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Abstract. Having formulated the Clairaut second-order differential equations up to the fourth order
in superficial distortion due to Hensen’s coefficients in the previous article (El-Sharawy et al., 1989
111, hereafter denotes by SM3), we are now in a position to solve them. In this paper we shall
discuss the methods of solving the Clairaut theory, to give an explicit form about the distortion of
the surfaces of Jupiter and Saturn, numerically up to the fourth-order.

1. Introduction

In the previous article SM3, we derived the differential equations governing the
form and exterior potential of rotating stars.. These equations are the Clairaut
theory of the rotational distortion of self-gravitating configuration of arbitrary
structure, arising from axial rotation with constant angular velocity, and extended
to quantities of fourth-order in superficial distortion due to Hensen’s coefficients.

A particular numerical solution of the previous Clairaut second-order theory
(derived by Kopal, 1960) was made by James and Kopal (1963) for planets such
as the Earth, as well as Jupiter and Saturn. They used Rung-Kutta’s method for
step-by-step numerical integration. In the present work, we shall investigate the
numerical solutions of the foregoing differential equation formed in the previous
article SM3 and governing f, fa, fs, and fg, applying Hamming’s predictor
corrector method for numerical integration. We restrict our analysis to the con-
figurations characterizing the planets Jupiter and Saturn with density distribution
given by Zharkov et al. (1973).

2. Boundary Conditions

In this section we derive the formulae defining the boundary conditions, which are
necessary for complete specification of the numerical solutions of the fourth-order
Clairaut theory (Equation (1) in SM3), since we have a second-order differential
equations two boundary values are needed. These are at the centre (a¢ = 0) and at
the external boundary (a = a;). From these particular solutions we can evaluate
the amplitudes f(a), the radial part of the equipotential surfaces, which expresses
the deformation of the shape of the equipotential. So,
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1. at the center (a = 0), all the f,,(a) as are to be a minimum, which requires
that their derivatives must identically vanish, i.e., all

fr(@=0, for n=2, 4, 6, and 8, (1)

2. at the external equipotential (a = a1), all the expressions F,(a) (Equations
(I1)~(I5) in Appendix I) are equal to zero, but the expressions F,(a) continue
to be defined as before by Equations (16)~(110) in Appendix I also, replacing a
by aj, except for j = 0. The exterior potential V' at n = 0 take the form, (see
El-Shaarawy et al., 1989I)

%=G/Odm:Gm0, 2
0
where
ag
mo = 4 / pa’da. (3)
0

Replacing ag by a1, and using Equation (I16), Equation (3) become
my = 411 Fy(a,), “)

where m; is the total mass of our distorted configuration.

Applying the previous condition (2) on the equations of the radial functions
described the actual form of the equipotential surfaces as given by Equations
(5)~(8) in Marie et al., (1993), with the aid of Equations (9)—(13) in the same
reference, we obtain, for a = a;

2.2

3wea
2f +aify+ 2Gml = (18113 +1 Boar fof} —1 Bai f3% +1 Bafat

+18sa1fs —1 mf3 —1 a1 f3 f5 —1 mai faf —1 maai f7 —1 s fafat
+ 1M6a1 fof4 +1 ma1 ffa+1 ngad fr£4 —1 Mo fs —1 moar f§ —1 €1f3—
—1&a1fifs —1 G H R —1malfofy —1 &salfit —1 & ff fat
+1mar fafs — Va1 fof5 fa +1 moad fofy fi +1 E1003 5 fat
+1€nai 2 fa +1 Ei2fafe —1 Ei3ar fofé +1 E1aar fo fo—

— 161503 f2f +1 E16f7 —1 E17an fafs +1 Esa® fi+

2.2

w a 2 2012
+4Gn; (=201 f2 +2 azay fy —2 Bif3 +2 Bear fofs +2 Baai f5° +2 Bafa+
1
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+2B5a1fy —2 S — 2mar f3 5 +2 maai fafy +2 s fafa—

— amear fafs —2 mar f 4 —2 msai fafa), &)
where the coefficients ;o, ;3;, i7;, and ;£; are given in Appendix IL

