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Summary. A natural model for a 'self-avoiding' Brownian motion in IR d, 
when specialised and simplified to d = 1, becomes the stochastic differential 

t 

equation Xt=B t -  ~ g(Xs, L(s, Xs))ds, where {L(t, x): t>0 ,  xelR} is the local 
0 

time process of X. Though X is not Markovian, an analogue of the Ray- 
Knight theorem holds for {L(oo, x): x61R}, which allows one to prove in 
many cases of interest that l i m X j t  exists almost surely, and to identify the 
limit, t~ 

1. Introduction 

One of the most challenging problems of probability is to construct and 
analyse models for self-avoiding random walks. The physics literature contains 
numerous such models (we list some references at the end of this section), 
which display considerable ingenuity and which, at the same time, underline 
the difficulties in performing a rigorous analysis. Our interest here is in a 
model which is specified by the stochastic differential equation 

t 

Xt= B t -  S g(Xs, L(s, Xs)) ds , (1) 
o 

where {L(t,x): t>=O, x~lR} is the local time process of X, and B is Brownian 
motion. 

The model one would most like to look at would be the three-dimensional 
SDE 

8 

where, say, f was the electrostatic potential, f(x)=x/[x] 2. It is not clear that 
this SDE has a unique solution, let alone what its properties might be. Even in 
the case when f is globally Lipschitz (when it is easy to show that there is a 
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unique solution), the study of properties of the solution is extremely difficult, 
so as a first step one looks at the one-dimensional analogue. This is still so 
difficult in general that one looks for particular f for which more can be said, 
and one such choice is to take f to be the Dirac f-function, in which case the 
SDE becomes 

t 

X t = B~ + ~ L(s, Xs) ds. 
o 

This one-dimensional SDE has the qualitative behaviour that X is pushed up 
strongly from levels where it has already spent a lot of time; by mixing the 
laws of X and - X  one could get a process pushed away from levels where it 
had already spent a lot of time. 

The techniques by which this SDE are handled cope equally well with the 
generalisation (1). We remark that, if g(x, l) = l, then the process X is a Brown- 
ian motion with a downward drift equal to the (local) time spent at the present 
position; it is known (see Barlow [3]) that the process (L(t,X~))t>=o is not a 
semi-martingale if X is Brownian motion, so the drift is a potentially awkward 
object. Nonetheless, the construction of a law P on the canonical path space f2 
= C(R+,R)  under which the canonical process X solves (1), via Cameron- 
Martin-Girsanov change of measure, presents no problems. At least, it presents 
no problems if g is bounded, but the unbounded drift case, which one en- 
counters most commonly in practice, is encountered least commonly in theory, 
and needs a little care. 

In w using ideas of McGill 1-10] and Jeulin 1-8], we investigate the be- 
haviour (as a process in the space variable a) of 

T 

Na ~ ~ usI~xs<=,~dX~ 
0 

under Wiener measure P. Here, T=inf{t :  X t = - K } ,  for some fixed K6IN, and 
u is a suitable previsible process. The main point is essentially that N is a 
martingale in the excursion filtration (g,) provided u satisfies a measurability 
condition forcing N to be adapted, and an integrability condition (see Theo- 
rem 1). The classical Ray-Knight theorem is a corollary. 

In w 3, we assume we are in a position to use the Cameron-Martin-Girsanov 
change of measure to convert the canonical process X into a solution of (1); 
the key point then is that the Cameron-Martin-Girsanov density can also be 
identified as a change of measure in the (g~)filtration, converting the P- 
martingale N into a P-martingale plus drift, which can be identified explicitly. 

