EULERIAN LIBRATION POINTS OF RESTRICTED PROBLEM OF THREE OBLATE SPHEROIDS

S. M. EL-SHABOURY and M. A. EL-TANTAWY
Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

(Received 20 April 1993)

Abstract

In this paper we consider the circular restricted problem of three oblate spheroids. The collinear equilibrium solutions are obtained. Finally a numerical study of the influence of the nonsphericity in the location of the libration points is made.

1. Introduction

It is well known that there are five equilibrium solutions in the restricted three bodies problem. Three are collinear with the primaries and the other two are in equilateral triangular configuration with the primaries. The restricted problem of three rigid bodies $\left(S_{1}, S_{2}, S_{3}\right)$ is defined as the study of the motion of S_{3} of infinitesimal mass (which does not perturb the motion of the others) under the action of S_{1}, S_{2}-called the primaries - as in the classic case. This study was begun by Nikolaev (1970), which obtained equilibrium solutions when the more massive primary S_{1} is an oblate spheroid, and the other two are spheres. This work is extended by Sharma and Subbarao (1975) in the case where S_{1}, S_{2} are oblate spheroids, and where the infinitesimal S_{3} is a sphere. Other authors that must be mentioned are Robinson (1979), Markov (1980), Vidyakin (1979). Duboshin $(1982,1984)$ has given conditions for the existence of collinear and equilateral equilibrium solution in the case of rigid bodies having an exis and plane of symmetry. Elipe and Ferrer (1985) studied the circular planar restricted problem of three axisymmetric ellipsoids S_{1}, S_{2}, S_{3} such that their equatorial planes coincide with the plane of the motion of the three centers of mass.

In this paper we consider the restricted problem of three axisymmetric rigid bodies. The shift of the equilibrium position (due to the non-sphericity) with respect to the classical restricted problem is checked numerically.

2. Equations of Motion

Let S_{1}, S_{2}, S_{3} be three axisymmetric rigid bodies, with masses m_{1}, m_{2}, m_{3} and O_{1}, O_{2}, O_{3} their centers of masses. We suppose that m_{3} is infinitesimal, i.e., it does not influence the motion of S_{1} and S_{2} (primaries), whose centers of masses describe circular orbits around O, its common centre of mass, with mean motion n. Besides we suppose that O_{3} is moving in the plane defined by the motion of the centers of masses O_{1}, O_{2}, of the primaries.

Now, we consider the following orthogonal system of reference:
(1) A fixed system $O X Y Z$ such that the $O X Y$ plane coincides with the fixed plane which contains the points O_{1}, O_{2}, O_{3}.
(2) $O_{i} X Y Z$, parallel to $O X Y Z$, with origin at O_{i}.
(3) $O_{i} \xi_{i} \eta_{i} \zeta_{i}$, defined by the principal axes of inertia of S_{i}.

The relation between the system $O_{i} \xi_{i} \eta_{i} \zeta_{i}$ and $O_{i} X Y Z$ is given by the Euler angles $\left(\theta_{i}, \phi_{i}, \psi_{i}\right)$.

The potential which acts on the solid body S_{3} (Duboshin, 1975) is given by

$$
\begin{equation*}
\left.V=-\sum_{i=1}^{2} f m_{2} m_{i}\left\{\frac{1}{p_{i}}+\frac{1}{p_{i}^{3}}\left[a_{i}^{2}-c_{i}^{2}\right)+\left(a_{3}^{2}-c_{3}^{2}\right)\right]\right\}, \tag{2.1}
\end{equation*}
$$

where $p_{i}=\left|r_{i}\right|=\left|O_{i} O_{3}\right| ; f$ is the gravitational constnat; $a_{j}, c_{j}(j=1,2,3)$ are the semi-axes of S_{j}. Then the equations of motion of S_{3} are

$$
\begin{align*}
& \ddot{\mathbf{r}}=-f m_{1} g_{1} \frac{\mathbf{r}_{1}}{p_{1}^{3}}-f m_{2} g_{2} \frac{\mathbf{r}_{2}}{p_{2}^{3}} \tag{2.2}\\
& \dot{\mathbf{L}}=\mathbf{W} \wedge \mathbf{L}=-\left(\delta^{-1}\right)^{T} \frac{\partial V}{\partial q} \tag{2.3}
\end{align*}
$$

