Figures 3-6. 

The Figures 3 and 4 shows changes of the volume of Amalthea and the mean 
radius ro defined here as do0. The variations of the volume for jm~x > 18 are almost 
negligible, they are of order 0.1%. The next test is shown on Figures 5 and 6. 
They show numerical values of the Stokes coefficients (we choose some low degree 
coefficients) as functions of the maximal degree of the topographic expansion. 
They demonstrate that the choice of the model of degree 18 is at least safe. The 
relative changes of the coefficients are of the order 0.1%. 

In the next test we computed the mean and maximal difference in radius vector 
as calculated from the harmonic models and by linear interpolation of the original 
data. This is presented in Figures 7-8. For calculations we used the grid with 
resolution 1 ° in both of the angular coordinates. Again, the mean differences are 
comparable, starting from the models with J'max /> 18. 

For all the models tested, the longitude on which the maximal difference appears 
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Fig. 2. 
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Variations of the numerical estimation of the volume of Amalthea, as derived from harmonic 
expansions of the radius of topography. 

is localized around 180 °. An example of a global map of the differences for the 
model of the degree 18 is shown on Figure 9. It is surprising that maximal 
differences are much more bigger (of the order of one magnitude) than the mean 
values. For jmax >~ 18 they stabilize on the value of about 3-4 km (see Figure 7). 

The harmonic model of degree and order 18 was compared with the original 
data. Figure 10 shows 3D views of the shape described by the harmonic model 
from six mutually perpendicular directions. Note, that the planetocentric reference 
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frame is used. The views may be compared with analogous figures (based on the 
earlier shape model) in the paper of Stooke (1992). The coincidence of our model 
with the original data is apparently very good. This may be expressed in numbers: 
lo- STD calculated for all of the control points, describing the shape of Amalthea, 
is of the order 0.6 km. 

6.2. G E O M E T R I C  C H A R A C T E R I S T I C S  O F  A M A L T H E A  

The mean radius r0 of the topography of Amalthea determined on the basis of 
the harmonic model ] m a x  -~" 18 is F 0 = 79.7 - 0.2 km. 

The mean equatorial radius is defined as (Martine6 et  a l . ,  1989) 

1 ( 2~ 
ae = 2--~J0 rt(0, A) dA 

and may by expressed in terms of the topography expansion: 

ae = ro[1 + ~ ( - l y  1 (2/_'--1)!!]. 
j=l (2j)!! j 

This leads to numerical value a e  ~ 79.86 kin. 
The volume of Amalthea was computed by numerical integration and by appli- 

cation of the formula (21). The volume was estimated earlier by Veverka (1981): 
2.4 + 0.5 × 106km 3 and Stooke (1992): 2.5 -+ 0.5 x 106km 3. Our estimate is very 
similar. Numerical integration gave 

V = 2.44 --+ 0.02 × 106 km 3. 
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Changes in the normalized Stokes coefficients computed from topography expansion models. 

It  can be  c o m p a r e d  with the est imate derived f rom the harmonic  expansion with 

jmax = 18 -- V = 2.41 X 106 km 3 (relative difference is 0 .25%).  Because  the errors 

of  the shape mode l  are in fact no t  un i form and not  well localized we tried to 

est imate  the e r ror  o f  the vo lume as follows. To  the original data  was added  a 
r a n d o m  noise o f  un i fo rm distr ibution and the numerical  in tegrat ion was pe r fo rmed  
on the basis of  a n u m b e r  of  such noised shape models .  The  final value of  a integral  
was next  evalua ted  as the mean .  The  errors  of  the t opography  radius were  sampled 

f rom the interval  ( - 1 5 ,  +15)  kin, the n u m b e r  of  noised models  was 100. The  
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Fig. 6. 
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same method was applied for the estimation of errors of the generalized moments 
of inertia. 