In w we specialise to g depending on L(s, Xs) alone. Here we take the 
trouble to prove the existence and properties of/3, and we deduce that if g is 
non-negative and increasing then the process {~_~-_-L(~,-x):  x>0}  is a 

1 
stationary diffusion, and t-lXt--* - - ,  where # is the mean of the stationary 
distribution. As a special case, if # 

t 

x ,  = B~-  .~ L(s, x3 ds, 
0 
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then 

X t .... 
- -  ;~ - -  . 

t 

The physics literature discusses numerous models for interacting random 
walks, usually in discrete time. One common feature of such models is that if 
~2N={functions x: {0, 1 . . . .  , N}~Zd} ,  one constructs a measure Pu on QN and 
calculates the PN-expectation of some functional of the path (for example, 
EN(]xN[2)) and investigates the behaviour as N ~ o e .  However, frequently the 
measures PN are not consistent in the sense that PN+I o 7~N+-I 1 4=PN' where 
~ +  ~: ~?N+ ~ ~(~N is the natural restriction, so there is no connection between 
the problem for N and the problem for N + I .  Likewise, 'Markovian '  models, 
where the jump probabilities depend on the times spent in the difl'erent states, 
can result in the sample path entering a 'cage' and being unable to continue; 
both of these features seem to us to be undesirable drawbacks. See the 
references [1, 4, 5, 9, 14, 17] for more information. 

In a note submitted to Physics Letters [12], we have given some of the 
heuristics which motivated this work, relating it to work of Edwards [-5] and 
Westwater [17]. 

2. Brownian Local Times and the Excursion Filtration 

We collect here a number of definitions and welt known results. Let 
~ = - C (N+ , N) ,  with canonical process X and natural filtration ~o  {~'t+ } made 
right-continuous. Let P denote Wiener measure on ((L ~o).  Now define for 
aEN 

t 

A(t, a) - S I~xs ~= a~ ds, ~ (t, a) =- inf {u: A(u, a) > t}, 
0 

t 

X(t,  a) = - ~ I~xs<=al dXs, ~ (t, a)= X (z(t, a), a), 
0 

~(t ,a)=_a({~(s,a):  s<t}) ,  X(t ,a)=-X(z( t ,a)) ,  

go-~(~,a). 

The times z(t,a) are finite P-a.s., and are {~,~~ times. Walsh [16] 
shows that (g~)a~a is a right-continuous increasing family of a-fields. Tanaka's 
formula (which may be taken as the definition of semimartingale local times) 
says that 

t 

X t/x a = X  o/x a+  i I ( x ~ i d X s - � 8 9  a) 
0 

= (X  o/x a)+ X(t ,  a ) - �89  a); (2) 

see Az6ma-Yor [2] or Meyer [11], p. 365. 
To prove the main result of this section, Theorem 1, we need to time 

change stochastic integrals: the following result, quoted from Rogers-Williams 
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[13], covers all the cases we need. The filtration {4}  is assumed right con- 
tinuous. 

Theorem A. Let A be a continuous increasing process with right-continuous 
inverse z. Let ~ - ~ ( z , ) ,  and suppose Ao=0.  

(i) I f  T is an { ~ time, then A r is an {~}-stopping time. 
(ii) I f  S is an {~,~}-stopping time, then Zs is an {~,}-stopping time. 

(iii) I f  H is an {~}-previsible process, then HoA is an {~}-previsible pro- 
cess, assuming H o =0. 

(iv) Suppose M is an {~t}-local martingale with the property that 

3 {~}-stopping times S,?oo such that 

M ~(s"~ is a uniformly integrabte martingale. 

Then g i t - M ( r t )  is an {~}-local martingale, and for any locally bounded {~,~}- 
previsible process H, Ho=0,  

Hsdf4 s= ~ H(As) dM~. (3) 
(0, t] (0, ~t] 

Using Theorem A(iv) on the local martingales X(t, a) and X(r, a) 2 - A ( t ,  a), 
with the stopping times 

S, = inf {t: X(t, a) < - n, or L(z (t, a), a) > n}, 

we deduce that {{(t, a): t>0)  is an {~(z(t,  a))}-Brownian motion. In particular, 
ga is generated by a Brownian motion, so every L2(g~) random variable has a 
stochastic integral representation. This is the central idea behind the key lemlna 
of McGill [10]. 

Now let u be a {gt}-previsible process, and for each aelR, let 

Define 
fi(t, a ) -  u(z(t, a)). 

L(&)-= {previsible u such that fi(t, a) is {J'(t,  a)}-previsible g a}. 

In our development, the analogue of McGill's lemma is the following. 

