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Abstract.  Having formulated the Clairaut second-order differential equations up to the fourth order 
in superficial distortion due to Hensen's coefficients in the previous article (El-Sharawy et al., 1989 
III, hereafter denotes by SM3), we are now in a position to solve them. In this paper we shall 
discuss the methods of solving the Clairaut theory, to give an explicit form about the distortion of 
the surfaces of Jupiter and Saturn, numerically up to the fourth-order. 

1. Introduction 

In the previous article sM3, we derived the differential equations governing the 
form and exterior potential of rotating stars.. These equations are the Clairaut 
theory of the rotational distortion of self-gravitating configuration of arbitrary 
structure, arising from axial rotation with constant angular velocity, and extended 
to quantities of fourth-order in superficial distortion due to Hensen's coefficients. 

A particular numerical solution of the previous Clairaut second-order theory 
(derived by Kopal, 1960) was made by James and Kopal (1963) for planets such 
as the Earth, as well as Jupiter and Saturn. They used Rung-Kutta 's  method for 
step-by-step numerical integration. In the present work, we shall investigate the 
numerical solutions of the foregoing differential equation formed in the previous 
article SM3 and governing f2, f4, f6, and fs, applying Hamming's  predictor 
corrector method for numerical integration. We restrict our analysis to the con- 
figurations characterizing the planets Jupiter and Saturn with density distribution 
given by Zharkov et al. (1973). 

2. Boundary Conditions 

In this section we derive the formulae defining the boundary conditions, which are 
necessary for complete specification of the numerical solutions of the fourth-order 
Clairaut theory (Equation (1) in SM3), since we have a second-order differential 
equations two boundary values are needed. These are at the centre (a = 0) and at 
the external boundary (a = al). From these particular solutions we can evaluate 
the amplitudes f (a) ,  the radial part of the equipotential surfaces, which expresses 
the deformation of the shape of the equipotential. So, 
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1. at the center (a = 0), all the fn(a) as are to be a minimum, which requires 
that their derivatives must identically vanish, i.e., all 

f~(a)=O, for n = 2 ,  4, 6, and 8, (1) 

2. at the external equipotential (a = al), all the expressions En(a) (Equations 
(I1)-(I5) in Appendix I) are equal to zero, but the expressions Fn(a) continue 
to be defined as before by Equations 06)-010)  in Appendix I also, replacing a 
by al,  except for j = 0. The exterior potential V at n = 0 take the form, (see 
E1-Shaarawy et al., 1989I) 

f0 a° 170 = G d m =  Gmo, (2) 

where 

f0 a° m0 = 4 pa2da. (3) 

Replacing a0 by al, and using Equation (I6), Equation (3) become 

ml = 4H Fo(al), (4) 

where ml is the total mass of our distorted configuration. 
Applying the previous condition (2) on the equations of the radial functions 

described the actual form of the equipotential surfaces as given by Equations 
(5)-(8) in Marie et al., (1993), with the aid of Equations (9)-(13) in the same 
reference, we obtain, for a = al 

3w2a~ - ( - l f l l J  2 +1 f12alf212 -1  f13a2 f22 +1 f14f4+ 2f2  + al f2  + 2Gm~ 

+ lfl5alf~ --1 • l f  3 --1 r l2al f2f~ --1 r/3a21f2f~ 2 --1 7]4a~f2 3 - -1  v75f2f4+ 

t 2 t t 
+ lv76alf2f4 +1 r/Talf2f4 +1 ~]8alf2f4 --1 ~79f6 --1 ~10alf6  --1 ~ l f  4 -  

- - l~2alS3f~.--1 ~3a2S2S2 2 --1 f]4a~S2S~ 3 --1 ~5a41S; 4 --1 ~6f2f4  + 

2 t 2 t I 2 / 2  
+ lrl7alf~f~ -- l~8alf2f~f4 +1 rl9alf2f~f~ +1 {lOalf~ f4+ 

+ l{lla~f~2f~, +1 {lef2f6 --1 ~13alf2f~ +1 {14al f~f6-- 

e ~3 acl2 ¢1 2 /2 
-- lq15"lJ2 J6 +1 ~16f 2 --1 {17alf4f4 +1 ~lSa f,~ )+ 

~2a2  ~ 2 ¢t2 
" } - ~ ( - - 2 0 q f 2  +2 oz2alf2 --2/~lf  2 +2 ~2alf2f~ +2 ~3a l J2  +2 ~4f4 -b 
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+ 2f lSal  f4  3 2 # 2 12 - -2  7]l fd --  2 7 1 2 a l f ~ f ~  +2 7 1 3 a l f 2 f 2  +2 715f2f4-- 

2716121f2f~ t _ a Z ~ t  ~ l ,  --  - -2  717121f~f4 - -2  "q8 l d Z J 4 ) ,  (5) 

where the coefficients iOgj, i f l j ,  iT]j, and i~j are given in Appendix II. 