Af +a1fi = QA2 +1 Brar fofy —1 Baai 2 +1 mf3 —1 marfs fo—

— 1303 fof 1 mal P —1 ms fafa —1 near fofs+1 mras o fa —1 msalt 354

+1m9.fs +1 moa1 f§ +1 6105 —1 &a1 f3 f +1 &l f3 15 +1 Eaad fof5+

+185a1 £ +1 €63 fa —1 G101 f3 f4 +1 Esar fafa fu —1 €90 fo i fa—

—1610ad [ 4 —1 Enal 2 fh —1 Ezar fafb +1 Eusan fof§ —1 Euaar fo o

+1&1502 3£ —1 E16f7 +1 E1a1 fafy —1 Eisal fi )+

2 3
wa
4Gml] B} —2 Brarfofs —2 B3ad 37 +2 Bafa+2 Bsar fo — m f3+

+omar1 f3fy —2 1308 fof5E +2 @i 5 —2 s fofa +2 mear fof4+

+ama1 f3 fa +2 msai £ £4 —2 Mo fo) (6)
the coefficients ;0;, i1, and ;; are given in Appendix I

6fs + a1 fe = (11 f3 +1 ma1f1fs +1 AL fofs” —1 maai f5 +1 s fafat

+ 17601 fofs +1 o fa fa +1 803 fofs —1 €1 f3 — +16aai f3 fr—

— 1608 21 —1 &dl fof —1 Esal fs +1 Eofa fa 1 Gran f3 fa—

—1€&3a1 fofyfs —1 &0l fafa fi+1 Er0al f57 4 +1 Enal f7 fo—

— 1é12fafs —1 E13ar fafg —1 514a1f2f6 +1 &i5a> f3f5 —1 Ei6fi—

2
—1&17ar fafs +1 €1sa1ff)+ i ( 2 f3 —2marfifat

+2ma1 fofy” —2 nsfafa —2 776a1f2f4 —2 101 f3 fa —2 nsal fof4—
— an9f6 —2 M10a1 fs), (7
where the coefficients ;7; and ;£; are given in Appendix II, and,
8fs +aify = ~61fi ~ & fify — &0 f3 17 + &aal fofs+
+sa1 ' + &6 fifar Garfifi = Garfalyfa — Goai fafifim
—&oarfafs — Enal f2 i + Eiafofs — Ezar fofe—
—&uar ffs — G501 515+ Ei6fi — Eiran fafh + Eisat £, ®)

the coefficients &; are given in Appendix II.

These four first-order differential equations of the amplitudes f;(a) specify
the particular solutions of Clairaut equations (SM3, Equation (1)) and will be
needed on dealing with the numerical solutions afterwards.
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3. Numerical Solutions

A construction of the numerical solutions of the Clairaut equations specified by
the boundary conditions (5)—(8) can be accomplished by successive approxima-
tion using the same technique followed by Kopal (1974): first solving for to
accuracy of first-order, next solving for f> and f4 to quantities of second-order,
and continuing until a solution for fa, fi, f¢ and fg accurate to fourth-order has
been established. Over all steps of our calculations the Hamming’s predictor-
corrector method is used to report the numerical integration of the foregoing
Clairaut differential equations governing f», fa, fs, and fg for the density distri-
bution p(a) characterizing our configuration. This method consists of solving a
system of n-first order ordinary differential equations.
The Clairaut equation (see SM3) takes the form

a’fi +6D(f; +af)) — 3G + Df; = Tj(a), ©)

which is a second order differential equation, where D is the ratio between the
arbitrary density p(a) and the mean density which is given by
3 jao 3
p=~ andﬁ=—3/ pa’ da= =K. (10)
pla) a’ Jo a
The ratio D can be expanded, in the proximity of the origin, in a series as
D@)=1—-)Xa+--- (11)

even power only occurring on the r.h.s on account of spherical symmetry of our
configuration in its undistorted state, where by definition

D(a)=1 and D(ay)=0. (12)

By successive approximation method, we can extend with difficulties to solve
for each amplitude f;(a) of jth harmonic distortion to the required degree of
accuracy. The structure of the differential equations of the form (9) govemning
these, make it evident that near the origin (a = 0), the complementary function
of each f; (factored by an arbitrary positive constant K;) will vary as K;a’~1,

while its particular integral will be factored by K JJ / 2, while the constants K;(j =
2,4, 6&8) constitute the eigen-parameters of our problem, and their values must
be determined with the aid of the boundary conditions (5)—(8) valid at a = a;.