Theorem 1. Suppose that u~L(N) satisfies the condition 

Then the process 

is an {N~}-martingale with 

cx3 

ESu~I{xs~a}ds<oo for all a~R.  (4) 
0 

No ~ 7 us I{x.__<a} dXs 
0 

oo 
2 

0 
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2I{x<o}dS. Firstly, we prove that N and C are {go} adapted. Proof  Let C a=_ u s 
0 

By Theorem A(iv), for each aelR, 

oo co 

N, = - ~ u~I{x,<=o}dX ~ = ~ fi(s, a)ds a) 
0 0 

which is in C o. Likewise, 

co co 

C a -  ~ u 2 I{x <=,ids= ~ fi(s, a) 2 ds 
0 0 

is in E~, since ueL(g).  
Now fix a<be lR .  For  each F~Lco(go), there is an {~(t ,a)}-previsible pro- 

m 
cess v such that E S v~ ds < co, and 

0 

F=E(F)+ ~ v~cl~(s, a) 
0 

= E(F) + S v(A(t, a)) I{x,<=< dXt, 
0 

by Theorem A(iii)-(iv). Thus 

[ E((N b - No)F)= E ,  ~ u s I{o < x~ < b)dX~" j v(A(t, a))I{x ~ <= aldXt 
L O  = 0 

=0.  

Hence (No, d~ is a martingale. Next, if 

t 

Mt =- ~ u~I{~<x~<=b}dXs, 
o 

we have by It6's formula 

E [ ( N b - N ~ ) 2 F ] = E  2~M~u~I{.<X<=b}dXs. F +E  UsI{~<x~b}ds.F 
\ 0 / 

(i ) = E  u~I{a<xs~b}ds.F , 

the first term vanishing by a similar argument to that used to prove that N is a 
martingale. 

Hence N f - C  o is an {d~ and since C is plainly increasing and 

continuous since ~u2I{xs=o~ds=0 for all a , C is {No}-previsible, and C 
= (N>. [] o 

Remark. The hypothesis that u~L(g)  was only used to prove that N and C are 
adapted; without this assumption, the same argument proves that the {Eo}- 
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optional projection of N is an {g,}-martingale, with quadratic variation pro- 
cess equal to the {g,}-dual previsible projection of C. 

At first sight, Theorem 1 may have the appearance of a technical lemma; 
but to convince you that it is not, we remark as a first consequence that we are 
now only a few steps away from the celebrated Ray-Knight theorem on 
Brownian local time. 

Fix K e N ,  and let T-=inf{t: Xt<_ - K } .  Defining now 

Za=-L(T,a), 
T 

Y~- ~ I~x._~.~dX~= X(T, a), 
0 

we use Theorem 1 to deduce a result of Jeulin [8]. 

Lemma 1. The process {Ya: a > - K }  is a continuous local ({Ea},P)-martingale, 
with quadratic variation 

( Y ) . =  i Zxdx" 
- K  

Proof The process u t =-I~t <= rI is in L(g), and satisfies (4). Indeed 

~1 ( t ,  a )  = I { z ( t  ' a) < T} = I{t <= A ( T ,  a)} 

and A(T,a)=inf{t: J ~ ( t , a ) = - K }  is an {o~(t,a)}-stopping time, since X(t,a) is 
adapted to the filtration {o~(t,a)} of ~(t,a). Indeed, 2(t,a)=aAO+~(t,a) 
-�89 and (see, for example, Ikeda-Watanabe [-6], Lemma III-4.2) 
�89 a), a)= sup(~(s, a ) - a + )  +. The condition (4) is easy to check, so we apply 

s ~ t  

Theorem 1 ; Y is an {~,}-martingale, with 

( Y ) a =  ~ I{s<=ril~xs<__aids= Zxdx 
0 --cJo 

by the fact that local time is the occupation density. [] 

The Ray-Knight theorem now follows immediately. 

Corollary (Ray-Knight). Under P, the process Z solves the stochastic differential 
equation 

Z . = 2  i (Z+)l/zdWx+2((aAO) +K) ( a > - K )  
n 

- K  

where W is a Brownian motion. 