4f  + alff~ = ( l f l l f 7  +1 fl2alf2f2 --1 ~3a2f22 +1 7]if 3 --1 772al~f2-- 
2 t2 _3`et3 t 2 # t 

- -  1773a l f2 f2  +1 714(*1J1 --1 715f2f4 --1 7 1 6 a l f 2 f 4  +1 ? 7 7 a l f 2 f 4  --1 7 1 8 a l f 2 f 4  

+ 1'#79f6 '1-1 7710all; +1 ~lS24 --1 ~2alf23S , +1 ~3a2fTS~ 2 '1-1 ~4a~f2S~ 3+ 

+ l~5a4S24 +1 ~6STf4 --1 ~7alSTSl +1 ~8alf2S2f4 --1 ~9a2S2S'~S4 - 
2 t2 e _3.et2,el t t # 

- -  l ~ lOa l / 6 ,  f4  --1 g l l ~ l , / 2  ,/4 --1 ~12alf2f~ +1 ~13alf2f~ --1 ~14alf2f6 
2 i t  2 t 2 #2 

+ l ~ 1 5 a l f 2 f 6  --1 ~16f, l +1 ~ 1 7 a l f 4 f 4  --1 ~ 1 8 a l f 4  )+  

c02°'3 2 r~ 2 el2 
+4~-~ml (2fllf~ -2  flaalf2f~ -x  . 3 a l J 2  +2 f l4 /4  +2 f l 5a l f~ l  --2 rlif32 + 

2 t 2 ~ ~#2 3e13 
+ 2712alf~f~ --2 713al]272 +2 714alY2 --2 715f2f4 +2 716alf2f~+ 

# 2 # # 
+ 2717a l f~ f4  +2 7]salf~f~ --2 719f6) (6) 

the coefficients iflj, i~Tj, and i{ j  axe given in Appendix II. 
2 t 2 t2 3 xq3 

6f6 + 121f~ = (17]if 3 +1 r12121f~f~ +l r13alfzf~ -1 714alY2 +1 rBfzf4+ 
t 2 i t  4 

+ 1716al f2Y4 +1 717121f2f4 +i  ? 7 8 a l f 2 f 4  --1 ~ l f 3  --  + l ~ 2 a l f 3 f ~  - 

¢- 2 e2 et2 3 13 .- 4.e14 2 2 I 
--  l g3a l J20r2  --1 ~4a l f2 fg_  --1 ~5121J2 +1 ~ 6 f 2 f 4  +1 ~ 7 1 2 1 f 2 f 4 - -  

t 2 I t 2 t2 ,,- ~3 el2 .et 
--l~8alf2f~f4 --1 ~9alf2f2f4 +1 ~10121f2 f4 +1 qll(ZlJ2 .14-- 

- - l~12f2f6--1 ~13alf2f; --1 ~14aif2f6 +1 ~15a2f2f; --1 ~16f42- 
o22a 3 

# ~ 2 `et2~ 1 3 2 t 
- -  l ~ 1 7 a l f 4 f ~  +1 { 1 8 a l J 4  ] + 4--m---1-1~lG(-27]i f2  - 2  7 ] 2 a l f 6 f 6 +  

2 t2 t 2 t # 
+ 2 7 7 3 a l f 2 f 2  --2 r /5 f2f4  --2 7 1 6 a l f 2 f ~  --2 7 1 7 a l f 2 f 4  --2 ~ 7 8 a l f 2 f 4 - -  

--  2?79f6 --2 ?710al f~), (7) 

where the coefficients iT]j and i~j are given in Appendix II, and, 

8f8  +alf~ = --~lf2 4 - -  ~2al  f23f~' _ g3a  l c  2.2.12j2 ]2  + ~4a13 f2f~13+ 

+  124f 4 + ¢6fT f4 + fT f:, _  salf2fW, -  9aT f fW:, - 

- - { i o a l f 2 f 4  - -  e 3 el2 el g l l a l J 2  J4 + ~12f2f6  i ~13alf2f£-- 
# 2 i t  2 