6.3. T H E  MOMENTS OF INERTIA 

The computation of the generalized moments  of inertia was performed by means 
of numerical integration (as described in the Section 3) and the results were 
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Fig. 7. 
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Fig. 8. Mean differences in radius as derived from harmonic expansions of the topography (rtopo) and 
computed by linear interpolation of the original shape model (rim). The grid of 1 ° x 1 ° is used for the 

angular coordinates (¢, h). 

compared  with the values  ob t a ined  on  the basis of the ha rmon ic  mode l  of topogra-  

phy of the degree  and  order  18. The  results are p resen ted  in Tab le  I. 

Dif ferences  b e t w e e n  numer ica l  and  topographica l  es t imat ions  are in the range  

of few percent .  M o m e n t s  of the first o rder  which express the shift of  the center-  

of-figure of A m a l t h e a  f rom the center  of the or iginal  re ference  f rame are less than  
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90 

45 

-45 

-90 
6 90 3;0 

Fig. 9. Differences in radii as computed  by linear interpolation on the  basis of  the original Amal thea ' s  
shape model  of Stooke (1994) and derived from harmonic  expansion of the degree and order 18. A 
grid 1 ° by 1 ° in both of the angular  variables was applied (the planetocentric reference frame was 

used). The maximal  differences are localized around longitudes close to 180 ° . 

1 km. Thus, in practice they can be neglected. This result agrees with the con- 
clusion of Stooke (1992). 

Knowing the inertia tensor we are able to determine the orientation of the 
principal axes of Amalthea and the principal moments of inertia. The orientation 
will be described by the Euler angles of the type 3-2-1. The angles describe 
subsequent rotations of the body-fixed coordinate axes into the direction of the 
principal axes of inertia. They are determined in the process of diagonalization of 
the inertia tensor. Table II shows results which are derived when using the inertia 
tensor estimated by numerical integration. The xy planes of the principal and 
original frames are almost coinciding. The x principal axis is displaced from the 
point (q~ = 0 °, A = 0 °) by about 16 °. The values of principal moments of inertia 
shows that the moon is almost dynamically symmetric. 

6.4. STOKES GRAVITY COEFFICIENTS 

The coefficients of harmonic expansion of the external gravitational potential of 
Amalthea we determined in three independent ways 

A numerical integration using the original data points (linear interpolation of 
radii in spherical coordinates was applied), 

B numerical integration over the shape described by the harmonic model of the 
degree and order 18, 
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N o r t h  Pole  S o u t h  Pole  

A = 00 A = 1800 

A = 90 o A = 2700 

Fig. 10. Views of the body of Amalthea from six mutually perpendicular directions, computed on 
the base of harmonic expansion of the topography (a model of the degree and order 18 was used). 

F r o m  the  top: north and south pole views, equatorial projections for h = 0 °, 180 °, 90 ° and 270 °. 

C analytically, on the basis of the formula 31 with Jmax = 18. 

The method B was applied in order to check the internal consistency of the 
numerical method of integration we used. A comparision of the results obtained 
by the three methods is given in Table fII. Differences between results derived 
from methods A and C are very small. Their presence may be explained by the fact 
that although the analytical formula (31) is exact, during evaluation of subsequent 
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TABLE I 
Generalized moments of inertia. The first order moments are normalized by 

moments of the second order by the factor M~. 

261 

the factor Mro, the 

Order Numerical integration icr From Topography Difference (%) 

M100 -0.009 0.008 -0.011 8.0 
Molo -0.006 0.004 -0.006 2.5 
Moo1 -0.008 0.003 -0.008 3.4 

Mllo 0.085 0.003 0.093 9.7 
Mlol 0.002 0.003 0.002 3.7 
Moll 0.006 0.002 0.006 3.5 
Mzoo 0.527 0.008 0.524 0.6 
Mozo 0.177 0.002 0.171 3.2 
Moo2 0.141 0.001 0.136 3.9 

Diagonal elements of the inertia tensor 

Ixx 0.318 0.003 0.307 3.5 
lyy 0.668 0.008 0.659 1.3 
Izz 0.704 0.008 0.695 1.2 

TABLE II 
Inertial characteristics of Amalthea computed using the expansion of topography and numerical integra- 

tion (values in brackets). 