Thus, to put Equations (9) as a two first order ordinary differential equations,
consider that

yi=f; and y;=f] (13)
on differentiation with respect to a, thus

yi=fJ’- and yp = J{' (14
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Equations (11) can be written as,

Y= (15)
and,
oty = [j(G + 1) — 6Dly; — 6aDys + T, (16)

which are two differential equations of first-order, subject to the initial conditions
y1(0) = constant (f;(0)) and ,(0)=0 17

The numerical integration of the boundary value problem (13) for Jupiter and
Saturn has been carried out on the basis of their models of internal structure
worked out by Zharkov (1975) as given diagrammatically in Figures 1 and 2.
These planets will underlying under the assumption that the mass of these planets
being in hydrostatic equilibrium and are known to rotate so fast that the higher-
order than first-order effects of centrifugal force become of much greater relative
importance.

Using the computing program, written by one of us (Marie), based on solving
n-first order differential equations, which applying the successive approximation
steps as shown before and through every step, it solved the system of differential
Equations (15) and (16) under the boundary conditions (17) — up to the order
of evaluation — using Hamming predictor — corrector method for the numerical
integrations.

As long as terms of first-order only are retained throughout Equation (9),
the problem for computation is simple: The first-order equation being linear and
homogeneous in the sole dependent variable f,, its numerical integration can be
started from an arbitrary value f,(0), and its appropriate scale constant adjusted
by means of the outer boundary condition (5). To do so we consider as a first
approximation K, = 1, to begin the numerical integration. Using the values of
f2 and f} from the first step and satisfy the boundary condition at a = a), the
program use iteration method to K, until the values of f, and f} will give
appropriate accuracy to fulfill the boundary conditions (5), where the value of
constants occurring in Equation (5) can be specified without difficulty for our
planets. These constants were given in Table 1.

Owing to this we can obtain the value of amplitudes f, and its derivative at
the different levels inside the planet as a first approximation. When, however
the terms of second, third and fourth order are considered, we face a non-linear
boundary value problem of the jury type the solution of which proceeded as
follows: consider Equation (6) at the boundary a = a; of the amplitude fs, using
the values of f, and f; which obtained as a first approximation to get initial
value to Ky, as well as f4. Take the numerical values of f, and f4 to repeat
the numerical integration of Equations (9) up to second-order and so continue
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Fig. 1. Internal density distribution of Jupiter.

TABLE I
Constants characterize our planets Jupiter and Saturn

Jupiter Saturn
Mass m, 1.8985 x10%® gm  0.56846 x10* gm
Mean radius a 6.9911x10° cm 5.8232 x10° cm
Mean density p 1.326 gm/cm’ 0.6873 gm/cm®

Angular velocity of  0.00017585 sec™'  0.000163785 sec™
rotation w
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Fig. 2. Internal density distribution of Saturn.

as mentioned before until we solve up to four approximations, where the initial
values of K ;s, j =2,4, 6, and 8, are obtained from the boundary condition
equations.

In this investigation, we take into consideration the different shape of ratio
D, Equation (11), which given by James and Kopal (1968) as: this ratio of the
form of Equation (11) could be used only to a/a; = 0.15 and 0.267, respec-
tively. Outside the core, empirical polynomial were used again to represent the
theoretical variation of p/p.: For Jupiter, polynomials of degree 3, 2, and 2 were
found adequate in the inner, intermediate, and outer shell, respectively; while for
Saturn, distinct polynomials had to be used in the range, 0.267 < a/a; < 0.465,
0.465 < a/a; < 0.549 and 0.549 < a/a; < 1.0.