--  ~ 1 5 a l f ~ f ;  + - -  (8) - - ~ 1 4 a i f ~ f 6  {16fz~ ~17121f4f4 + r 2 t.12 g l 8 a l f 4  , 

the coefficients {i are given in Appendix II. 
These four first-order differential equations of the amplitudes fj(12) specify 

the particular solutions of Clairaut equations (SM3, Equation (1)) and will be 
needed on dealing with the numerical solutions afterwards. 
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3. Numerical Solutions 

A construction of the numerical solutions of the Clairaut equations specified by 
the boundary conditions (5)-(8) can be accomplished by successive approxima- 
tion using the same technique followed by Kopal (1974): first solving for to 
accuracy of first-order, next solving for f2 and f4 to quantities of second-order, 
and continuing until a solution for f2, f4, f6 and f8 accurate to fourth-order has 
been established. Over all steps of our calculations the Hamming's predictor- 
corrector method is used to report the numerical integration of the foregoing 
Clairaut differential equations governing f2, f4, f6, and f8 for the density distri- 
bution p(a) characterizing our configuration. This method consists of solving a 
system of n-first order ordinary differential equations. 

The Clairaut equation (see SM3) takes the form 

a j j  6D(f j  +af t )  - j ( j  + 1)fj = Tj(a), (9) 

which is a second order differential equation, where D is the ratio between the 
arbitrary density p(a) and the mean density which is given by 

D -p(a) and ~=3 fo aO _~ ~(a) -~ pa 2 da = Fo. (10) 

The ratio D can be expanded, in the proximity of the origin, in a series as 

D(a) = 1 - Aa + . . .  (11) 

even power only occurring on the r.h.s on account of spherical symmetry of our 
configuration in its undistorted state, where by definition 

D(a) = 1 and D(al)  = 0. (12) 

By successive approximation method, we can extend with difficulties to solve 
for each amplitude fj(a) of j th  harmonic distortion to the required degree of 
accuracy. The structure of the differential equations of the form (9) governing 
these, make it evident that near the origin (a = 0), the complementary function 
of each  fj (factored by an arbitrary positive cons tan t  Kj) will vary as Kja  j - l ,  

[(j/2 while its particular integral will be factored by **j , while the constants Kj ( j  = 
2, 4, 6&8) constitute the eigen-parameters of our problem, and their values must 
be determined with the aid of the boundary conditions (5)-(8) valid at a = al. 

Thus, to put Equations (9) as a two first order ordinary differential equations, 
consider that 

Yl = f j  and Y2=f~ (13) 

on differentiation with respect to a, thus 

y~ = f~ and Y2 = f~' (14) 
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Equations (11) can be written as, 

Y~ = Y2 (15) 

and, 

a2y~ = [j( j  + 1) - 6D]yl - 6aDy2 + Tj, (16) 

which are two differential equations of first-order, subject to the initial conditions 

yl(0) = constant (fj(O)) and y2(0) = 0 (17) 

The numerical integration of the boundary value problem (13) for Jupiter and 
Saturn has been carried out on the basis of their models of internal structure 
worked out by Zharkov (t975) as given diagrammatically in Figures 1 and 2. 
These planets will underlying under the assumption that the mass of these planets 
being in hydrostatic equilibrium and are known to rotate so fast that the higher- 
order than first-order effects of centrifugal force become of much greater relative 
importance. 

Using the computing program, written by one of us (Marie), based on solving 
n-first order differential equations, which applying the successive approximation 
steps as shown before and through every step, it solved the system of differential 
Equations (15) and (16) under the boundary conditions (17) - up to the order 
of evaluation - using Hamming predictor - corrector method for the numerical 
integrations. 

As long as terms of first-order only are retained throughout Equation (9), 
the problem for computation is simple: The first-order equation being linear and 
homogeneous in the sole dependent variable f2, its numerical integration can be 
started from an arbitrary value f~(0), and its appropriate scale constant adjusted 
by means of the outer boundary condition (5). To do so we consider as a first 
approximation K2 = 1, to begin the numerical integration. Using the values of 
f2 and f~ from the first step and satisfy the boundary condition at a = al, the 
program use iteration method to /(2 until the values of f2 and f~ will give 
appropriate accuracy to fulfill the boundary conditions (5), where the value of 
constants occurring in Equation (5) can be specified without difficulty for our 
planets. These constants were given in Table I. 