Proof Tanaka's formula at time T says 

�89 A a)+K+ Y.. [] 

3. Local Time Process of Drifting Brownian Motion 

We continue to use the notation of w 2, but now we suppose given some locally 
bounded measurable g: ~ x R+- - ,~ ,  and a probability 15 on (f2, ~0 y%) with the 
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property that 

and 

where 

and where 

As is well known, 

Bt=-Xt + i g(Xs, L(s, X~))ds 
0 

P ~ P  on each ff~ P(T---,oo)=I, 

dP ~ ; ~  +) dP =p(T,)-exp(M(T,,)- �89 P-a.s., 
n 

T,=--nAinf{t: IXtJ>n, or L(t,X,)>n}, 
t 

Mt_SGdX~ ,  pt_= exp(M~ 1 -7(M>t) ,  
0 

u,-  -g(X, ,  L(s, x~)). 

is a/5-Brownian motion. 

(5) 

(6) 

(7) 

(Since (M)r,, is bounded, S p(T,,)dP= 1, and the only difficulty which (5) could 
present is that there might be no measure P which projects down in this way. 
For the rest of this section, though, we assume that such a/5 does exist.) Write 
Q=�89 and let {~} be the usual Q-augmentation of (~ o  t t + S "  

We shall further assume that 

P(H_~<oo)=I  for all neN,  (8) 

where H~=inf{t: Xt=x  }. 
As in w the aim is to find the law of {Z,: a > - K } - { L ( T , a ) ;  a > - K } ,  

where T - H _  K. We firstly show that /5~P on Yr with density Pr. The 
exponential martingale expression (5) for PT allows us to see how local mar- 
tingales transform when P changes to /5, but by expressing Pr as the exponen- 
tial of an {Ea}-local martingale, we can also see how {ga}-local martingales 
(especially Y !) transform when P changes to/5. 

Lemma 2. Let T =- H_ ~. Then/5~P on ~r  , and 

d~p ~ = Pr. (9) 

Proof. Continuity of L and the hypothesis (5) imply that 

P(L T o0) = ~5(To T oo) = i. (lo) 

Take A ~ r ,  P(A)=0. Then 

A ~ {T= Go} ~; {sup T n < ~} ~ ( U  (A c~ {T< Tn})), 
n n 

a union of P-null sets, by (8), (10), and (5), respectively. Thus/5 ~ p on fir, and 
(9) follows from the martingale convergence theorem and (5). [] 

The key to expressing Pr as the exponential of an {g,}-local martingale is 
the following result. 
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Lemma 3. The process {N~: aelR} defined by 

T 

N. =-- ~ I{x~.}GdX~ 
0 

is an ({C,}, P)-local martingale, and 

T 

(N, Y)~= ~ l(x~<a~Gds, (11) 
0 

= -  i f(x,Z:c)dx, (12) 
- K  

where 

f(x, z) = i g(x, y)dy. (13) 
0 

Proof. The process u~- -g(Xt ,  L(t, Xt) ) is in L(g) because 

fi(t, a)= - g ( 2 ( t ,  a), L(r(t, a), X (t, a))) 

and L(z(t, a), X(t, a)) is the  local time of 2 at level X(t, a) at time t, which is 
{~(t, a)}-previsible. 

Although u I(0 ' rl may not satisfy (4), if we let u~ - ( -  k) v (ut)/~ k, and define 
correspondingly r 

N2-  ~ I(x~<~}u~dX~, 
0 

then ukI(o, rl satisfies (4)~ and, by Theorem 1, each N k is an ({d~ P)-martingale. 
Since g is locally bounded, for each m~N there is some k e n  such that 

x e [  - K ,  m], z~[0, m] ~ ]g(x, z)] < k. Define the {g,}-stopping place 

Then 

G,=inf{x:  Z~>m} Am. 