Take into consideration the above different ratio of p/p,; first to Jupiter and
secondly for Saturn, the outcome of our solutions of the fourth order Clairaut
Theory is then contained in Tables II and III for Jupiter and Saturn, respectively,
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TABLE II
Coefficients of the internal distorton of
Jupiter
a/a —10%f, —10°f, —10%fs
0 0.781 0.0047  0.000009

0.095 0.781 0.0048  0.000020
0.146  0.782 0.0049  0.000039
0.1s0  0.783 0.0050  0.000070
0.150  0.784 0.0051  0.000073
0.193 0.806 0.0061  0.00062
0.241 0.822 0.0069  0.00112
0.291 0.844 0.0083  0.00190
0337 0872 0.0099  0.00291
0.385 0.907 0.0120  0.00440
0.443 0.961 0.0154  0.00685
0.490 1.021 0.0194  0.0099
0.54 1.099 0.0247  0.0146
0.588 1.195 0.0318  0.0212
0.641 1.321 0.0417  0.0316
0.690 1.475 0.0546  0.0466
0.732 1.643 0.0697  0.0656
0.765 1.866 0.0806  0.0914
0.765 1.867 0.0897  0.0921
0.800 1.039 0.1079  0.1193
0.850 2344 0.1422  0.1752
0874  2.608 0.1712  0.2239
0.899 2.829 0.1985  0.2741
0.919 3.033 0.2246  0.3244
0.938 3.249 0.2533  0.3818
0.959 3.508 0.2888  0.4558
0.968 3.712 03152  0.5097
0.976 3.859 0.3350  0.5517
0988  4.060 0.3642  0.6168
09917 4.262 0.3893  0.6683
0.9953  4.350 04013  0.6944
1.0000 4.461 0.4172  0.7304

which shows the deformation at the equipotential agrees with the density distri-
bution level given in Figures 1, 2. These solutions are diagrammatic in Figures
3 and 4.

Once the values of f;(a) are thus numerically for two planetary configurations,
Jupiter and Saturn, then insertion in Equation (9) gives the respective approxi-
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TABLE III
Coefficients of the internal distorton of Sat-
urn
a/a; —10%f, —10°f; —10%fs
0 1.086 0.0081 0.00018
0.005 1.078 0.0097  0.00019
0.091 1.079 0.0098  0.00020
0.147 1.080 0.0100  0.00030
0.198 1.082 0.0105 0.00035
0.247 1.088 0.0110 0.00061
0.267 1.100 0.0120  0.00071
0.267 1.107 0.0128  0.00080
0.298 1.215 0.0170  0.00257
0.338 1.264 0.0200  0.00376
0.388 1.339 0.0250  0.00582
0.445 1.447 0.0320  0.00924
0.465 1.510 0.0360  0.01130
0.465 1.520 0.0370  0.01150
0.500 1.616 0.0440  0.01518
0.549 1.763 0.0550 0.02182
0.599 1.956 0.0710  0.03182
0.650  2.190 0.0910  0.04651
0.699 2.455 0.1170  0.06657
0.749 2.772 0.1500  0.09569
0.799  3.140 0.1930  0.13689
0.848  3.390 0.2500  0.19698
0.873  3.930 0.2930  0.24464
0.899 4.235 0.3350  0.29635
0.917 4.514 0.3750  0.34470
0.934 4.783 04150  0.39537
0960 5.194 0.4800  0.48344
0.969  5.506 0.523 0.53997
0.979 5721 0.5570  0.58805
0.9864 5.903 0.5870  0.62919
0.9919 6.045 0.6090  0.66194
0.9958 6.131 0.6240  0.68315
1.0000 6.208 0.6370  0.70485

235

mation to the form of the equipotential surfaces of any layer of constant density
and mean radius a inside the planets.
In order to test the accuracy of our results, the following two checks have

been carried out:



236 M. MARIE AND M. B. EL-SHAARAWY
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Fig. 3.

1. Considering the density distribution of Jupiter and Saturn reported by James
and Kopal (1963), and repeating the computation of the distortions up to second-
order only, we notice that our results are identical up to the third decimal with
that of James and Kopal.

2. The value of the constant A in Equation (11) was arbitrarily reduced by
1% and the integration repeated; the corresponding ranges in the terminal values
of f;’s were likewise changed about 1%.