where

$$
\begin{aligned}
& g_{i}=1+\frac{3}{10 p_{i}^{2}}\left[\left(a_{i}^{2}-c_{i}^{2}\right)+\left(a_{3}^{2}-c_{3}^{2}\right)\right], \quad \mathbf{r}=\overline{O_{3} O}, \\
& \mathbf{q}=\left(\psi_{3}, \theta_{3}, \phi_{3}\right), \quad \delta=\left|\begin{array}{llll}
\sin \theta_{3} & \sin \phi_{3} & \cos \phi_{3} & 0 \\
\sin \theta_{3} & \cos \phi_{3} & -\sin \phi_{3} & 0 \\
\cos \theta_{3} & 0 & 0 & 1
\end{array}\right|,
\end{aligned}
$$

and \mathbf{W} is the angular velocity vector and \mathbf{L} and angular momentum vector of S_{3}, referred to $O_{3}, \xi_{3}, \eta_{3}, \zeta_{3}$.

Finally, we choose another orthogonal system of reference $O x y z$. $O x$ is the direction $O_{1} O_{2}$ of the primaries, $O z$ perpendicular to the $O X Y$ plane and $O y$ the third axis of a right oriented system. In this system the Equations (2.2) have the form

$$
\begin{align*}
& \ddot{x}-2 n \dot{y}=n^{2} x-f m_{1} g_{1} \frac{x-x_{1}}{p_{1}^{3}}-f m_{2} g_{2} \frac{x-x_{2}}{p_{2}^{3}}, \tag{2.4}\\
& \ddot{y}+2 n \dot{x}=n^{2} y-f m_{2} g_{1} \frac{y}{p_{1}^{3}}-f m_{2} g_{2} \frac{y}{p_{2}^{3}},
\end{align*}
$$

$\left(x_{1}, 0\right),\left(x_{2}, 0\right)$ being the coordinates of O_{1}, O_{2}, respectively, in the system Oxyz. Introducing the function

$$
\begin{equation*}
\Omega=\frac{1}{2} n^{2}\left(x^{2}+y^{2}\right)+f m_{1} G_{1}+f m_{2} G_{2} \tag{2.5}
\end{equation*}
$$

where

$$
G_{i}=\frac{1}{p_{i}}+\frac{1}{10 p_{i}^{3}}\left[\left(a_{i}^{2}-c_{i}^{2}\right)+\left(a_{3}^{2}-c_{3}^{2}\right)\right] .
$$

The equations (2.4) may be written as

$$
\begin{align*}
& \ddot{x}-2 n \dot{y}=\Omega_{x} \tag{2.6}\\
& \ddot{y}+2 n \dot{x}=\Omega_{y} .
\end{align*}
$$

Equations (2.6) together with (2.3) describe the motion of S_{3}.

3. Particular Solutions

Let us seek the solutions of (2.6) analogous to the Euler equilibrium points of the classic restricted problem.

Making $\Omega_{x}=\Omega_{y}=0$, we have

$$
\begin{align*}
& n^{2} x-f m_{1} g_{1} \frac{x-x_{1}}{p_{1}^{3}}-f m_{2} g_{2} \frac{x-x_{2}}{p_{2}^{3}}=0, \tag{2.7}\\
& y\left(n^{2}-f m_{1} \frac{g_{1}}{p_{1}^{3}}-f m_{2} \frac{g_{2}}{p_{2}^{3}}\right)=0 \tag{2.8}
\end{align*}
$$

This system admits of two types of solutions.

$$
y=0, \quad y \neq 0
$$

We will study the first case, i.e., O_{1}, O_{2}, O_{3} are collinear points. According to the usual notation, we choose the constants such that

$$
f m_{2}=\mu, \quad f\left(m_{1}+m_{2}\right)=1
$$

Then the coordinates of O_{1}, O_{2} are

$$
O_{1}=\left(x_{1}, O\right)=(-\mu, O), \quad O_{2}=\left(x_{2}, O\right)=(1-\mu, O)
$$

The positions of the collinear points, are determined by the solution of Equation (2.7). We will consider three cases, corresponding to the equilibrium point situated: at the right $\left(L_{1}\right)$, in the middle $\left(L_{2}\right)$, and to the left $\left(L_{3}\right)$ of the primaries, Elipe and Ferrer (1985).
(L_{1}) In this case, the Equation (2.7) can be solved approximately and obtain

$$
P_{2}=S\left[1-\frac{\beta}{4 \alpha} S+\frac{1}{4}\left(\frac{7}{8} \frac{\beta^{2}}{\alpha^{2}}+\frac{1}{3 I_{2}}-\frac{\gamma}{\alpha}\right) S^{2}+\cdots\right]
$$

$$
\begin{aligned}
& P_{1}=1-P_{2}, \quad S=\sqrt[4]{\frac{3 I_{2}}{\alpha} \cdot \frac{\mu}{1-\mu}}, \quad \alpha=1-n^{2}+3 I_{1} \\
& \beta=2+n^{2}+12 I_{1}, \quad \gamma=3\left(1+10 I_{1}\right) .
\end{aligned}
$$