~m>a~I(x~<=a}lg(X,L(t, Xt))[<k for O<_t<_T 
�9 k _ ~I(x~a}(ut-ut)-O for 0 < t _  T. (14) 

Now the stochastic integrands I{xt<,}u t and I{xt<a~u ~ can be approximated by 
simple functions which (by (14)) may be assumed to agree on [0, T ]  when 
c~m> a. Thus the stochastic integrals Na and N2 are approximated by Riemann 
sums which, on the event {e,~>a}, agree. Hence e,~>a~Na=Nk,, and N~A~ 
= N k and N is an {g~}-local martingale, reduced by the ~m. ,~,~, 

Finally, it follows from Theorem 1 that 

T 

( N~, YL  = S u~I~x<=o~ds, 
0 

from which (11) follows, and for (12), by (an extension of) the occupation 
density formula for local time 
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l{x" <=~} g(X~, L(s, X~)) ds = dx g(x, L(s, x)), L(ds, x) 
0 - - ~  

= i f(x,  Zx) dx. [] 
- K  

We can now very easily easily obtain the analogue of the Ray-Knight 
theorem for the law/5. 

Theorem 2. Under P the local time process (Z~)~>=_r~=-(L(T,a))~>=_K satisfies the 
stochastic differential equation 

Z~= i 2(Z+)-~dW~ +2 i (I{~o}-f(x,Z~))dx" (15) 
-K -K 

Proof If we take a measure /5 on (/2, ~-o) which is absolutely continuous with 
respect to P, defined by (d/5/dP)=pT , then under/~ 

t A T  

Bt=-Xt+ S g(X~,L(s,X,))ds is Brownian motion, 
0 

and/5  agrees with /5 on YT' But (Z,) is f/r-measurable, so it suffices to obtain 
the/5-law of Z a. However, 

d/5 
dP 

- Or = e x p ( M r - � 8 9  

= exp (N~o - �89 (N)oo) 
- -  ~ 

so, by the Cameron-Martin theorem, under P, Yo=-Ya-(N, Y)a is a local 

martingale, with quadratic variation ( Y ) o =  i Z dx. From (2) and (12), 
K 

Z a = 2 Y a + 2  i l{x<=o}dx 
- K  

= 2  L + 2  i (I{x<=o}-f(x, Zx))dx, 
- K  

from which (15) follows immediately. [] 

As a first application, we consider the diffusion given by the solution of the 
SDE 

dY~=~(Y~)dB,+b(Y~)dt, 

where a is C 1 and everywhere positive, and a, b are such that Y t - ~ - ~  a.s. as 

t~oo .  Defining h~C 2 by h '=1~, h(O)=O, and letting Xt=h(Yt) , then 
(7 

where 
dX, =dB t - g(Xt) dt, 

g(x)=( �89 
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If {L(t, a): t>0 ,  aen(} is the (semimartingale) local time of Y (related to the 
occupation density {L(t, a): t > 0, a~lr by L(t, a) = o-(a) 2 L(t, a)), then 

L(t, a)= A(t, h(a)) a(a) 2 h'(a)= A(t, h(a)) a(a), 

where A is the (semimartingale) local time of X. We can apply Theorem 2 to 
deduce the law of (A(T, X))x>=h(_K) , and by the familiar techniques of scale and 
speed we can translate this back into a statement about the law of 
(L(T, x))~> -K. We find that, if Za=L(T, a), 

Z~= i 2(Z+)~dW~ +2 i [I{xao~+ba-2(x)Zx] dx" 
- K  - K  

4. Homogeneous Drift: Asymptotic Behaviour 

We now specialise by assuming that g does not depend on X, and that g is 
>=0. Thus we suppose given some continuous g: IR + ~IR +, and define 

x 

f (x)  ==- ~ g(y) dy. 
0 

Theorem3. Suppose l i m f ( x ) = l + 2 e > l .  Then there exists a probability /5 on 
(~2, ~o ~o~ 5~)  such that 

t 

Xt= B , -  ~ g(L(s, X~)) ds, (16) 
o 

where B is a/5-Brownian motion, and 

/5 (X t~-o �9  as t ~ o v ) = l .  (17) 

I f  ~,=L(oo, x), then {~ x: x>O} is a stationary diffusion on IR + with 
generator 

d 2 d (18) 
= 2z ~ + 2(1 - f ( z ) )  d-z 

and invariant density 

d 

Proof. The existence of /5 is no problem if g is bounded; this is a simple 
application of the Cameron-Martin-Girsanov change of measure (see, for ex- 
ample, Ikeda-Watanabe [6], IV.4). 