Principal moments of inertia (in terms of M~) 

A B C 
0.292 (0.283) 0.686 (0.668) 0.705 (0.697) 

Orientation of principal axes (3 -2 -1  Euler angles) 

13.0 ° (14.0 ° ) -0 .5  ° ( -0 .5  ° ) 16.5 ° (19.3 ° ) 

expansions (15) the sums had to be catted on the same number of terms. A 
comparison of the results given by the methods A and C shows however that 
distinctions between them have systematic trends. In order to explain their pres- 
ence we made a careful inspection of the behaviour of appropriate integrands. 
This showed that some of them strongly depend on displacements in rt, especially 
in the areas close to the equator. Thus we could state that even small differences 
between radii, calculated by linear interpolation and by application of a nonlinear 
model of the shape, may cause big changes in the values of appropriate integrals. 
In our case the differences in radii are of the order of a few percent in small areas 
(see Figure 9). However it has dramatic consequences - this effect changes the 
numerical values of Stokes coefficients up to 50%. Thus we may conclude that in 
order to estimate values of Stokes coefficients it is better to describe the shape by 
harmonic or other nonlinear model than interpolating linearly the original data. 

Table IV presents three sets of real, fully normalized Stokes coefficients up to 
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TABLE III 
Real, fully normalized Stokes coefficients of the external gravitational field of Amalthea. Differences 
[%] in results derived from numerical integration on the base of the original shape model (A), by 
numerical integration of the harmonic model 18 x 18 (B) and by analytical formulae, using also the 

harmonic model 18 x 18 (C). 

Method A-C Method B-C Method A-C Method B-C 

] m 8c ~s ~c 8s j" m ~c 8s ~c ~s 

1 0 3.70 -0.00 -0.01 -0.00 7 0 -7.30 -0.00 0.26 -0.00 
1 1 8.87 -1.38 -0.06 0.02 7 1 -11.92 -2.91 1.15 -0.36 
2 0 1.21 -0.00 -0.01 -0.00 7 2 7.10 -7.40 -0.28 9.82 
2 1 -9.44 -0.96 0.05 0.02 7 3 9.46 8.20 -0.98 -0.20 
2 2 -1.40 -0.99 0.01 0.01 7 4 -7.35 -2.29 0.28 -0.71 
3 0 -1.22 -0.00 0.02 -0.00 7 5 -7.63 -29.61 0.87 2.46 
3 1 -9.63 1.56 0.23 -0.04 7 6 8.27 3.26 -0.12 0.25 
3 2 1.57 0.28 -0.02 -0.01 7 7 6.55 9.60 -0.78 -1.26 
3 3 4.04 -0.39 -0.09 0.01 8 0 -7.93 -0.00 0.88 -0.00 
4 0 -3.17 -0.00 0.06 -0.00 8 1 8.48 9.85 -0.72 1.45 
4 1 4.15 0.92 -0.03 -0.02 8 2 8.06 7.97 -0.98 -0.47 
4 2 3.19 2.63 -0.07 -0.02 8 3 -8.99 -9.08 0.61 -2.10 
4 3 -4.19 -0.94 0 . 0 9  -0.03 8 4 -8.41 -8.43 1.28 0.68 
4 4 -3.50 -2.67 0.11 -0.05 8 5 10.56 5.79 -0.31 2.20 
5 0 3.96 -0.00 -0.03 -0.00 8 6 8.57 9.03 -1.68 -1.20 
5 1 11.96 -0.61 -0.54 0.18 8 7 -12.54 -2.86 -0.19 -1.59 
5 2 -3.95 1.79 0.04 -0.26 8 8 -8.02 -8.88 1.66 1.92 
5 3 -7.00 -1.54 0.35 -0.04 9 0 6.68 -0.00 -1.51 -0.00 
5 4 4.15 0.78 -0.06 0.01 9 1 13.68 12.57 -2.68 -0.41 
5 5 5.26 43.86 -0.27 -1.96 9 2 -7.03 -16.56 1.46 -15.15 
6 0 5.59 -0.00 -0.26 -0.00 9 3 -11.35 -37.39 2.48 7.25 
6 1 -7.32 -3.62 0.11 -0.41 9 4 7.94 8.86 -1.39 2.68 
6 2 -5.68 -5.28 0.30 0.11 9 5 9.33 28.68 -2.32 -4.22 
6 3 7.64 2.51 -0.10 0.55 9 6 -9.89 -7.38 1.13 -0.82 
6 4 5.99 5.27 -0.42 --0.21 9 7 -8.14 -13.00 2.21 2.96 
6 5 -7.62 -0.46 -0.09 -0.30 9 8 14.29 6.31 -0.71 0.36 
6 6 -6.24 -5.31 0.57 0.42 9 9 7.32 9.30 -2.18 -2.76 