Owing to this we can obtain the value of amplitudes fa and its derivative at 
the different levels inside the planet as a first approximation. When, however 
the terms of second, third and fourth order are considered, we face a non-linear 
boundary value problem of the jury type the solution of which proceeded as 
follows: consider Equation (6) at the boundary a = a~ of the amplitude f4, using 
the values of f2 and f~ which obtained as a first approximation to get initial 
value to /(4, as well as f4. Take the numerical values of f2 and f4 to repeat 
the numerical integration of Equations (9) up to second-order and so continue 
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0 t_.._.___.. 

Fig. 1. Internal density distribution of Jupiter. 

TABLE I 

Constants characterize our planets Jupiter and Saturn 

Jupiter Saturn 

Mass m t  1.8985 x 1030 gm 0.56846 x 1030 gm 

Mean radius al 6.9911x109 cm 5.8232 x l09  cm 

Mean density/3 1.326 gm/cm 3 0.6873 gm/cm 3 

Angular velocity of 0.00017585 sec -1 0.000163785 sec -1 

rotation co 
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0.8 

0.6. 

0.4, 

0.2, 

a/a, 

Fig. 2. Internal density distribution of Saturn. 

as mentioned before until we solve up to four approximations, where the initial 
values of E-is, j = 2, 4, 6, and 8, are obtained from the boundary condition 
equations. 

In this investigation, we take into consideration the different shape of ratio 
D, Equation (11), which given by James and Kopal (1968) as: this ratio of the 
form of Equation (11) could be used only to a/a1 = 0.15 and 0.267, respec- 
tively. Outside the core, empirical polynomial were used again to represent the 
theoretical variation of PiPe: For Jupiter, polynomials of degree 3, 2, and 2 were 
found adequate in the inner, intermediate, and outer shell, respectively; while for 
Saturn, distinct polynomials had to be used in the range, 0.267 < a/at < 0.465, 
0.465 < a/a~ < 0.549 and 0.549 < a/a1 < 1.0. 

Take into consideration the above different ratio of P/Pc; first to Jupiter and 
secondly for Saturn, the outcome of our solutions of the fourth order Clairaut 
Theory is then contained in Tables II and III for Jupiter and Saturn, respectively, 
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TABLE II 

Coefficients of the internal 
Jupiter 

distorton of 

a/al -102f2 -102f4 -102f6 

0 0.781 0 . 0 0 4 7  0.000009 
0.095 0 . 7 8 1  0 . 0 0 4 8  0.000020 
0.146 0 . 7 8 2  0 . 0 0 4 9  0.000039 
0.150 0 . 7 8 3  0 . 0 0 5 0  0.000070 
0.150 0 . 7 8 4  0 .0051  0.000073 
0.193 0 . 8 0 6  0 .0061  0.00062 
0.241 0 . 8 2 2  0 . 0 0 6 9  0.00112 
0.291 0 . 8 4 4  0 . 0 0 8 3  0.00190 
0.337 0 . 8 7 2  0 . 0 0 9 9  0.00291 
0.385 0 . 9 0 7  0 . 0 1 2 0  0.00440 
0.443 0 . 9 6 1  0 . 0 1 5 4  0.00685 
0.490 1 . 0 2 1  0 . 0 1 9 4  0.0099 
0.54 1.099 0 . 0 2 4 7  0.0146 
0.588 1.195 0 . 0 3 1 8  0.0212 
0.641 1.321 0 . 0 4 1 7  0.0316 
0.690 1 . 4 7 5  0 . 0 5 4 6  0.0466 
0.732 1 . 6 4 3  0 . 0 6 9 7  0.0656 
0.765 1 . 8 6 6  0 . 0 8 9 6  0.0914 
0.765 1.867 0 . 0 8 9 7  0.0921 
0.800 1 . 0 3 9  0 . 1 0 7 9  0.1193 
0.850 2 . 3 4 4  0 . 1 4 2 2  0.1752 
0.874 2 . 6 0 8  0 . 1 7 1 2  0.2239 
0.899 2 . 8 2 9  0 . 1 9 8 5  0.2741 
0.919 3 . 0 3 3  0 . 2 2 4 6  0.3244 
0.938 3 . 2 4 9  0 .2533  0.3818 
0.959 3 . 5 0 8  0 . 2 8 8 8  0.4558 
0.968 3 . 7 1 2  0 . 3 1 5 2  0.5097 
0.976 3 . 8 5 9  0 . 3 3 5 0  0.5517 
0.988 4 . 0 6 0  0 . 3 6 4 2  0.6168 
0.9917 4 . 2 6 2  0 . 3 8 9 3  0.6683 
0.9953 4 . 3 5 0  0 .4013  0.6944 
1.0000 4 . 4 6 1  0 . 4 1 7 2  0.7304 