To handle the case of unbounded g, let g,(x)-l[o,nj(x)g(x), where we only 
consider n so large that f (n)> 1 + 5. Then, since g, is bounded, there exists a 
measure/5, on (0, o~-o) defined by 

dP" / = exp {M} ") - �89 (Mt'))t}, (20) 
dP/~*P 
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t 
where M~")-= - j" gn(L(s, Xs))dXs, and under which 

0 t 

B} ") = Xt + S g.(L(s, Xs)) ds (21) 
0 

is a Brownian motion. Now if T.= n/~ S., where S.-= inf{t" L(t, Xt)> n}, then on 
[0,Y.], 

t 

BI")= X t + ~ g(L(s, Xs) ) ds, M} ") = Mr, 
0 

t 

where M t -  - ~ g(L(s, X~))ds, and ~+1 agrees with/5 on fr~ 
0 

The following result (see Stroock-Varadhan [15], Theorem 1.3.5) applies to 
the present situation. 

Theorem B. Let f2= C(]R +,IR) be the canonical path space with its canonical 
filtration {~o}, and let (Tn) be an increasing sequence of stopping times. Suppose 
there is a sequence (~) of probabilities on ((2, ~ )  such that 

(i) ~+ i  agrees with ft, on ~-~ 

(ii) for each t~(0, oo), 
/5.(T. < t)--* 0 as n--+oo. 

Then there exists a probability/5 on (Y2, J-~) such that for each n, 

/5=P. on 

Thus we have only to verify the second condition to prove the existence of 
/5 satisfying (5). This will follow immediately from the two statements" 

for each K, P,, (S, < H_ ~:) --, 0 as n ~ c c ;  (22) 

for each re(0, oe) and e>0,  there is some K such that (23) 

P,,(H_K<t)<e for all n. 

We firstly prove (22). For each n, the measure /sn satisfies (5) by construction, 
and (8) since g. >0,  so we can apply Theorem 2. Letting Z denote the solution 
of the SDE 

Za= i 2(Z+)~dWx +2 i (I~x<=o~-f(Zx))dx, ( a > - K )  (24) 
- K  - K  

and letting Z (") denote the solution of 

Z(~ ")= i 2(Z~)+)+dWx +2 i (l{~<=o}-f(n A Z~))dx, 
- K  - K  

then Z = Z  (") on the event {sup {Z.: a >  - K }  <n}, and under ~ ,  
{L(H_K, a): a >  - K }  has, by Theorem 2, the law of Z ("). Thus 

/sn (sup L(H_ K, a) > n) = P(sup Z~ > n) 
a 

--+0 a s  n - -~  o o ,  

proving (22). 
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To prove (23), we use a stochastic comparison theorem (see, for example, 
Ikeda-Watanabe [6], VI.1) to see that (for any n) 

P(Z~ ) > Z a for all a) = 1. 
Now 

H_K= ~ L(H_K,X)dx, 
K 

so for any n, 

Pn(H- K < t) <= P (~KZ a da < t ) 

--+0 

as K--+o% proving (23), and the existence of/5. The property (16) is immediate, 
and/5(H K< or)= 1 for all K e N ,  since g is non-negative. 

To prove t h a t / 5 ( X t ~ -  oo)= 1, we shall prove that for all a<beP., 

/5(sup sup L ( H . ,  x) < oo) = 1. (25) 
n a < - x < - b  

The result follows from this, because if we define z k = i n f { t > H  k: Xt=0}, and 
if every rk were finite, then for infinitely many k, Ix(zk+01 < 1 for all tel0,  1], 
since X is a Brownian motion with a drift which (when X is in [ - 1 ,  1]) is 
bounded, by (16) and (25). This contradicts (25), because (25) implies 

H-n  

sup S It-l, ll(Xs)ds<~176 /5-a.s.. 
0 

To prove (25), let ~ " ) - L ( H , , a ) ,  and let U be a random variable inde- 
pendent of X with law ~z. Now ((") solves the SDE 

(~")= i 2(:(~")) ~ dWx + 2 i (I{x<o}-f((~)))dx, 
- ?1  - n  

and if ~") is the (pathwise unique) solution to 

(-~"' = U + i 2(C(x"') ~ dW~ + 2 i ("' (I{~_< o} - f(~x )) dx, 
- n  - n  

then by the stochastic comparison theorem, 

/5(~,fl)> ((~") for all a_>_ - n ) =  1. 