$\left(L_{2}\right)$ In this case, the Equation (2.7) can be solved and we get

$$
\begin{aligned}
& P_{2}=S\left[1+\frac{\beta}{4 \alpha} S+\frac{1}{4}\left(\frac{7}{8} \frac{\beta^{2}}{\alpha^{2}}+\frac{1}{3 I_{2}}-\frac{\gamma}{\alpha}\right) S^{2}+\cdots\right], \\
& P_{1}=1+P_{2},
\end{aligned}
$$

where S, α, β and γ are defined as in $\left(L_{1}\right)$.
(L_{3}) From Equation (2.7), the libration point L_{3} can be determined as following

$$
\begin{aligned}
& P_{1}=1+\delta, \quad P_{2}=2+\delta, \quad \delta=S_{0}+S_{1} \mu+S_{2} \mu^{2}+S_{3} \mu^{3}+\cdots, \\
& S_{0}=\frac{\lambda_{0}^{3}}{\lambda_{1}^{5}}\left(4 \lambda_{2}^{2}-2 \lambda_{1} \lambda_{2}-3\right)-\frac{\lambda_{0}}{\lambda_{1}^{3}}\left(\lambda_{0} \lambda_{2}+\lambda_{1}^{2}\right) \\
& S_{1}=\frac{1}{\lambda_{1}^{3}}\left(\lambda_{1}^{2}+2 \lambda_{0} \lambda_{2}\right)+\frac{3 \lambda_{0}^{2}}{\lambda_{1}^{5}}\left(2 \lambda_{2}^{2}-\lambda_{1} \lambda_{3}\right) \\
& S_{2}=\frac{-1}{\lambda_{1}^{3}}\left[\lambda_{2}+\frac{3 \lambda_{0}^{2}}{\lambda_{1}^{2}}\left(2 \lambda_{2}^{2}-\lambda_{1} \lambda_{3}\right)\right] \\
& S_{3}=\frac{1}{\lambda_{1}^{5}}\left(2 \lambda_{2}^{2}-\lambda_{1} \lambda_{3}\right), \quad \lambda_{0}=-\frac{A}{G}, \quad \lambda_{1}=-\frac{1}{G}\left(B-\frac{A H}{G}\right) \\
& \lambda_{2}=-\frac{1}{G}\left[C-\frac{H B}{G}+A\left(\frac{H^{2}}{G^{2}}-\frac{K}{G}\right)\right], \\
& \lambda_{3}=-\frac{2}{G}\left[\left(D-\frac{C H}{G}\right)+B\left(\frac{H^{2}}{G^{2}}-\frac{K}{G}\right)+A\left(\frac{2 K H}{G^{2}}-\frac{L}{G}-\frac{H^{3}}{G^{3}}\right)\right] \\
& A=16\left(n^{2}-3 I_{1}-1\right), \quad B=16\left(7 n^{2}-6 I_{1}-4\right), \\
& C=8\left(43 n^{2}-9 I_{1}-13\right), \quad D=8\left(76 n^{2}-3 I_{1}-11\right), \\
& G=3\left(16 I_{1}-I_{2}\right)+16 n^{2}+12, \quad H=4\left(24 n^{2}+24 I_{1}-3 I_{2}+11\right), \\
& L=12\left(2 L_{1}-L_{2}\right)+360 n^{2}+44, \quad K=18\left(4 I_{1}-I_{2}\right)+248 n^{2}+63 .
\end{aligned}
$$

4. Numerical Results

We have made a numerical study of the non-sphericity of the axisymmetric primaries S_{1}, S_{2} in the location of the Euler's libration points of an axisymmetric satellite S_{3}. The shift of the equilibrium position with respect to the classical
restricted problem is checked numerically for several values of $I_{i}(i=1,2)$ and $\mu=0.0009536896$ as in the following tables.