Note that the departure of our planets from (Jupiter and Saturn) due to these
fourth-order rotational distortion terms was interesting up to the amplitude fg
only. Thus any greater accuracy would, however, require an increased precision
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rig. (4) : lnterna) distortion
] of Saturn,

Fig. 4.

in our knowledge of the density distribution inside these planets. So the third-
order rotational distortion terms was sufficient to study the deformation of these
planets owing to the density distribution in our hand.

4. Appendix I

Radial function of internal potential

a9 7 1 7
Eo(a) = / P [cﬁ (1 - fie g fi -5 - 2f22f4>l da, (11)
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a9 3 1
B = [ og (1235 - 3hh) da

Eaay= [ % [a_z (f4 22 ;11“'23 - %ffﬁ;)] da,

w o 4
a9 5 5
Eg(a) =/ P 5a [0_4 (f6 — Zfz3 - §f2f4)} da,
and
a g [ _ 49 7 7
= [ o 7 (o= 5088 — 3 fafo - 1) da.

Radial function of external potential,

ao
Fo(a) = / pa® da,
0

B@= [ o |& (£ 58 +200)]

Fy(a) = /0 ” ”?9% {tﬂ (f4 + %f% + §f§f4 - %fﬁ‘)} da,

Fo(a) = /O ” p% [a9 (fe 2R3+ 4fzf4>} da,

and,

a@ g 15
Fg(a) = /0 "5 {a” (fs + Zf;' +5f2f6 + %ff)] da.

5. Appendix 11

COEFFICIENTS OF THE BOUNDARY-CONDITION EQUATIONS

For n = 2, Equation (5)

Q] = 0.960, Qo = 0.192

(12)

I3)

(14)

as)

16)

a7

as)

19

(110)
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TABLE 1I-1
0
7 1 )
1 1.398 0.820
2 10.602 0.473
3 1.043 0.200
4 0.356 12.220
5 0.178 2.448
ifj
/i I 2
1 224233 7.063
2 59.566 6.579
3 52.412 9.095
4 4.510
5 71.443 122447
6 62.827 23.369
7 569.811 42.242
8 43.134 2.252
9 2.250
10 1.201

&
£

23304.440

709.513
606.828
141.948
12.861
2642.228
1255.993
2298.639
266.595
920.509
251.313
150.349
30.355
7.073
3.313
112.872
37.173
7.696

239
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For n = 4, Equation (6)

Q1 = 0.960, Qp = 0.192
TABLE (I1-2)
iBj &

i/ 1 2 i 3
1 13.883 2.989 1 127522
2 18.886 1.434 2 54820
3 5971 1.146 3 11784
4 96.526 4 2603
5 13.783 5 148.093
6 68124
i 7 24642
ili 1 2 8 44906
1 1940.640 50.780 9 15709
2 1370270 321.015 10 6429.622
3 99.990 85.083 11 2221.347
4 35.038 0.697 12 3009.495
5 3438.151  291.302 13 457.206
6 509.673  431.353 14 485.365
7 3757689 360.193 15 51.153
8 325.157 6.291 16 1612.857
9 36.540 0.843 17 887.502

10 9.135

18 54.004
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For n = 6, Equation (7)

TABLE (II-3)

iBj
/i 1 2
1 760.192 80.100
2 240.244 94,288
3 61.914 14.252
4 3.839
5 512,779 127.235
6 52.141 154.946
7 294.380 65.863
8 35.85 6.761
9 3.258
10 0.363

&
i 3
1 69158.640
2 13920.842
3 1521.300
4 201.909
5 3.354
6 14147.950
7 6176.276
8 10972.332
9 1091.333
10 929.157
11 64.228
12 223.132
13 82.640
14 194.812
15 5.738
16 21.113
17 143.331
18 6.268

241
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For n = 8, Equation (8)

TABLE (II-3)

&
? €
1 1190.734
2 910.458
3 426.987
4 5.991
5 0.319
6 157.532
7 19.697
8 357.118
9 49.530
10 9.385
11 3.245
12 66.473
13 7.400
14 1.482
15 0.406
16 4314
17 2.131
18 0.045
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