But {~-~"): -n<_a<_O} is a stationary diffusion with generator N, so for each 
)~>0, 

/5(sup sup L(H ., x) > 2)= ]" lim /5( sup L(H_.,x)>2) 
n a < - x < - b  n ~  a<--x<_b 

=</5( sup ~-~)> 2), which is the same for all n > - a ,  
a < x < b  

and which tends to 0 as ) t - ~ .  This proves (25), from which follows (17). 
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Consequently, {x=Tlim ~{[) is a continuous process, and for fixed K e N ,  
t ~  c o  

{~: x >  - K }  solves the same SDE (24) as ~("), with different initial conditions 
(each ~'(")' x > - K }  solves the same martingale problem, and dominated con- t ~ x  " - -  

vergence implies the same is true in the limit). Now the law of -~)K is the law 
at time n - K  of a diffusion with generator ~, started at 0. Since ~ has an 
invariant distribution n, this invariant measure is the limit (in norm) of the 
laws Pt(0, ") (where Pt is the transition semigroup of the diffusion with generator 
~q), so {~: -K<-x<_O} is a stationary diffusion with generator ~. Since Pt is 
reversible with respect to n, (see, for example, ItS-McKean [7]), the final 
statement of the Theorem is proved. [] 

The final result is an ergodic theorem which gives the speed at which X 
tends to - ~ .  

Theorem 4. Suppose that g is increasing. Then P-a.s., 

32, 1 
(26) 

where # is the mean of the invariant density ~ (19). 

Remarks. The condition that g is increasing implies that lim f ( t ) =  0% and 
t ~ o O  

hence the invariant distribution has a mean. The proof of Theorem 4 rests on 
the following lemma, of interest in its own right. 

Lemma 4. For each 2 > O, and each K > 0 

P(sup {X(H_ ~ + t) - X (H ~)} > 2) < P(sup X t > 2). 
t > O  t 

Proof Fixing K > 0, abbreviating H ~ to H, and defining the process )? by 

(27) 

we see that 

where 

and 

f [ t ~ X ( H + t ) + K  (t~O), (28) 

< = 6 -  i ~(x~, L(s, ~J) ds, 
0 

B t = - B ( H + t ) - B ( H ) ,  L ( s , x ) : L ( H + s ,  - K + x ) - L ( H ,  - K + x ) ,  

~(x, l)--- g(L(H, - K + x) + l) 

>gO), 

since g is increasing, and ~,(x, l)=g(l) if x=<0. Thus X satisfies an SDE of the 
type considered in w Letting (x-:L(c~,x), by Theorem 2 and the comparison 
theorem 

/~(sup {X(H + t) - X(H)} > 2) =/~(/;. > O) 
t>=O 

~P(~>o), 
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since the drift in the SDE for ff is dominated by the drift in the SDE for ~, and 
equal to it in ( -  0% 0) (and hence the law of fro is the law of ~0, the invariant 
distribution). [] 

Proof of Theorem 4. For each K>0 ,  let o- ~=-sup{t: Xt= -K} .  For each e>0, 

P(H (1 + ~)K < a K) < P(sup X t > e K) (29) 
t 

by the inequality (27). 
Now 

a_z=~L(a K,a)da 

= ~a da  + ~ L ( a _  K, a) da 
- - K  - - c o  

0 - - K  co 

= ~ ~,da+ ~ L(a_K,a)da+S~,da, 
- K  - - o z  0 

so that 
1 o 

liminfl~a-K>K~| K K~lim ~ ~ada  

co 

=#=- ~ x~(x)dx, (30) 
0 

by the well known ergodic theorem for positive recurrent one-dimensional 
diffusions (see, for example, It6-McKean [7], w 6.8). Similarly 

H_K= ~ L(H_~:,a)da< ~ ~da 
- K  - K  

s o  
1 

lim s u p - - H  K<#. (31) 
K~co K - 

We shall show that 
/~ [sup Xt] < ~ ,  (32) 

t 

from which, by the first Borel-Cantelli 1emma and (29) it follows that for each 
~>0, P-a.s. H (l+~)K>o'_ ~ for all large enough K. Together with (30) and (31), 
this implies that P-a.s. 