I_{1}	L_{1}	ΔL_{1}	L_{2}	ΔL_{2}	L_{3}	ΔL_{3}
$I_{1}=I_{2}=0$	0.932369999		1.068826078		-1.000397371	
	10^{-2}	0.900745382	-0.031624617	1.097347238	0.028521160	-1.000376894
	10^{-3}	0.899871890	-0.032498109	1.098220730	0.029394652	-1.000367494
10^{-4}	0.899781940	-0.032588095	1.098310680	0.029484602	-1.000366504	-0.000003089877
10^{-5}	0.899772789	-0.032597210	1.098319831	0.029493753	-1.000366404	-0.000030967

I_{1}	L_{1}	ΔL_{1}	L_{2}	ΔL_{2}	L_{3}	ΔL_{3}
$I_{1}=I_{2}=0$	0.932369999		1.068826078		-1.000397371	
	10^{-2}	0.937128548	0.004758549	1.060964073	-0.007862005	-1.000402990
10^{-3}	0.936583199	0.004213200	1.061509421	-0.0000005616657	-1.000395360	-0.000002011
10^{-4}	0.936527055	0.004157056	1.061565565	-0.007260513	-1.000394559	-0.000002812
10^{-5}	0.936521424	0.004151425	1.061571196	-0.007254882	-1.000394479	-0.000002892

I_{1}	L_{1}	ΔL_{1}	L_{2}	ΔL_{2}	L_{3}	ΔL_{3}
$I_{1}=I_{2}=0$	0.932369999		1.068826078			-1.000397371
	10^{-2}	0.959996460	0.027626461	1.038096160	-0.030729918	-1.000405428
10^{-3}	0.959652826	0.027282827	1.038439794	-0.030386284	-1.000397954	-0.0000000583
10^{-4}	0.959617450	0.027247451	1.038475170	-0.030350908	-1.000397170	-0.000000201
10^{-5}	0.959613902	0.027243903	1.038478718	-0.030347360	-1.000397091	-0.000000280

I_{1}	L_{1}	ΔL_{1}	L_{2}	ΔL_{2}	L_{3}	ΔL_{3}
$I_{1}=I_{2}=0$	0.932369999		1.068826078		-1.000397371	
	10^{-2}	0.974339407	0.041969408	1.023753213	-0.045072865	-1.000405670
10^{-3}	0.974122008	0.041752009	1.023970612	-0.044855466	-1.000398212	-0.0000000841
10^{-4}	0.974099628	0.041729629	1.023992992	-0.044855466	-1.000397429	-0.000000058
10^{-5}	0.974097383	0.041727384	1.023995237	-0.044830841	-1.000397391	-0.000000020

I_{1}	L_{1}	ΔL_{1}	L_{2}	ΔL_{2}	L_{3}	ΔL_{3}
$I_{1}=I_{2}=0$	0.932369999		1.068826078		-1.000397371	
	10^{-2}	0.983457335	0.051087336	1.014635285	-0.054190793	-1.000405694
10^{-3}	0.983213176	0.050843177	1.014879444	-0.053946634	-1.000398238	-0.0000000867
10^{-4}	0.983198959	0.050828960	1.014893661	-0.053932417	-1.000397455	-0.000000084
10^{-5}	0.983197533	0.050827534	1.014895087	-0.053930991	-1.000397377	-0.000000006

Some of the conclusions are as follows
(1) The shifts of L_{1} and L_{2} are greater than the shift of L_{3}.
(2) When I_{2} is in the order of 10^{-2}, the libration point L_{1} directs towards the center of masses M_{1} and M_{2} while L_{2} moves faraway from M_{2}.
(3) When I_{2} is smaller than 10^{-2}, the libration points L_{1} and L_{2} directs towards M_{2}.
(4) When I_{2} is greater than 10^{-4}, the libration point L_{3} directs towards M_{1}. On the other hand when I_{2} is smaller than $10^{-4}, L_{3}$ moves for away from M_{1}.

References

Cid, R. and Elipe, A.: 1985, Celestial Mech. 37, 113.
Duboshin, G. N.: 1975, Celestial Mechanics, Fundamental Problems and Method, (in Russian).
Duboshin, G. N.: 1982, Celest. Mech. 27, 267.
Duboshin, G. N.: 1984, Celest. Mech. 33, 31.
Elipe, A.: 1983, Thesis Doctoral, Universidad de Zaragoza, Spain.
Elipe, A. and Ferrer, S.: 1985, Celest. Mech. 37, 59.
El-Shaboury, S. M.: 1989, Earth, Moon, and Planets, 45, 205.
Markov, Y. G.: 1980, Soviet Astron. 25, 740.
Robinson, W. J.: 1979, in Dynamics of Planets and Satellite and Theories of their Motion, IAU Colloq. 41, 305.
Subborao, P. V. and Sharma, R. K.: 1975, Astron. Astrophys. 43, 381.
Vidyakin, V. V.: 1979, Bull. I.T.A. 14, 463.