t h e  d e g r e e  a n d  o r d e r  9. T h e  first  t w o  sets  a r e  e v a l u a t e d  by  a p p l i c a t i o n  o f  t h e  

m e t h o d s  A a n d  C.  W e  p r e s e n t  a l so  m e a n  v a l u e s  o f  t h e  coe f f i c i en t s  ( l a b e l e d  by  D )  

a n d  t h e i r  S T D  e r r o r s  as e s t i m a t e d  by  t h e  s a m e  a p p r o a c h  as in t h e  case  o f  t h e  

g e n e r a l i z e d  m o m e n t s  o f  i ne r t i a .  H o w e v e r ,  b e c a u s e  t h e  c a l c u l a t i o n s  o f  S t o k e s  

coe f f i c i en t s  a r e  n u m e r i c a l l y  m u c h  m o r e  e x p e n s i v e ,  t h e  e r r o r s  a r e  d e t e r m i n e d  o n  

t h e  bas is  o f  10 n o i s e d  m o d e l s  o f  t h e  s h a p e .  T h e  first  d e g r e e  h a r m o n i c s  r e p r e s e n t  

a d i s p l a c e m e n t  o f  t h e  c e n t e r - o f - f i g u r e  o f  t h e  m o d e l  f r o m  t h e  c e n t e r  o f  t h e  o r i g i n a l  

r e f e r e n c e  f r a m e :  

• , = ro " k / ~ i i  --~ - 1 . 0 5  k m  ( - 0 . 7 5  k m )  

Yt = r O ~ / ~ l l  ~ - 0 . 4 2  k m  ( - 0 . 5 0  k m )  

~t = ro 3~k/~10 -~ - 0 . 5 2  k m  ( - 0 . 6 2  k m )  
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Real fully normalized Stokes coefficients 
10 2). Reference radius is ro = 79.68 km. 

TABLE IV 
of the external gravitational field of Amalthea (in terms of 
Meaning of the indices A, B, D is explained in the text. 