1 1 
lim - - a  K= lim - - H  K=/~. (33) 

K ~ K  - K ~ K  - 

To prove (32), notice that supX~=inf{x>0: Z~=0}---z is the first hitting time 
t 

d 2 d 
of zero of a diffusion with generator 2 x ~ t ~ - 2 f ( x ) ~  x. Familiar scale and 

speed calculations reveal that for a > 0 

o9 

0 
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where s is the scale function, s '(x)=exp f ( t )  = ~ - ~ ,  and denotes ex- 

pectation with starting point a for the diffusion {Z~: x>0}.  But the law of Z 0 
is the invariant distribution with density 7~, so 

oo 

E(sup Xt) = j d a  ~(a) E"(z) 
t 0 

da ~ ~, ~ 

o 

and since lim f ( t ) >  2 by hypothesis, the integral is finite. 
t ~  oO 

Finally, we prove (26). For each 8 > 0, a.s. for all large enough K 

ff-K/(I+e)<H-K<ff-K<H-K(I+O 

so for te(H_ r, ~rr) (for large enough K) 

- K  
- K ( I + 0 < X t < ( 1  + 0  

and hence for te(H_ K, H_K_ 0 

- K  
- K ( l  + O < X t <  (l +e)" 

Thus for te(H_ K, H_K_I ) 

X t <  - K  X~> - K ( I + 0  

t ( l + e ) H  K' t H_K_ 1 ' 

from which (26) follows, by (33). [] 

Example. Take g(x)=ax  ~, where a and e are positive constants. Then, writing fl 
for l+c~ ax  ~ 

f (x)  = 

and the invariant density n solves the adjoint differential equation 

d 2 d 
N* rc = ~-~-z2 [2 z ~(z)] -dzz [2(1 -f(z)) 7t (z)] =0 .  

This can be solved easily: we find 

re(z) = c- e x p ( -  a :/I32). 
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Hence  we can ca lcula te  m o m e n t s  of the invar ian t  d i s t r ibu t ion  in this ins tance:  

izk.(z)dz= (~) k/' Y (-~)k+l / Y  ( ~ ) .  

In  par t icu la r ,  if a = c~ = 1, the first  m o m e n t  is ] / (4/~) .  Hence  f rom T h e o r e m  4 

- - ~  - a.s. 
t 

5. C o m p u t e r  S i m u l a t i o n  

R a t h e r  to our  surprise,  a very r o u g h - a n d - r e a d y  c o m p u t e r  s imula t ion  by Peter  
Townsend  and  one of us (D.W.) gave results  in very close agreement  with our  
theorems.  

To s imula te  the equa t ion  

dX = dB - L(t, Xt) dt (34) 

a f i rs t -order  Euler  m e t h o d  was used, wi th  t ime- inc remen t  of size h. The  X-va lues  
were res t r ic ted  to mul t ip les  of K h  ~, where K is a cons tan t  no t  much  bigger  
than  1. The  value  of  L(t, x), where  t is a mul t ip le  of  h and x a mul t ip le  of  K h ~, 
was t aken  to be 

N h/(K h ~) 

where  N is the n u m b e r  of  mul t ip les  of  h less than  or  equal  to t at  which X is 
at  x. The  fol lowing equa t ion  was t aken  as the d iscre t ized  form of (34): 

Xt+ h -- Xt = A, 

where  A takes  one of the values - K  h ~, 0, K h }, and  it is a r r anged  tha t  

E ( 3 ) =  - L ( t ,  Xt)h, Var(A) = h. 

Acknowledgements. Our thanks to Peter Townsend for his part in the simulation; and to Ian 
Davies and Aubrey Truman for many interesting discussions. 
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