which shows the deformation at the equipotential agrees with the density distri- 

bution level given in Figures 1, 2. These solutions are diagrammatic in Figures 

3 and 4. 
Once the values of  f j ( a )  are thus numerically for two planetary configurations, 

Jupiter and Saturn, then insertion in Equation (9) gives the respective approxi- 
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Coefficients 
Hm 

TABLE III 

of the internal distorton of Sat- 

a/al -lOZf2 --102f4 --102f6 

0 1.086 0.0081 0.00018 

0.005 1 . 0 7 8  0.0097 0.00019 
0.091 1.079 0.0098 0.00020 
0.147 1.080 0.0100 0.00030 
0.198 1.082 0.0105 0.00035 
0.247 1 . 0 8 8  0.0110 0.00061 

0.267 1.100 0.0120 0.00071 
0.267 1 . 1 0 7  0.0128 0.00080 
0.298 1.215 0.0170 0.00257 

0.338 1.264 0.0200 0.00376 
0,388 1 . 3 3 9  0.0250 0.00582 
0.445 1.447 0.0320 0.00924 

0.465 1.510 0.0360 0.01130 
0.465 1.520 0.0370 0.01150 

0.500 1.616 0.0440 0.01518 
0.549 1 . 7 6 3  0.0550 0.02182 
0.599 1.956 0.0710 0.03182 
0.650 2.t90 0.0910 0.04651 
0.699 2.455 0.1170 0.06657 
0.749 2.772 0.1500 0.09569 

0.799 3.I40 0.1930 0.13689 
0.848 3.590 0.2500 0.19698 

0.873 3.930 0.2930 0.24464 

0.899 4.235 0.3350 0.29635 
0.917 4.514 0.3750 0.34470 
0.934 4.783 0.4150 0.39537 
0.960 5.194 0.4800 0.48344 

0.969 5.506 0.523 0.53997 
0.979 5.721 0.5570 0.58805 
0.9864 5.903 0.5870 0.62919 
0.9919 6.045 0.6090 0.66194 

0.9958 6.131 0.6240 0.68315 
1.0000 6.208 0.6370 0.70485 

m a t i o n  to the form of  the equ ipo ten t ia l  surfaces of  a ny  layer  of  cons tan t  dens i ty  

and  m e a n  radius  a ins ide  the planets .  

In  order  to test the accuracy  of  our  results ,  the fo l lowing  two checks  have  

been  carr ied out: 
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0.5 

~J 

0.4 

;~-g. (~) = In te rna l  d i s t o r t i o n  
Of Jupiter.  

0.3. 

0.2, 

0.1 

0 0o? 0.4 0.6 O.6alal  o0 

Fig. 3. 

1. Considering the density distribution of Jupiter and Saturn reported by James 
and Kopal (1963), and repeating the computation of the distortions up to second- 
order only, we notice that our results are identical up to the third decimal with 
that of James and Kopal. 

2. The value of the constant A in Equation (11) was arbitrarily reduced by 
1% and the integration repeated; the corresponding ranges in the terminal values 
of f j ' s  were likewise changed about 1%. 

Note that the departure of our planets from (Jupiter and Saturn) due to these 
fourth-order rotational distortion terms was interesting up to the amplitude f6 
only. Thus any greater accuracy would, however, require an increased precision 
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O.b t Pig, (4) t l n t e r n n l  d i s t o r t i o n  
f |  [ of ~ a t u r n .  

( . 5  

0 . 4  

0.3 

0.2 

0 (2.2 0 , 4  

Fig. 4. 

J j  
0.6  0.8 1.0 

8/ t l  1 

in our knowledge of the density distribution inside these planets. So the third- 
order rotational distortion terms was sufficient to study the deformation of these 
planets owing to the density distribution in our hand. 