j f/ '  C A m  SA~, n cB],m SB]- m . CDm tT C s D  m O- S 

1 0 -0.461 -0.445 -0.378 0.147 
1 1 -0.636 -0.325 -0.584 -0.330 -0.760 0.372 -0.321 0.190 
2 0 -9.486 -9.372 -9.503 0.255 
2 1 0.176 0.444 0.161 0.440 0.145 0.196 0.484 0.128 
2 2 13.660 6.603 13.472 6.538 13.665 0.451 0.676 0.353 
3 0 0.923 0.912 0.884 0.177 
3 1 0.745 -0.438 0.679 -0.431 0.769 0.362 -0.437 0.128 
3 2 -1.581 -0.585 -1.557 -0.583 -1.577 0.228 -0.534 0.104 
3 3 -3.452 1.443 -3.318 1.438 -3.527 0.481 1.420 0.312 
4 0 4.998 4.845 4.958 0.314 
4 1 -0.767 -0.341 -0.737 -0.338 -0.725 0.275 -0.389 0.116 
4 2 -6.895 -2.607 -6.682 -2.540 -6.836 0.415 -2.625 0.266 
4 3 0.646 0.585 0.620 0.579 0.532 0.224 0.599 0.i94 
4 4 6.853 5.466 6.621 5.324 6.735 0.598 5.493 0.454 
5 0 -0.617 -0.593 -0.520 0.295 
5 1 -1.384 0.441 -1.246 0.439 -1.407 0.665 0.455 0.143 
5 2 1.157 0.263 1.113 0.268 1.084 0.335 0.245 0.168 
5 3 2.916 -0.689 2.725 -0.699 3.007 0.660 -0.691 0.389 
5 4 -1.466 -0.956 -1.408 -0.948 -1.482 0.252 -1.027 0.223 
5 5 -6.908 -0.294 -6.563 -0.204 -7.109 0.961 -0.425 0.564 
6 0 -4.952 -4.690 -4.925 0.662 
6 1 1.128 0.119 1.051 0.115 0.957 0.645 0.132 0.148 
6 2 6.540 2.062 6.189 1.958 6,456 0.884 2.085 0.352 
6 3 -0.952 -0.348 -0.885 -0.339 -0.706 0.560 -0.348 0.296 
6 4 -5.529 -3.745 -5.216 -3.558 -5.390 0.905 -3.741 0.518 
6 5 0.961 0.579 0.893 0.576 0.698 0.459 0.499 0.320 
6 6 6.269 5.480 5.901 5.203 6.143 1.298 5.427 0.793 
7 0 0.979 0.913 0.806 0.709 
7 1 2.871 -0.333 2.565 -0.343 2.993 1 ,431 -0.367 0.205 
7 2 -1.639 -0.053 -1.530 -0.058 -1.476 0.934 -0.004 0.278 
7 3 -4.202 0.551 -3.839 0.600 -4.429 1.422 0.568 0.544 
7 4 1.931 0.687 1.799 0.671 1.855 0.839 0.767 0.362 
7 5 6.648 0.694 6.176 0.536 6.916 1.532 0.866 0.773 
7 6 -1.813 -1.574 -1.675 -1.524 -1.732 0.800 -1.798 0.356 
7 7 -11.486 -5.244 -10.781 -4.784 -11.831 2.164 -5.702 1.413 
8 0 6.512 6.033 6.585 1,497 
8 1 -2.304 -0.200 -2.124 -0.182 -1.967 1 .673  -0.213 0.258 
8 2 -8.618 -2.495 -7.975 -2.311 -8.628 2,035 -2,603 0.656 
8 3 2.054 0.474 1,885 0.435 1.583 1.610 0.442 0.583 
8 4 7.262 4.213 6.699 3.885 7.121 2.030 4.252 1,022 
8 5 -1.818 -0.585 -1.645 -0.553 -1.259 1 .451  -0.397 0.739 
8 6 -6.545 -5.041 -6,028 -6.623 -6,472 2.219 -4.879 1.266 
8 7 1.989 0.896 1.767 0.871 1,533 1.t17 0.566 0.853 
8 8 9.895 7.341 9.161 6.742 10,190 3.255 7.363 1.975 
9 0 -2.134 -2.001 -1.853 2.085 
9 1 -5.404 0.278 -4.754 0.318 -5.760 3.302 0.357 0.381 
9 2 3.284 0.118 3.068 0.101 2.999 2.842 0.014 0.583 
9 3 6.973 -0.243 6.262 -0.387 7.554 3.284 -0.309 1.038 
9 4 -3.613 -0.809 -3.347 -0.743 -3.465 2.659 -0.834 0.879 
9 5 -9.483 -1.500 -8.673 -1.166 -10.216 3.392 -1.746 1.553 
9 6 3.362 1.901 3.059 1.770 3.107 2.488 2.113 0.931 
9 7 12.075 5.737 11.166 5.077 12.739 3.696 6.422 2.223 
9 8 -2.416 -2.810 -2.114 -2.643 -1.918 2.339 -3.107 0.948 
9 9 -16.368 -15.465 -15.252 -14.149 -17.161 4.819 -16.809 4.147 
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Numbers in brackets denote the shifts determined through estimation of gen- 
eralized moments of inertia as given in Table I. 
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