4. Appendix I 

Radial function of internal potential 

E°(a)=~SlP--0-00a ( a2( 1-7 22f2 +1f4-7 2~f'~- 2f~f4)] da, (I1) 
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~'2(a)=~a 0 p L  (f2 q- 3 3 Oa ~ f 2 - da, 

al O 3 3  ~f~f4)J da, E4(a) = fo p-~a[a-2(f4 -32~f2+~f2 -- 3 2  

o,  _  .4)1 E6(a) = fao p L  Oa [a-4 (f6 5 3 ~f2 - da, 

and 

~1 0 7 7 E8(a)=fa  ° P--~a [a-6 (f8 - 49 '~4 ~.12 -- ~f2f6-- ~f4)] 

Radial function of external potential, 

]o °° Fo(a) = pa 2 da, 

p_0_0 1 3+2f2f4) j d a ,  oa IaS ( f 2 -  ~f2 F2(a) = fo a° 

F4(a) = fo a° 

F6(a) = fro 

and, 

pL 9 2 Oa laY(f4 +3 2 ~f~ +~f~f4-~J4)] da, 

0 4f2f4) 1 da, P~a [a9 (f6 +7 3 ~fd + 

da. 

fs(a)_~ foa°lgL Iall (fs.k_ 15 4 5 2 Oa -~-f~ +5f2f6+~f~)] da. 

5. Appendix II 

COEFFICIENTS OF THE BOUNDARY-CONDITION EQUATIONS 

For n = 2, Equation (5) 

OL21 = 0.960, OL22 = 0.192 

(I2) 

(I3) 

(I4) 

(I5) 

(I6) 

(I7) 

(i8) 

(i9) 

(IlO) 
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TABLE II- 1 

j / i  1 2 i 
1 1.398 0.820 1 23304.440 

2 10.602 0.473 2 709.513 

3 1.043 0.200 3 606.828 

4 0.356 12.220 4 141.948 

5 0.178 2.448 5 12.861 

6 2642.228 

i~j 7 1255.993 

j / i  1 2 8 2298.639 

1 224.233 7.063 9 266.595 

2 59.566 6.579 10 920.509 

3 52.412 9.095 11 251.313 

4 4.510 12 150.349 

5 71.443 122.447 13 30.355 

6 62.827 23.369 14 7.073 

7 569.811 42.242 15 3.313 

8 43.134 2.252 16 112.872 

9 2.250 17 37.173 

10 1.201 18 7.696 
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For n = 4, Equat ion  (6) 

0~21 = 0.960, 0 ~ 2 2  = O. 192 

TABLE (11-2) 

j / i  1 2 
1 13.883 2.989 

2 18.886 1.434 

3 5.971 1.146 

4 96.526 

5 13.783 

j / i  1 2 
1 1940.640 50.780 

2 1370.270 321.015 

3 99.990 85.083 

4 35.038 0.697 

5 3438.151 291.302 

6 509.673 431.353 

7 3757.689 360.193 

8 325.157 6.291 

9 36.540 0.843 

10 9.135 

1 127522 

2 54820 

3 11784 

4 2603 

5 148.093 

6 68124 

7 24642 

8 44906 

9 15709 

10 6429.622 

11 2221.347 

12 3009.495 

13 457.206 

14 485.365 

15 51.153 

16 1612.857 

17 887.502 

18 54.004 
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For n = 6, Equation (7) 

TABLE (I1-3) 

j / i  1 2 i 
1 760.192 

2 240.244 

3 61.914 

4 3.839 

5 512.779 

6 52.141 

7 294.380 

8 35.85 

9 

10 

80.100 

94.288 

14.252 

127.235 

154.946 

65.863 

6.76l 

3.258 

0.363 

I 69158.640 

2 13920.842 

3 1521.300 

4 201.909 

5 3.354 

6 14147.950 

7 6176.276 

8 10972.332 

9 1091.333 

10 929.157 

11 64.228 

12 223.132 

13 82.640 

14 194.812 

15 5.738 

16 21.113 

17 143.331 

18 6.268 
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TABLE (II-3) 

1 1190.734 
2 910.458 
3 426.987 
4 5.991 

5 0.319 
6 157.532 
7 19.697 

8 357.118 
9 49.530 

10 9.385 
11 3.245 
12 66.473 
13 7.400 

14 1.482 
15 0.406 
16 4.314 
17 2.131 
18 0.045 
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